首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Provenance data from Paleoproterozoic and possible Archean sedimentary units in the central eastern Gawler Craton in southern Australia form part of a growing dataset suggesting that the Gawler Craton shares important basin formation and tectonic time lines with the adjacent Curnamona Province and the Isan Inlier in northern Australia. U–Pb dating of detrital zircons from the Eba Formation, previously mapped as the Paleoproterozoic Tarcoola Formation, yields exclusively Archean ages (ca 3300–2530 Ma), which are consistent with evolved whole-rock Nd and zircon Hf isotopic data. The absence of Paleoproterozoic detrital grains in a number of sequences (including the Eba Formation), despite the proximity of voluminous Paleoproterozoic rock units, suggests that the Eba Formation may be part of a Neoarchean or early Paleoproterozoic cover sequence derived from erosion of a multi-aged Archean source region. The ca 1715 Ma Labyrinth Formation, unconformably overlying the Eba Formation, shares similar depositional timing with other basin systems in the Gawler Craton and the adjacent Curnamona Province. Detrital zircon ages in the Labyrinth Formation range from Neoarchean to Paleoproterozoic, and are consistent with derivation from >1715 Ma components of the Gawler Craton. Zircon Hf and whole-rock Nd isotopic data also suggest a source region with a mixed crustal evolution (εNd –6 to –4.5), consistent with what is known about the Gawler Craton. Compared with the lower Willyama Supergroup in the adjacent Curnamona Province, the Labyrinth Formation has a source more obviously reconcilable with the Gawler Craton. Stratigraphically overlying the Eba and Labyrinth Formations is the 1656 Ma Tarcoola Formation. Zircon Hf and whole-rock Nd isotopic data indicate that the Tarcoola Formation was sourced from comparatively juvenile rocks (εNd –4.1 to + 0.5). The timing of Tarcoola Formation deposition is similar to the juvenile upper Willyama Supergroup, further strengthening the stratigraphic links between the Gawler and Curnamona domains. Additionally, the Tarcoola Formation is similar in age to extensive units in the Mt Isa and Georgetown regions in northern Australia, also shown to be isotopically juvenile. These juvenile sedimentary rocks contrast with the evolved underlying sequences and hint at the existence of a large-scale ca 1650 Ma juvenile basin system in eastern Proterozoic Australia.  相似文献   

2.
LA-ICPMS U–Pb data from metamorphic monazite in upper amphibolite and granulite-grade metasedimentary rocks indicate that the Nawa Domain of the northern Gawler Craton in southern Australia underwent multiple high-grade metamorphic events in the Late Paleoproterozoic and Early Mesoproterozoic. Five of the six samples investigated here record metamorphic monazite growth during the period 1730–1690 Ma, coincident with the Kimban Orogeny, which shaped the crustal architecture of the southeastern Gawler Craton. Combined with existing detrital zircon U–Pb data, the metamorphic monazite ages constrain deposition of the northern Gawler metasedimentary protoliths to the interval ca 1750–1720 Ma. The new age data highlight the craton-wide nature of the 1730–1690 Ma Kimban Orogeny in the Gawler Craton. In the Mabel Creek Ridge region of the Nawa Domain, rocks metamorphosed during the Kimban Orogeny were reworked during the Kararan Orogeny (1570–1555 Ma). The obtained Kararan Orogeny monazite ages are within uncertainty of ca 1590–1575 Ma zircon U–Pb metamorphic ages from the Mt Woods Domain in the central-eastern Gawler Craton, which indicate that high-grade metamorphism and associated deformation were coeval with the craton-scale Hiltaba magmatic event. The timing of this deformation, and the implied compressional vector, is similar to the latter stages of the Olarian Orogeny in the adjacent Curnamona Province and appears to be part of a westward migration in the timing of deformation and metamorphism in the southern Australian Proterozoic over the interval 1600–1545 Ma. This pattern of westward-shifting tectonism is defined by the Olarian Orogeny (1600–1585 Ma, Curnamona Province), Mt Woods deformation (1590–1575 Ma), Mabel Creek Ridge deformation (1570–1555 Ma, Kararan Orogeny) and Fowler Domain deformation (1555–1545 Ma, Kararan Orogeny). This westward migration of deformation suggests the existence of a large evolving tectonic system that encompassed the emplacement of the voluminous Hiltaba Suite and associated volcanic and mineral systems.  相似文献   

