首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of variations in the earth's gravity in groundwater exploration on a regional scale, especially in sedimentary basins, metamorphic terrains, valley fills, and for buried alluvial channels, is well established. However, its use in hard crystalline rocks is little known. In granite, for example, the upper weathered layer is a potential primary aquifer, and the underlying fractured rock can form a secondary aquifer. Fracturing and weathering increases the porosity of a rock, thereby reducing the bulk density. Changes in gravity anomalies of 0.1–0.7 mGal for granites, due to weathering or variations in lithology, can be detected. To test the use of gravity as a groundwater exploration tool for crystalline rocks, a gravity survey of the peninsular shield granites underlying Osmania University Campus, Hyderabad, India, was undertaken. At the site, gravity anomalies reflect variations in the lithology and in the thickness of weathered zones. These anomalies also define the position of intrusives and lineaments. Areas of more deeply weathered granite that contain wells of higher groundwater yield are represented by negative gravity values. In the weathered zone, well yield has an inverse relation to the magnitudes of residual gravity. The study confirms the feasibility of gravity as a tool for groundwater exploration in crystalline rocks. Electronic Publication  相似文献   

2.
The regolith in the Mt Isa region of Queensland consists of a variety of saprolites and duricrusts developed on Proterozoic basement rocks and fresh to weathered Mesozoic, Tertiary and Quaternary cover, all of which has impeded base metals exploration. This paper presents an overview of some of the regolith-geochemical work conducted in the Mt Isa region as part of an industry-supported three year CRC LEME/AMIRA Project. A complex weathering and landscape history has produced a landscape of (a) continuously exposed and exhumed basement rocks that have undergone varying intensities of weathering and partial stripping; (b) weathered and locally eroded Mesozoic cover sequences and (c) areas with younger transported cover concealing basement and Mesozoic cover. Various regolith sample media have been evaluated at a number of prospects and deposits which represent different regolith-landform terrains and landscape history. Geochemical dispersion processes and models are presented and false anomalies explained.Where ferruginous duricrust or ferruginous nodular gravel are preserved on weathered bedrock on an eroded plateau, they exhibit large (> 500 m) multi-element (As, Pb, Sb) dispersion haloes and are useful sampling media. Dispersion haloes in truncated profiles on weathered bedrock covered with colluvium are restricted, are limited to tens of metres from subcrop of the source, and contrast to the extensive anomalies in ferruginous duricrust and nodules. Geochemical exploration in covered areas depends on the possible presence of dispersion through the sediments or leakage along faults or fractures, but may be complicated by high metal backgrounds in the sediments themselves. Some of the most prominent anomalies occur in ferruginous materials and soils representing emergent residual terrain developed on Mesozoic sediments. These are largely due to weathering of sulfide mineralization that continued during submergence in a marine environment, with hydromorphic dispersion into the sediments as they accumulated. Multi-element (Cu, As, Zn, Sb, Au) anomalies occur in basal sediments and at the unconformity, due to a combination of clastic and hydromorphic dispersion and represent a useful sample target. Metal-rich horizons in weathered sediments, higher in the sequence, can also be targeted, particularly by specifically sampling ferruginous units and fragments. However, these are less certainly related to mineralization. Zinc and Cu, concentrated in Fe (and Mn) oxides at redox fronts, may be derived by leaching from the sediments with concentration in the sesquioxides, and be unrelated to any proximal basement mineralization. In all these regolith-dominated terrains, a clear understanding of local geomorphology, regolith framework, topography of unconformities and the origins of ferruginous materials is essential to sample medium selection and data interpretation.  相似文献   