3.
Great Victoria Desert: Development and sand provenance   总被引:1,自引:0,他引:1  
Sands of the Great Victoria Desert, south‐central Australia, can be divided into three main groups on the basis of their physical and chemical characteristics (colour, grainsize parameters, mineralogy of heavy‐mineral suites, quartz oxygen isotopic composition, zircon U–Pb ages). The groups occupy the western, central and eastern Great Victoria Desert respectively, boundaries between them corresponding approximately to changes in the underlying rocks associated with the Yilgarn Craton to Officer Basin to Arckaringa Basin. Several lines of evidence suggest derivation of the sands mainly from local bedrock with very little subsequent aeolian transport. Ultimate protosources for the sands, each in order of importance, are: western Great Victoria Desert—Yilgarn Craton, Albany‐Fraser Orogen, Musgrave Complex; central Great Victoria Desert—Musgrave Complex; eastern Great Victoria Desert—Gawler and Curnamona Blocks, Adelaide Geosyncline, Musgrave Complex. Sediment from the Adelaide Geosyncline includes in addition an ‘exotic’ component from Palaeozoic sedimentary rocks probably derived mainly from Antarctica. Sediment transport of several hundred kilometres from these protosources to the sedimentary basins was dominantly by fluvial, not aeolian, means. Post‐Tertiary aeolian transport or reworking has been minimal, serving only to shape sand eroded from underlying sedimentary rocks or residual products of local basement weathering into the current dunes.  相似文献   

4.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   

5.
The ca 1600–1580 Ma time interval is recognised as a significant period of magmatism, deformation and mineralisation throughout eastern Proterozoic Australia. Within the northern Yorke Peninsula in South Australia, this period was associated with the emplacement of multiple phases of the Tickera Granite, an intensely foliated quartz alkali-feldspar syenite, a leucotonalite and an alkali-feldspar granite. These granites belong to the broader Hiltaba Suite that was emplaced at shallow crustal levels throughout the Gawler Craton. Geochemical and isotopic analysis suggests these granite phases were derived from a heterogeneous source region. The syenite and alkali-feldspar granite were derived from similar source regions, likely the underlying ca 1850 Ma Donington Suite and/or the ca 1750 Ma Wallaroo Group metasediments with some contamination from an Archean basement. The leucotonalite is sourced from a similar but more mafic/lower crustal source. Phases of the Tickera Granite were emplaced synchronously with deformation that resulted in development of a prominent northeast-trending structural grain throughout the Yorke Peninsula region. This fabric is associated with composite events resulting from folding, shearing and faulting within the region. The intense deformation and intrusion of granites within this period resulted in mineralisation throughout the region, as seen in Wheal Hughes and Poona mines. The Yorke Peninsula shares a common geological history with the Curnamona Province, which was deformed during the ca 1600–1585 Ma Olarian Orogeny, and resulted in development of early isoclinal and recumbent folds overprinted by an upright fold generation, a dominant northeast-trending structural grain, mineralisation, and spatially and temporally related intrusions. This suggests correlation of parts of the Gawler Craton with the Curnamona Province, and that the Olarian Orogeny also affected the southeastern Gawler Craton.  相似文献   

6.
Abstract

Acropolis is an Fe-oxide–copper–gold prospect ~20?km from Olympic Dam, South Australia, and marked by near-coincident gravity and magnetic anomalies. Prospective Fe-oxide–apatite?±?sulfide veins occur in Mesoproterozoic and Paleoproterozoic volcanic and granitoid host units beneath unmineralised sedimentary formations. We have produced a geological map and history of the prospect using data from 16 diamond drill holes, including LA-ICPMS and high-precision CA-TIMS ages. The oldest unit is megacrystic granite of the Donington Suite (ca 1850?Ma). A non-conformity spanning ca 250 My separates the Donington Suite and felsic lavas and ignimbrites of the Gawler Range Volcanics (GRV; 1594.03?±?0.68?Ma). The GRV were intruded by granite of the Hiltaba Suite (1594.88?±?0.50?Ma) and felsic dykes (1593.88?±?0.56?Ma; same age as the Roxby Downs Granite at Olympic Dam). The felsic dykes are weakly altered and lack Fe-oxide–apatite–sulfide veins, suggesting that they post-date the main hydrothermal event. If correct, this relationship implies that the main hydrothermal event at Acropolis was ca 1594?Ma and pre-dated the main hydrothermal event at Olympic Dam. The GRV at Acropolis are the same age as the GRV at Olympic Dam and ca 3–7 My older than the GRV exposed in the Gawler Ranges. The gravity and magnetic anomalies coincide with sections through the GRV, Hiltaba Suite and Donington Suite that contain abundant, wide, Fe-oxide veins. The GRV, Hiltaba Suite and Donington Suite are unconformably overlain by the Mesoproterozoic Pandurra Formation or Neoproterozoic Stuart Shelf sedimentary formations. The Pandurra Formation shows marked lateral variations in thickness related to paleotopography on the underlying units and post-Pandurra Formation pre-Neoproterozoic faults. The Stuart Shelf sedimentary formations have uniform thicknesses.
  1. KEY POINTS
  2. Fe-oxide–apatite?±?sulfide veins are hosted by the Gawler Range Volcanics (1594.03?±?0.68?Ma), the Hiltaba Suite granite (1594.88?±?0.50?Ma) and Donington Suite granite (ca 1850?Ma).

  3. The age of felsic dykes (1593.88?±?0.56?Ma) interpreted to be post-mineralisation implies that the main hydrothermal event at Acropolis was ca 1594?Ma.

  4. The Gawler Range Volcanics at Acropolis are the same age as the Gawler Range Volcanics at Olympic Dam and ca 3 to 7 My older than the Gawler Range Volcanics exposed in the Gawler Ranges.

  相似文献   

7.
Traditional core-logging methods in conjunction with spectral scanning techniques have been used to log volcanic successions of the lower Gawler Range Volcanics. The open-file drill core Myall Creek RC 1 was re-logged and scanned using HyLogger? core scanning technologies as a part of the Geological Survey of South Australia's Southern Gawler Rangers mapping program and the Mineral System Drilling Program. Myall Creek RC 1 is one of the key stratigraphic drill cores for the region, owing to the intersection of a large section of the Gawler Range Volcanics. Spectral characterisation of the Eucarro Rhyolite revealed differential weathering of plagioclase phenocrysts, while high-resolution imagery and spectral results were used to log new basaltic flows and small flow features in the Roopena Basalt. The composition and distribution of feldspars in the unnamed lower Gawler Range Volcanic units were used to aid traditional logging of visually similar lithologies. A spectral scalar, the felsic–mafic index, was used to identify unusual features in the unnamed sequence and was found to identify iron oxides as either fracture coatings or finely disseminated in the matrix of the sample. Iron oxides were also used to identify features within lithological units, which were difficult to discern visually, especially the layers in the deepest layered ignimbrite at the end of the drill core.  相似文献   