3.
In some glaciated regions, weathered mantles, formed under previous climatic regimes, were not always eroded bare by glacial activity, but instead lie buried beneath the glacial overburden. It is obviously important that geochemical exploration programs in such terrain should take into account some of the known regolith features seen in deeply weathered regions. The effects of glacial action upon deeply weathered terrain are considered in three conceptual models. The critical factor in each is the depth of truncation of the preglacial weathering profile. All three proposed models are dynamic systems and a wide range of intermediate situations must be expected.In Model 1 a complete, largely undisturbed, weathering profile is preserved beneath till. The key characteristic is preservation of a lateritic duricrust which may contain areally large (up to 200 km2) geochemical anomalies. It would be critical, firstly, that the duricrust be sufficiently continuous to allow a reasonable success rate in its being sampled, and secondly that the duricrust be recognizable in drill spoil. The most efficient geochemical exploration could be based upon wide-spaced overburden drilling directed at sampling the duricrust. For reconnaissance, holes could be based upon a 1-km grid where stratabound massive polymetallic sulphide or stratabound gold deposits are sought. Even wider spacing could be tried where larger-sized ore deposits are expected.Model 2 is characterized by a weathered profile that was partly stripped prior to glaciation. The essential feature is a vertically zoned weathering profile in the basement rock in which the upper levels of the weathering profile have undergone leaching of certain elements and lower levels contain enrichments of these elements. Any gossans present would show strong vertical zonation. Relatively strong sources for dispersion in till are likely to be enriched gossans where erosion has cut deep into the profile, zones of supergene enrichment of ore deposits, and supergene ore deposits themselves. In many situations, saprolite under glacial drift would be too soft to provide boulders so important in conventional till prospecting.The essential ingredient in hypothetical Model 3 involves progressive planing away of the weathering profile by glacial action. Thus any halo in duricrust is initially dispersed, followed by dispersion of progressively deeper levels of saprolite. If taken deep enough the supergene enriched zone of a mineral deposit could add to the glacial dispersion. A broadly zoned anomaly would be expected; a till anomaly would be characterized distally by elements from the former duricrust anomaly, with elements more characteristic of supergene zones closer to the source.  相似文献   

4.
The Huangshannan magmatic Ni-Cu sulfide deposit is one of a group of Permian magmatic Ni-Cu deposits located in the southern Central Asian Orogenic belt in the Eastern Tianshan, northwest China. It is characterized by elevated Ni tenor (concentrations in recalculated 100% sulfide) in sulfide within ultramafic rocks (9–19 wt%), with values much higher than other deposits in the region. Sulfides of the Huangshannan deposit are composed of pentlandite, chalcopyrite, and pyrrhotite and the host rock is relatively fresh, indicating that the high-Ni tenor is a primary magmatic feature rather than formed by alteration processes. It is shown that sulfides with high-Ni tenor can be generated by sulfide-olivine equilibrium at an oxygen fugacity of QFM +0.5, for magmas containing 450 ppm Ni and 20% olivine. Ores with >10 wt% sulfur have relatively low PGE and Ni tenors compared to other ores, R factor (mass ratio of silicate to sulfide liquid) modeling of Ni indicates that they formed at moderate R values (150–600). Based on this constraint on R values, ores with <10 wt% sulfides in the Huangshannan deposit can be segregated from a similar parental magma with 0.05 ppb Os, 0.023 ppb Ir, and 0.5 ppb Pd at R values between 600 and 3000. This, coupled with the supra-cotectic proportions of sulfide liquid to cumulus silicates in the Huangshannan ores imply mechanical transport and deposition of sulfide liquid in a magma pathway or conduit, in which sulfides must have interacted with large volumes of silicate magma. Platinum and Pd depletion relative to other platinum group elements (PGEs) are observed in fresh and sulfide-rich samples (S > 4.5 wt%). As sulfide-rich samples are also depleted in Cu, and as interstitial sulfides in those samples are physically interconnected at a scale of several cms, the low Pt and Pd anomalies are attributed to solid Pt and Pd phases crystallization and retention with the monosulfide solid solution (MSS) and Cu-rich sulfide liquid percolation during MSS fractionation. This finding indicates that Pt anomalies in sulfide-rich rocks from magmatic Ni-Cu deposits in the Eastern Tianshan are the result of sulfide fractionation rather than a hydrothermal effect. 187Os/188Os(278Ma) values of the lherzolite samples vary from 0.27 to 0.37 and γOs(278Ma) values vary from 110 to 189, indicating significant magma interaction with crustal sulfides, rich in radiogenic Os. Well constrained γOs values and δ34S values (−0.4 to 0.8‰) indicate that crustal contamination occurred at depth before the arrival of the magma in the Huangshannan chamber. Regionally, deposits with high-Ni tenor have not been reported other than the Huangshannan deposit; however, many intrusions with high-Ni contents in olivine are present in NW China, such as the Erhongwa, Poyi and Poshi intrusions. Those intrusions are capable of forming high-Ni tenor sulfides due to olivine-sulfide-silicate equilibrium and relative high-Ni content in parent magma, making them attractive exploration targets.  相似文献   

5.
Summary The study focuses on the mode of occurrence of Au, Ag and Te in ores of the Gaisk, Safyanovsk, Uzelginsk and other volcanic-hosted massive sulfide (VHMS) deposits in the Russian Urals. Minerals containing these elements routinely form fine inclusions within common sulfides (pyrite, chalcopyrite and sphalerite). Gold is mostly concentrated as ‘invisible’ gold within pyrite and chalcopyrite at concentrations of 1–20 ppm. Silver mainly occurs substituted in tennantite (0.1–6 wt.% Ag). In the early stages of mineralization, gold is concentrated into solid solution within the sulfides and does not form discrete minerals. Mineral parageneses identified in the VHMS deposits that contain discrete gold- and gold-bearing minerals, including native gold, other native elements, various tellurides and tennantite, were formed only in the latest stages of mineralization. Secondary hydrothermal stages and local metamorphism of sulfide ores resulted in redistribution of base and precious metals, refining of the common sulfides, the appearance of submicroscopic and microscopic inclusions of Au–Ag alloys (fineness 0.440–0.975) and segregation of trace elements into new, discrete minerals. The latter include Au and Ag compounds combined with Te, Se, Bi and S. Numerous tellurides (altaite, hessite, stützite, petzite, krennerite etc.) are found in the massive sulfide ores of the Urals and appear to be major carriers of gold and PGE in VHMS ores.  相似文献   

6.
At the Justice mine, in the Ashanti goldfields of southwestern Ghana, chemical weathering of gold- bearing sulfide-rich lodes has produced a series of characteristic mineralogical and geochemical features that are diagnostic. In this type of gold mineralization, the most abundant sulfides are arsenopyrite, pyrite, pyrrhotite, and chalcopyrite with minor bornite and sphalerite. Gold occurs predominantly as native gold, spatially associated and chemically bound with arsenopyrite. Elsewhere gold-silver tellurides are present in quartz veins. During sulfide oxidation, arsenopyrite is replaced by amorphous and crystalline Fe-Mn arsenates, goethite, hematite, and arsenolite in box- and ladderwork textures. In the extremely weathered gossans exposed at surface or in exploration pits, goethite, hematite, and scorodite are present as pseudomorphs of oxidized arsenopyrite, which can be used as a visual pathfinder for gold-arsenic mineralization. As with arsenopyrite, pyrite and pyrrhotite alteration produces boxwork and ladderwork textures with the sulfide replaced by goethite, hematite, and a complex limonite. Copper sulfides and goethite replace bornite and chalcopyrite in ladder-type textures. With more intensive weathering, this assemblage is replaced by cuprite, goethite, and hematite. Gold mineralogy in the gossan is complex, with evidence of in situ precipitation of supergene gold as well as alteration of hypogene native gold. The concentration of pathfinder elements decreases in the gossan as a result of supergene leaching. Mass- balance calculations confirm that gossan production largely is in situ and, consequently, the hypogene geochemical dispersion patterns are preserved even though the proportion of many elements decreases as intensity of weathering increases.

The problem remains of discriminating between auriferous and non-auriferous gossans, or those produced by pedological concentration of iron. Although mineral textures such as box-and ladderwork replacement and mineral pseudomorphs are useful field criteria, the most reliable guide for evaluation still is trace-element geochemistry. By use of multi-element discriminant analysis, gossans of different origins can be distinguished (along with their surface expression) from ironstones and barren lateritic soils. In regional reconnaissance studies, the evaluation of trace-element geochemistry as a discriminant along with field mapping may indicate gold potential of even extremely altered products of mineralization and, in so doing, provide a basis for the classification of weathered samples.  相似文献   

7.
The Eastern Highlands of Australia have probably been in existence since the Late Cretaceous or earlier and so there has been ample time for mature gossan profiles to form over outcropping volcanogenic Zn–Pb–Cu mineralisation in the eastern Lachlan Fold Belt. The mature gossan profiles are characterised by the upward progression from supergene sulfides to secondary sulfates, carbonates and phosphates into a Fe-oxide dominated surficial capping which may contain boxwork textures after the original sulfides (as at the Woodlawn massive sulfide deposit). However, the region has locally been subjected to severe erosion and the weathering profile over many deposits is incomplete (immature) with carbonate and phosphate minerals, especially malachite, being found in surficial material. These immature gossans contain more Cu, Pb and Zn but lower As, Sn (and probably Au) than the mature gossans. Although Pb is probably the best single pathfinder for Zn–Pb–Cu VHMS deposits of the eastern Lachlan Fold Belt, Ag, As, Au, Bi, Mo, Sb and Sn are also useful, with most of these elements able to be concentrated in substantial amounts in Fe oxides and alunite–jarosite minerals.  相似文献   