8.
The Olympic Cu–Au Province, Gawler Craton, is host to the Olympic Dam and Prominent Hill iron oxide–copper–gold (IOCG) deposits. Both of these deposits and the region between the two are covered by Neoproterozoic to Cenozoic sediment, making inferences about prospectivity in this portion of the Olympic Domain reliant on geophysical interpretation and sparse drill hole information. We present new U–Pb zircon sensitive high resolution ion microprobe (SHRIMP) dates from two basement intersecting drill holes in the region between Olympic Dam and Prominent Hill that show bimodal volcanism occurred at 2555 ± 5 Ma, and was followed by intrusion of tonalite at 2529 ± 6 Ma. Laser 40Ar/39Ar dating of biotite and muscovite from the tonalite yields ages around ca 2000 Ma, consistent with slow cooling trends observed in Archean rocks elsewhere in the northern Gawler Craton. Step heating experiments on K-feldspar from the same tonalite yields an age spectrum with older ages around 1740 Ma from the highest temperature steps becoming progressively younger to a minimum of 1565 Ma in the lowest temperature heating steps; this is consistent with either Paleoproterozic cooling to final closure of K-feldspar by 1565 Ma or a reheating event at ca 1565 Ma, with the latter more likely, given the evidence for sub-solidus alteration of the K-feldspar. Sericite within hematite–sericite–chlorite altered portions of the tonalite yield a poorly defined age of ca 1.6 Ga. Taken together the 40Ar/39Ar data providing evidence for a fluid event affecting this region between Olympic Dam and Prominent Hill during the early Mesoproterozoic. Low temperature quartz–carbonate–adularia veins occur in <10 cm wide fractures within basalt in one drill hole in this region. Adularia from these veins yields 40Ar/39Ar ages that span from ca 1.3–1.1 Ga. This age range is interpreted to approximate either the timing of adularia formation during a hydrothermal event or the timing of resetting of the 40Ar/39Ar systematics within the adularia as a result of fluid flow in this sample. This is evidence for a mid-Mesoproterozoic fluid event in the Gawler Craton and necessitates a reconsideration of the long-term stability of the craton, as it appears to have been affected, at least locally, by fluid flow related to a much larger event within the Australian continent, the Musgrave Orogeny.  相似文献   

9.
Three widespread felsic volcanic units, the Eucarro Rhyolite, Pondanna Dacite Member and Moonaree Dacite Member, have been distinguished in the Mesoproterozoic Gawler Range Volcanics. These three units are the largest in the Gawler Range Volcanics, each in excess of 500 km3. Each unit is ~300 m thick and includes a black, formerly glassy base, a granophyric columnar‐jointed interior, and an amygdaloidal outer margin. The units are very gently dipping and locally separated by thin (<20 m) lenses of either ignimbrite (Mt Double Ignimbrite), tuffaceous sandstone or faults. The youngest unit, the Moonaree Dacite Member, covers a central area with a diameter greater than 80 km. The southern two units have east‐west extents in the order of 180 km, but are much less extensive from south to north (5–60 km). All three units are dominated by euhedral phenocrysts and are relatively crystal rich. Both the Eucarro Rhyolite and Moonaree Dacite Member contain clasts of basement granitoid and other lithologies and are locally heterogeneous in texture and composition. Some granitoid clasts have disintegrated, liberating feldspar and quartz crystals into the surrounding host. These liberated crystals cause textural variations, but can be identified on the basis of shape (amoeboid or skeletal) and/or size (megacrysts). Textural and lithofacies characteristics are consistent with the interpretation that these units are lavas; the strongly elongate distribution and wide extent of the Eucarro Rhyolite and Pondanna Dacite Member could indicate that vents were aligned along an extensive east‐west‐trending fissure system. Stratigraphic nomenclature has been revised to better reflect the presence of the three emplacement units. The oldest unit, the Eucarro Rhyolite, is dominated by plagioclase‐phyric rhyolite that locally includes granitoid clasts and megacrysts. Along the northern margin, the rhyolite is amygdaloidal and has mingled with a quartz‐rich rhyolite (Paney Rhyolite Member). The Eucarro Rhyolite and Paney Rhyolite Member replace the formerly defined ‘Eucarro Dacite’, ‘Nonning Rhyodacite’, ‘Yannabie Rhyodacite’ and ‘Paney Rhyolite’. The two younger units, Pondanna Dacite Member and Moonaree Dacite Member, are compositionally and spatially distinct, newly defined members of the Yardea Dacite.  相似文献   