8.
《Applied Geochemistry》1996,11(5):721-734
Pb isotope ratios obtained from fine-grained fractions ( < 63 and < 2 gmm from near-surface ( < 1 m depth) till surrounding ore deposits show isotopic overprinting from the underlying sulfide mineralization, and provide a new approach to mineral exploration for massive sulfide deposits (VMS) in glaciated terrains.In this study, Pb isotopic measurements, and selective leaching of 6 near-surface till samples down-ice from the Chisel Lake (Manitoba) and Manitouwadge (Ontario) VMS deposits were carried out in order to determine the location and nature of the Pb within till. Elemental abundances from selective leachates for all 6 samples display similar patterns and show that chalcophile elements (Cu, Ni, Pb and Zn), derived predominantly from the underlying VMS deposits, occur as (i) adsorbed/exchangeable metals; (ii) associated with oxyhydrous Fe and Mn; (iii) crystalline Fe oxides, and/or (iv) silicate. Despite the relative proximity of some of the till samples to the VMS deposits, only a very small component of the chalcophile elements is present as sulfide. This result is consistent with those from studies of weathered (oxidized) tills, which show that labile minerals such as sulfides have been completely destroyed and their chemical constituents reprecipitated or scavenged locally by clay-sized phyllosilicates and secondary oxides/hydroxides.Pb isotopic ratios for selective leachates from till samples with VMS-like (anomalous) signatures are similar to those from ore (galena) within the proximal VMS deposits. This indicates that the Pb is of a secondary nature and was probably scavenged and deposited after destruction of original sulfide minerals during till formation. The lack of a predominant sulfide-held Pb component within the selective leachates supports this interpretation. In contrast, Pb isotopic ratios for the same selective leachates from “background” samples are significantly higher and show that the Pb is not derived from proximal VMS deposits but from a more radiogenic source.Till samples were also leached using 2.5 M HCl (ldconventional” leaching). The Pb isotope ratios from the conventional leachates are similar to those obtained from the selective leachates, and show a large difference in Pb isotopic ratios between anomalous and background samples. We propose, therefore, that the conventional leaching rather than selective leaching or complete dissolution of a particular grain-size fraction be adopted for mineral exploration purposes using glacial sediments.The results from this study support the effective use of Pb isotope ratios from near-surface till as an exploration tool despite the weathered nature of the latter. We feel that this represents a more cost-effective technique over traditional geochemical prospecting methods, if used in conjunction with Pb abundance data.  相似文献   

9.
Volcanic‐hosted massive sulfide (VHMS) deposits of the eastern Lachlan Fold Belt of New South Wales represent a VHMS district of major importance. Despite the metallogenic importance of this terrane, few data have been published for sulfur isotope distribution in the deposits, with the exception of previously published studies on Captains Flat and Woodlawn (Captains Flat‐Goulburn Trough) and Sunny Corner (Hill End Trough). Here is presented 105 new sulfur isotope analyses and collation of a further 92 analyses from unpublished sources on an additional 12 of the VHMS systems in the Hill End Trough. Measured δ34S values range from ‐7.4% to 38.3%, mainly for massive and stockwork mineralisation. Sulfur isotope signatures for polymetallic sulfide mineralisation from the Lewis Ponds, Mt Bulga, Belara and Accost deposits (group 1) are all very similar and vary from ‐1.7% to 5.9%. Ore‐forming fluids for these deposits were likely to have been reducing, with sulfur derived largely from a magmatic source, either as a direct magmatic contribution accompanying felsic volcanism or indirectly through dissolution and recycling of rock sulfide in host volcanic sequences. Sulfur isotope signatures for sulfide mineralisation from the Calula, Commonwealth, Cordillera and Kempfield deposits, Peelwood mine and Sunny Corner (group 2) are similar and have average δ34S values ranging from 5.4% to 8.1%. These deposits appear to have formed from ore fluids that were more oxidising than group 1 deposits, representing a mixed contribution of sulfur derived from partial reduction of seawater sulfate, in addition to sulfur from other sources. The δ34S values for massive sulfides from the John Fardy deposit are the highest in the present study and have a range of 11.9–14.5%, suggesting a greater component of sulfur of seawater origin compared to other VHMS deposits in the Hill End Trough. For barite the sulfur isotope composition for samples from the Commonwealth, Stringers and Kempfield deposits ranges from 12.6% to 38.3%. More than 75% of barite samples have a sulfur isotope composition between 23.4 and 30.6%, close to the previously published estimates of the composition of seawater sulfate during Late Silurian to earliest Devonian times, providing supporting evidence that these deposits formed concurrently with the Late Silurian volcanic event. Sulfur isotope distribution appears to be independent of the host rock unit, although there appears to be a relation linking the sulfur isotope composition of different deposits to defined centres of felsic volcanism. The Mt Bulga, Lewis Ponds and Accost systems are close to coherent felsic volcanic rocks and/or intrusions and have sulfur isotope signatures with a stronger magmatic affinity than group 2 deposits. By contrast, group 2 deposits (including John Fardy) are characterised by 34S‐enrichment and a lesser magmatic signature, are generally confined to clastic units and reworked volcanogenic sediments with lesser coherent volcanics in the local stratigraphy, and are interpreted to have formed distal from the magmatic source. An exception is the Belara deposit, which is hosted by reworked felsic volcanic rocks and has a more pronounced magmatic sulfur isotope signature.  相似文献   