10.
The Paleoproterozoic Wernecke Supergroup of Yukon was deposited when the northwestern margin of Laurentia was undergoing major adjustments related to the assembly of the supercontinent Columbia (Nuna) from 1.75 to 1.60 Ga. U–Pb detrital zircon geochronology coupled with Nd isotope geochemistry and major and trace element geochemistry are used to characterize the evolution of the Wernecke basin. The maximum depositional age of the Wernecke Supergroup is reevaluated and is estimated at 1649 ± 14 Ma. Detrital zircon age spectra show a bimodal age distribution that reflects derivation from cratonic Laurentia, with a prominent peak at 1900 Ma. Going upsection, the late Paleoproterozoic peak shifts from 1900 Ma to 1850–1800 Ma, and the proportion of Archean and early Paleoproterozoic zircon decreases. These modifications are a consequence of a change in the drainage system in western Laurentia caused by early phase of the Forward orogeny, several hundred km to the east. The exposed lower and middle parts of the Wernecke Supergroup are correlated with the Hornby Bay Group. Zircon younger than 1.75 Ga appear throughout the sedimentary succession and may have originated from small igneous suites in northern Laurentia, larger source regions such as magmatic arc terranes of the Yavapai and early Mazatzal orogenies in southern Laurentia, and possible arc complexes such as Bonnetia that may have flanked the eastern margin of East Australia. Basins with similar age and character include the Tarcoola Formation (Gawler Craton) and the Willyama Supergroup (Curnamona Province) of South Australia, the Isan Supergroup of North Australia, and the Dongchuan–Dahongshan–Hondo successions of southeast Yangtze Craton (South China). Nd isotope ratios of the Wernecke Supergroup are comparable with values from Proterozoic Laurentia, the Isan and Curnamona assemblages of east Australia, the Gawler Craton, and the Dahongshan–Dongchuan–Hondo successions of the Yangtze Craton of South China. These similarities are compelling evidence for a shared depositional system among these successions. Western Columbia in the Late Paleoproterozoic may have had a dynamic SWEAT-like configuration involving Australia, East Antarctica and South China moving along western Laurentia.  相似文献   

11.
In the northern Flinders Ranges, Neoproterozoic and Cambrian sedimentary rocks were deformed and variably metamorphosed during the ca 500 Ma Cambro‐Ordovician Delamerian Orogeny. Balanced and restored structural sections across the northern Flinders Ranges show shortening of about 10–20%. Despite the presence of suitable evaporitic detachment horizons at the basement‐cover interface, the structural style is best interpreted to be thick‐skinned involving basement with only a minor proportion of the overall shortening accommodated along stratigraphically controlled detachments. Much of the contractional deformation was localised by the inversion of former extensional faults such as the Norwest and Paralana Faults, which both controlled the deposition of Neoproterozoic cover successions. As such, both faults represent major, long‐lived structures which effectively define the present boundaries of the northern Flinders Ranges with the Gawler Craton to the west and the Curnamona Craton to the east. The most intense deformation, which resulted in exhumation of the basement along the Paralana Fault to form the Mt Painter and Babbage Inliers, coincides with extremely high heat flows related to extraordinarily high heat‐production rates in the basement rocks. High heat flow in the northern Flinders Ranges suggests that the structural style not only reflects the pre‐Delamerian basin architecture but is also a consequence of the reactivation of thermally perturbed, weakened basement.  相似文献   

12.
Mesoproterozoic A‐type magmatic rocks in the Gawler Craton, Curnamona Province and eastern Mount Isa Inlier, form a palaeo‐curvilinear belt for reconstructed plate orientations. The oldest igneous rocks in the Gawler Craton are the Hiltaba Granite Suite: c. 1600–1575 Ma. The youngest in the Mount Isa Inlier are the Williams‐Naraku Batholiths: c. 1545–1500 Ma. The belt is interpreted as a segment of a hotspot track that evolved between c. 1600 and 1500 Ma. This hotspot track may define a quasilinear part of Australia’s motion between 1636 and 1500 Ma, and suggests that Australia drifted to high latitudes. An implication of this interpretation is that Australia and Laurentia may not have been fellow travellers leading to the formation of Rodinia. A hotspot model for A‐type magmatism in Australia differs from geodynamic models for this style of magmatism on other continents. This suggests that multiple geologic processes may be responsible for the genesis of Proterozoic A‐type magmas.  相似文献   

13.
The Gawler Craton forms the bulk of the South Australian Craton and occupies a pivotal location that links rock systems in Antarctica to those in northern Australia. The western Gawler Craton is a virtually unexposed region where the timing of basin development and metamorphism is largely unknown, making the region ambiguous in the context of models seeking to reconstruct the Australian Proterozoic.Detrital zircon data from metasedimentary rocks in the central Fowler Domain in the western Gawler Craton provide maximum depositional ages between 1760 and 1700 Ma, with rare older detrital components ranging in age up to 3130 Ma. In the bulk of samples, ?Nd(1700 Ma) values range between ?4.3 and ?3.8. The combination of these data suggest on average, comparatively evolved but age-restricted source regions. Lu–Hf isotopic data from the ca 1700 Ma aged zircons provide a wide range of values (?Hf(1700 Ma) +6 to ?6). Monazite U–Pb data from granulite-grade metasedimentary rocks yield metamorphic ages of 1690–1670 Ma. This range overlaps with and extends the timing of the widespread Kimban Orogeny in the Gawler Craton, and provides minimum depositional age constraints, indicating that basin development immediately preceded medium to high grade metamorphism.The timing of Paleoproterozoic basin development and metamorphism in the western Gawler Craton coincides with that in the northern and eastern Gawler Craton, and also in the adjacent Curnamona Province, suggesting protoliths to the rocks within the Fowler Domain may have originally formed part of a large ca 1760–1700 Ma basin system in the southern Australian Proterozoic. Provenance characteristics between these basins are remarkably similar and point to the Arunta Region in the North Australian Craton as a potential source. In this context there is little support for tectonic reconstruction models that: (1) suggest components of the Gawler Craton accreted together at different stages in the interval ca 1760–1680 Ma; and (2) that the North Australian Craton and the southern Australian Proterozoic were separate continental fragments between 1760 and 1700 Ma.  相似文献   

14.
The Cariewerloo Basin formed in the Mesoproterozoic following assembly of the Gawler Craton, South Australia, and was filled by arenaceous redbeds of the Pandurra Formation. While previous regional-scale work reveals a basin with similar size and sedimentary fill to the Proterozoic Athabasca and Kombolgie basins that host unconformity-related uranium deposits, few details of the Cariewerloo Basin are known. In this study, stratigraphy, petrography, lithogeochemistry, stable isotope geochemistry and 40Ar/39Ar geochronology are integrated to clarify the depositional history of the Pandurra Formation, and to assess fluid events in the basin that could be linked to the formation of uranium deposits. In the study area, the Pandurra Formation was deposited in two eastward-thickening packages that terminate at faulted basement uplifts, interpreted as half-grabens that formed in a continental rift system as the eastern Gawler Craton underwent extension. Deposition occurred between 1575 Ma (latest Hiltaba Suite age) and ca 1490 Ma, the 40Ar/39Ar age of diagenetic illite in the basal Pandurra. Diagenesis involving fluids having δ18O and δ2H values between –2.1 and 3.6‰, and between –66 and –8‰, respectively, occurred at around 150°C. Protracted diagenesis preferentially occurred in the upper Pandurra Formation based on petrography and Pearce Element Ratios that show complete replacement of detrital lithic and feldspathic grains by diagenetic phyllosilicates, and younger 40Ar/39Ar ages between ca 1330 and 1200 Ma that record fluid events later into basin history. Conversely, the basal Pandurra Formation shows better preservation of detrital grains, and older 40Ar/39Ar ages around 1450 Ma that suggest these strata became closed to fluid flow earlier in basin history. Although, based on O-isotope ratios, fluid–rock interaction did not occur in the Cariewerloo Basin to the same extent as that in the Athabasca or Kombolgie basins, it is possible that a uranium deposit formed where the upper Pandurra Formation was in contact with metasedimentary basement units outside the present basin margins.  相似文献   