10.
与基性-超基性侵入体有关的Ni-Cu-PGE硫化物矿床是镍-铜-铂族元素矿床的最重要类型。传统观点认为,Ni-Cu-PGE硫化物矿床是由成矿岩浆分异演化、熔离形成的,与围岩性质关系不大。实际上,大部分基性-超基性岩浆是硫化物不饱和的,在岩浆自身演化过程中难以聚集大量硫化物而形成有经济价值的大型高品位NiCu-PGE硫化物矿床。因此,壳源硫的加入是基性-超基性岩浆中硫化物浓度达到过饱和,熔离形成Ni-Cu-PGE硫化物矿床的关键。膏盐层是富含石膏等硫酸盐(SO24-)的蒸发沉积建造,除SO24-外,还富含Cl-、CO23-、Na+、K+等盐类物质,在自然界分布广、面积大,是地壳中重要的硫源层和氧化障。但膏盐层在Ni-Cu-PGE硫化物矿床中的作用长期被忽视,制约了Ni-Cu-PGE硫化物矿床成矿找矿理论的发展。文章以世界最大的俄罗斯诺里尔斯克Ni-CuPGE硫化物矿床为例,介绍了膏盐层与矿床分布的空间关系、石膏等硫酸盐矿物在矿床和蚀变围岩中的分布、成矿元素和硫同位素组成特征及变化规律,阐明了膏盐层在成矿中的作用和控矿机理。膏盐(SO24-)的加入,可以大幅度提高成矿系统的氧逸度,将成矿岩浆中Fe2+氧化成Fe3+,形成铁氧化物,SO24-自身被还原,向成矿系统提供还原硫S2-,与Cu2+、Ni2+等结合,形成铜镍硫化物等,使基性-超基性成矿岩浆由硫化物不饱和变为过饱和,形成硫化物小液滴,在岩浆房经聚集-熔离-富集,形成岩浆型Ni-Cu-PGE硫化物矿床。除膏盐层外,富含硫化物的地层也是形成Ni-Cu-PGE硫化物矿床的重要硫源层。  相似文献   

11.
The oxidation of sulfide-rich rocks, mostly leftover debris from Cu mining in the early 20th century, is contributing to metal contamination of local coastal environments in Prince William Sound, Alaska. Analyses of sulfide, water, sediment, precipitate and biological samples from the Beatson, Ellamar, and Threeman mine sites show that acidic surface waters generated from sulfide weathering are pathways for redistribution of environmentally important elements into and beyond the intertidal zone at each site. Volcanogenic massive sulfide deposits composed of pyrrhotite and (or) pyrite + chalcopyrite + sphalerite with subordinate galena, arsenopyrite, and cobaltite represent potent sources of Cu, Zn, Pb, As, Co, Cd, and Hg. The resistance to oxidation among the major sulfides increases in the order pyrrhotite ? sphalerite < chalcopyrite ? pyrite; thus, pyrrhotite-rich rocks are typically more oxidized than those dominated by pyrite. The pervasive alteration of pyrrhotite begins with rim replacement by marcasite followed by replacement of the core by sulfur, Fe sulfate, and Fe–Al sulfate. The oxi dation of chalcopyrite and pyrite involves an encroachment by colloform Fe oxyhydroxides at grain margins and along crosscutting cracks that gradually consumes the entire grain. The complete oxidation of sulfide-rich samples results in a porous aggregate of goethite, lepidocrocite and amorphous Fe-oxyhydroxide enclosing hydrothermal and sedimentary silicates. An inverse correlation between pH and metal concentrations is evident in water data from all three sites. Among all waters sampled, pore waters from Ellamar beach gravels have the lowest pH (∼3) and highest concentrations of base metals (to ∼25,000 μg/L), which result from oxidation of abundant sulfide-rich debris in the sediment. High levels of dissolved Hg (to 4100 ng/L) in the pore waters probably result from oxidation of sphalerite-rich rocks. The low-pH and high concentrations of dissolved Fe, Al, and SO4 are conducive to precipitation of interstitial jarosite in the intertidal gravels. Although pore waters from the intertidal zone at the Threeman mine site have circumneutral pH values, small amounts of dissolved Fe2+ in the pore waters are oxidized during mixing with seawater, resulting in precipitation of Fe-oxyhydroxide flocs along the beach–seawater interface. At the Beatson site, surface waters funneled through the underground mine workings and discharged across the waste dumps have near-neutral pH (6.7–7.3) and a relatively small base-metal load; however, these streams probably play a role in the physical transport of metalliferous particulates into intertidal and offshore areas during storm events. Somewhat more acidic fluids, to pH 5.3, occur in stagnant seeps and small streams emerging from the Beatson waste dumps. Amorphous Fe precipitates in stagnant waters at Beatson have high Cu (5.2 wt%) and Zn (2.3 wt%) concentrations that probably reflect adsorption onto the extremely high surface area of colloidal particles. Conversely, crystalline precipitates composed of ferrihydrite and schwertmannite that formed in the active flow of small streams have lower metal contents, which are attributed to their smaller surface area and, therefore, fewer reactive sorption sites. Seeps containing precipitates with high metal contents may contribute contaminants to the marine environment during storm-induced periods of high runoff. Preliminary chemical data for mussels (Mytilus edulis) collected from Beatson, Ellamar, and Threeman indicate that bioaccumulation of base metals is occurring in the marine environment at all three sites.  相似文献   

12.
The sugar factory at Aarberg, Switzerland, has processed about 18×106 metric tons of sugar beets in the last 100 years. This has been accompanied by releases of dissolved organic carbon to the groundwater, induced both by direct wastewater disposal until 1964 and by ongoing leakage from solid-waste deposits. Downgradient in the groundwater of the glaciofluvial aquifer, depletion of oxygen concentrations accompanied by low nitrate, high ammonium, dissolved Mn(II) and Fe(II) concentrations are observed. This study was aimed at developing a quantitative comprehension of theimpact of the leaking waste deposits on biogeochemical processes in the aquifer and on groundwater quality. The study includes a review of historical information, a survey of the hydrogeochemistry in the aquifer, the characterisation of river-water infiltration rates with the radon method, establishment of a mass-balance model based on a numerical flow and transport model, and application of a stable-carbon-isotope method to show biodegradation of sugar-waste deposits in the aquifer. The investigations demonstrate that present emissions from waste deposits would not lead to the consumption of all the O2 in the aquifer. The present occurrence of anoxic groundwater conditions is explained as a result of the long history of waste loading. Electronic Publication  相似文献   

13.
Deeply weathered crystalline rock forms important aquifers for public water supply throughout low-latitude regions of Africa, South America, and Asia, but these aquifers have considerable heterogeneity and produce low well yields. Aquifers occur in the bedrock and overlying weathered mantle and are the products of geomorphic activity of meteoric water, principally deep weathering and stripping. The fundamental relationship between the hydrogeology and geomorphology of these terrains has, however, remained unresolved. This study demonstrates the ability of a recently developed tectono-geomorphic model of landscape evolution in Uganda to explain the hydrogeological characteristics of two basins, as determined using a combination of textural analysis, slug tests, packer tests, and pumping tests. The geopetal imprint of long-term deep weathering and erosional unloading is identified in the vertical heterogeneity of the fractured-bedrock and weathered-mantle aquifers; horizontal heterogeneity is lithologically controlled. The two units form an integrated aquifer system in which the more transmissive (5–20 m2/d) and porous weathered mantle provides storage to underlying bedrock fractures (transmissivity, T, 1 m2/d). The thickness and extent of the more productive weathered-mantle aquifer are functions of contemporary geomorphic processes. The utility of the tectono-geomorphic model, applicable to deeply weathered environments, is that it coherently describes the basin-scale hydrogeological characteristics of these complex terrains. Received, June 1999/Revised, January 2000/Accepted, January 2000  相似文献   