15.
The Olympic iron oxide–copper–gold province in South Australia contains numerous deposits and prospects, including the Olympic Dam Cu–U–Au–Ag deposit and the Acropolis prospect. The Acropolis prospect comprises massive, coarse-grained magnetite–apatite veins partly replaced by a hematite-stable assemblage. The apatite grains in the veins contain zones with abundant inclusions of other minerals (including monazite and xenotime) and low trace-element concentrations relative to the inclusion-free zones. The inclusion-rich apatite zones are interpreted to be formed from the recrystallisation of the inclusion-free apatite and remobilisation of U, Th and rare earth element (REE) from apatite into monazite and xenotime. Apatite, monazite and xenotime are all established U–Th–Pb geochronometers and offer the potential to constrain the alteration history of the Acropolis prospect. The LA-ICPMS U–Pb age of inclusion-free apatite is within error of the age of the host volcanic units (ca 1.59 Ga). Inclusion-rich apatite yields both near-concordant analyses that are within error of the inclusion-free apatite as well as highly disturbed (discordant) analyses. The most concordant analyses of monazite (Th–Pb) inclusions and xenotime (U–Pb) inclusions and rim grains indicate an alteration event occurred at ca 1.37 Ga and possibly also at ca 500 Ma. The disparity in age of the inclusion-rich apatite and the REE-phosphate inclusions (and rim grains) is suggested to be owing to the apatite being initially recrystallised at ca 1.59 Ga and modified again by a later event that also formed (or coarsened) most of the inclusions. Partial resetting of the majority of the monazite inclusions as well as the presence of significant amounts of common Pb has complicated the interpretation of the monazite results. In contrast, xenotime is a more robust geochronometer in this setting. The ages of the two post-1.59 Ga events that appear to have affected the Acropolis prospect do not correspond to any events known to have occurred in the Gawler Craton. The earlier (ca 1.37 Ga) age instead corresponds best with metamorphic–magmatic–hydrothermal activity in Laurentia, consistent with the proximity of Laurentia and the Gawler Craton inferred from palaeogeographic reconstructions. The later (ca 500 Ma) event corresponds to the Delamerian Orogeny and has been shown by prior studies to have also affected the Olympic Dam deposit.  相似文献   

16.
Apatite U-Pb thermochronology was applied to granitoid basement samples across the northern Gawler Craton to unravel the Proterozoic, post-orogenic, cooling history and to examine the role of major fault zones during cooling. Our observations indicate that cooling following the ~2500 Ma Sleaford Orogeny and ~1700 Ma Kimban Orogeny is restricted to the Christie and Wilgena Domains of the central northern Gawler Craton. The northern Gawler Craton mainly records post-Hiltaba Event(~1590 Ma) U-Pb cooling ages. Cooling following the ~1560 Ma Kararan Orogeny is preserved within the Coober Pedy Ridge,Nawa Domain and along major shear zones within the south-western Fowler Domain. The Nawa Domain samples preserve U-Pb cooling ages that are 150 Ma younger than the samples within the Coober Pedy Ridge and Fowler Domain, indicating that later(~1300 Ma) fault movement within the Nawa Domain facilitated cooling of these samples, caused by arc collision in the Madura Province of eastern Western Australia. When compared to~(40)Ar/~(39) Ar from muscovite, biotite and hornblende, our new apatite U-Pb ages correlate well, particularly in regions of higher data density. Our data also preserve a progressive younging of U-Pb ages from the nucleus of the craton to the periphery with a stark contrast in U-Pb ages across major structures such as the Karari Shear Zone and the Southern Overthrust, which indicates the timing of reactivation of these major crustal structures. Although this interpolation was based solely on thermochronological data and did not take into account structural or other geological data, these maps are consistent with the structural architecture of the Gawler Craton and reveal the thermal footprint of known tectonic and magmatic events in the Gawler Craton.  相似文献   

17.
Rhyodacite and rhyolite blocks found in numerous moraines on the Terre Adélie Craton in Antarctica are samples of a high‐temperature high‐K calc‐alkaline to alkali‐calcic igneous suite emplaced at ca 1.60 Ga. They comprise lavas and pyroclastic rocks, including ignimbritic varieties, chemically representative of anorogenic and post‐orogenic igneous suites. The eruptive centres are probably close to the coast according to radar satellite images that show the trace of the ice streams. The volcanic suite is similar in age, petrography and chemical composition (major and trace elements as well as Nd isotopes) to the Gawler Range Volcanics from the Gawler Craton of South Australia. These similarities strengthen correlations previously established between the Gawler Craton and the Terre Adélie Craton (Mawson Continent). Moreover, the present petrological, geochemical and geochronological data give a new insight into the last major thermal event affecting the Mawson Continent. The results also highlight the useful contribution of moraines to our knowledge of Antarctic geology.  相似文献   