14.
15.
毛亚晶  秦克章  唐冬梅 《岩石学报》2018,34(8):2410-2424
岩浆铜镍矿床100%硫化物中的Ni含量与赋矿岩石和成矿过程紧密相关,记录岩浆成分、分异程度与硫化物演化过程。硫化物异常高镍(高镍硫化物)往往被认为与科马提质岩浆或者后期热液作用密切相关。近年研究结合勘查证实,赋含高镍硫化物的矿床(高镍铜镍矿床)不仅限于科马提岩,还与苦橄质、玄武质岩浆有关,另外,热液富集作用并不是必要因素。本文总结了世界上高镍铜镍矿床的基本特征和形成机制,分析提出了不同机制的判别标志,并展望了其勘查前景。详细对比高镍铜镍矿床的产出环境、赋矿岩相、矿石特征、矿物组合等特征,该类矿床往往产于大陆裂谷和造山带环境,与基性程度较高的岩浆有关,以橄榄岩赋矿为主,含镍硫化物组合主要为镍黄铁矿-磁黄铁矿-黄铜矿组合,少数为针镍矿-镍黄铁矿-黄铁矿组合。科马提岩相关矿床可将Ni含量大于16%的硫化物定义为高镍硫化物,苦橄质-玄武质岩浆相关矿床的硫化物可分为高镍硫化物(Ni10%)、中镍硫化物(5%~10%)和富铜硫化物(Ni5%,CuNi)。原生高镍硫化物可由富镍岩浆熔离、硫化物从橄榄石中吸取Ni、硫化物结晶分异、硫化物与硫不饱和岩浆反应等机制形成。苦橄质-玄武质岩浆相关的矿床,硫化物与橄榄石的Fe-Ni交换反应是高镍硫化物形成的重要机制。辉石岩源区地幔部分熔融形成富镍岩浆是否为高镍硫化物形成的必要条件尚存争议。不同机制形成的高镍硫化物具有迥异的岩石-矿物组合和地化特征。硫化物矿物组合、橄榄石成分(Fo值、Ni含量、Fo值-Ni含量的相关性)、伴生元素(铜、铂族元素)丰度-配分模式等特征可作为区分不同高镍硫化物形成机制的有效指标。我国新疆黄山南、坡一和青海夏日哈木矿床(部分浸染状矿化橄榄岩)以赋含高镍硫化物为特征,新疆喀拉通克矿床的硫化物则以富铜为特征,中国其余矿床的硫化物均属中镍硫化物。目前研究指示中国的高镍铜镍矿床与母岩浆相对富镍、硫化物与橄榄石Fe-Ni交换作用密切相关,后者可使硫化物Ni含量提升3%~5%。在铜镍矿床勘查方面,稀疏-中等浸染状高镍硫化物矿石即可达到工业品位,稠密浸染状-块状高镍硫化物矿石可达到很高的Ni品位(10%),是高品位镍矿勘查的一个重要方向。造山带环境富水、相对高氧逸度(可高达QFM+1)的岩浆可能是形成高镍硫化物的有利条件,该环境橄榄石Fo值较高(87mol%)的岩体有利于形成高镍硫化物。  相似文献   

16.
Groundwater of the southern Jornada del Muerto Basin, an intermontane basin structure associated with the Rio Grande rift located in south-central New Mexico, USA, was analyzed chemically and microbially. A microbial phospholipid fatty acids (PLFA) analysis revealed a sparse microbial population consisting of relatively simple microorganisms with no major population changes along the flow system. A nucleic acid (DNA) analysis of the groundwater resulted in the identification of ten eubacterial and one archeal species. Chemical analyses revealed that sulfate along with calcium, magnesium, iron, and manganese is removed by about an order of magnitude in concentration from the recharge area to the discharge area. The removal of iron, manganese, magnesium, and to some extent calcium can be explained by oxidation reactions and the precipitation of dolomite. Sulfate and additional calcium are most likely removed by the precipitation of gypsum. Thiobacillus spp. are oxidizing metal sulfides that occur as subsurface sulfide mineral deposits to sulfuric acid, which subsequently reacts with calcium carbonate and water to precipitate gypsum. The presence of these sulfide deposits exposed to oxygenated water in the deep groundwater flow system significantly alters its chemical and bacteriological composition. Electronic Publication  相似文献   

17.
从研究划分石膏矿化的成因类型入手,进行热液化学成分来源分析和岩石蚀变分带研究,结合典型矿床实例分析,总结出在碳酸盐岩中出现热液交代型石膏矿化体附近,往往伴生有金属硫化矿体或含硫化矿物丰富的岩石,该规律对寻找硫化物型金属自矿体的意义巨大.  相似文献   

18.
Groundwater and sediment samples (∼ 1 m depth) at sites representative of different groundwater pathways were collected to determine the aqueous speciation of sulfur and the fractionation of sulfur isotopes in aqueous and solid phases. In addition, selected sediment samples at 5 depths (from oxic to anoxic layers) were collected to investigate the processes controlling sulfur biogeochemistry in sedimentary layers. Pyrite was the dominant sulfur-bearing phase in the capillary fringe and groundwater zones where anoxic conditions are found. Low concentrations of pyrite (< 5.9 g kg− 1) coupled with high concentrations of dissolved sulfide (4.81 to 134.7 mg L− 1) and low concentrations of dissolved Fe (generally < 1 mg L− 1) and reducible solid-phase Fe indicate that availability of reactive Fe limits pyrite formation. The relative uniformity of down-core isotopic trends for sulfur-bearing mineral phases in the sedimentary layers suggests that sulfate reduction does not result in significant sulfate depletion in the sediment. Sulfate availability in the deeper sediments may be enhanced by convective vertical mixing between upper and lower sedimentary layers due to evaporative concentration. The large isotope fractionation between dissolved sulfate and sedimentary sulfides at Owens Lake provides evidence for initial fractionation from bacterial sulfate reduction and additional fractionation generated by sulfide oxidation followed by disproportionation of intermediate oxidation state sulfur compounds. The high salinity in the Owens Lake brines may be a factor controlling sulfate reduction and disproportionation in hypersaline conditions and results in relatively constant values for isotope fractionation between dissolved sulfate and total reduced sulfur.  相似文献   

19.
Oxidation of sulfide- and carbonate-rich vein gold deposits under semiarid conditions can be represented as a three-stage process, each creating supergene environments conducive to dissolution and reprecipitation of gold-silver alloys. The three-stage weathering process of sulfide-carbonate gold veins is depth-dependent, and develops from the relatively young, lowermost weathering horizon just below the water table, through an intermediate weathering horizon in the oxidation zone above the water table, and culminating in the oxide-rich upper saprolite and oxisol.Neoformed gold crystals in the weathering profile have distinct composition and morphologic characteristics from the hypogene gold crystals associated with the sulfide- and carbonate-rich ores. Two distinct types of secondary gold are present in the weathering profile: (1) gold crystals associated with sulfates and arsenates; and (2) gold crystals associated with iron and aluminum oxides/hydroxides, or with kaolinite. The distinct crystal morphologies and mineralogical associations of primary and secondary gold are useful in prospecting for gold deposits in weathered terrains.  相似文献   

20.
Barite (BaSO4) deposits generally arise from mixing of soluble barium-containing fluids with sulfate-rich fluids. While the role of biological processes in modulating barium solubility has been shown, no studies have shown that the biological oxidation of sulfide to sulfate leads to barite deposition. Here we present an example of microbially mediated barite deposition in a continental setting. A spring in the Anadarko Basin of southwestern Oklahoma produces water containing abundant barium and sulfide. As emergent water travels down a stream to a nearby creek, sulfate concentration increases from 0.06 mM to 2.2 mM while Ba2+ concentration drops from 0.4 mM to less than 7 μM. Stable isotope analysis, microbial activity studies, and in situ experiments provide evidence that as sulfide-rich water flows down the stream, anaerobic, anoxygenic, phototrophic bacteria play a dominant role in oxidizing sulfide to sulfate. Sulfate then precipitates with Ba2+ producing barite as travertine, cements, crusts, and accumulations on microbial mats. Our studies suggest that phototrophic sulfide oxidation and concomitant sulfur cycling could prove to be important processes regulating the cycling of barium in continental sulfur-containing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号