18.
镁铁岩脉侵位机制及伴随变形   总被引:1,自引:0,他引:1  
南澳的EYRE半岛位于GAWLER克拉通南部,包含了GAWLER克拉通太古界至中元古界结晶基底的主要部分,全区于1423Ma克拉通化,此后除了局部的,较小的地壳运动外,一直是稳定的克拉通地块,研究区JUSSIEU半岛为FYRE半岛南部的次级半岛,镁铁岩脉群以及韧性剪切糜棱岩带主要沿海岩分布,区内出露岩石变形复杂,脉岩强烈的布丁化并重结晶,围岩中的转换拉伸构造及转换挤压构造可追踪识别,基性岩浆的侵位是转换拉伸力和岩浆压力联合作用的结果,脉岩群的传播侵位(PROPAGATION)与转换拉伸作用(TRANSTENSION)密切相关。多次的转换拉伸与挤压作用,还导致镁铁岩脉边缘成为高应变带,并形成复杂的变形图案 此外,围岩中伴随的变形以次剪切带(SUBSHEAR ZONE)最为显著,是作动力学分析最好的匹配构造。  相似文献   

19.
为厘清四川盆地开江地区WT1井震旦系陡山沱组地层发育的构造背景,重塑其原型沉积盆地,为重建古地理及油气进一步勘探部署工作提供科学依据,利用岩石学、岩石地球化学及碎屑锆石U-Pb年代学手段对该井陡山沱组物源进行了分析。岩石地化结果表明WT1井陡山沱组沉积物源岩为中基性火山岩类且经历了中等程度化学风化作用;碎屑锆石U-Pb年龄主要记录了915~850Ma、794~714.5Ma以及622~700Ma 3个阶段的构造岩浆活动,与扬子克拉通北缘及邻区Rodinia超大陆的裂解演化过程有关,该构造活动背景下的中基性火山岩是WT1井陡山沱组沉积的主要物质来源。结果表明四川盆地开江地区的陡山沱组发育于拉张伸展构造背景,属克拉通内裂陷盆地沉积,有利于烃源岩层的发育;同时为Rodinia超大陆的裂解演化过程提供了重要的年代学演化证据。该成果对深入认识四川盆地的地质结构、沉积-构造演化以及油气勘探的战略部署等具有极为重要的科学意义。  相似文献   

20.
U-Pb monazite and zircon geochronology and calculated metamorphic phase diagrams from drill holes in the northern Gawler Craton, southern Australia, reveal the presence of ca. 1.45 Ga magmatism and metamorphism. Magmatism and granulite facies metamorphism of this age has not previously been recognised in the Gawler Craton. The magmatic rocks have steep LREE-enriched patterns and high Ga/Al values, suggesting they are A-type granites. Calculated metamorphic forward models suggest that this event was associated with high apparent thermal gradients and reached pressures of 3.2 -5.4 kbar and temperatures of 775-815℃. The high apparent thermal gradients may reflect pluton-enhanced metamorphism, consistent with the presence of A-type granites. The recognition of ca. 1.45 Ga tectonism in the northern Gawler Craton is added to a compilation of ca. 1.50 -1.40 Ga magmatism, shear zone reactivation, rift basin development and isotope resetting throughout the South and North Australian Cratons that shows that this event was widespread in eastern Proterozoic Australia. This event is stylistically similar to ca. 1.45 Ga A-type magmatism and high thermal gradient metamorphism in Laurentia in this interval and provides further support for a connection between Australia and Laurentia during the Mesoproterozoic. The tectonic setting of the 1.50-1.40 Ga event is unclear but may record rifting within the Nuna(or Columbia) supercontinent, or a period of intracontinental extension within a long-lived convergent setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号