首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on a five-variable theoretical ecosystem model, the stability of equilibrium state and the nonlinear feature of the transition between a grassland state and a desert state are investigated. The approach of the conditional nonlinear optimal perturbations (CNOPs), which are the nonlinear generalization of the linear singular vectors (LSVs), is adopted. The numerical results indicate that the linearly stable grassland and desert states are nonlinearly unstable to large enough initial perturbations on the condition that the moisture index $\mu$ satisfies 0.3126<μ<0.3504. The perturbations represent some kind of anthropogenic influence and natural factors. The results obtained by CNOPs, LSVs and Lyapunov vectors (LVs) are compared to analyze the nonlinear feature of the transition between the grassland state and the desert state. Besides this, it is shown that the five-variable model is superior to the three-variable model in providing more visible signals when the transitions occur.  相似文献   

2.
A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable.  相似文献   

3.
In the present paper, we explore the manner in which nonlinearities modulate El Niño events by investigating the optimal precursory disturbance for El Niño events in the Zebiak-Cane model. The initial anomalies of conditional nonlinear optimal perturbations (CNOPs) and linear singular vectors (LSVs) are investigated. The CNOPs evolve into stronger El Niño events than the LSVs and act as the optimal precursor for El Niño events. By examining the role of nonlinearities in El Niño events induced by CNOPs and LSVs, we determined that, when the initial anomalies of the CNOP and LSV structures are large, the nonlinearities enhance CNOP-El Niño events but suppress LSV-El Niño events. Nonlinearities in the Zebiak-Cane model arise from nonlinear temperature advection (NTA), sub-surface temperature parameterization (STP), and wind stress anomalies (WSA). Using these types of nonlinearities, we trace the approach of the nonlinearities modulating the CNOP- and LSV-El Niño events. The results demonstrate that nonlinearities that originate from NTA enhance both CNOP-El Niño events and LSV-El Niño events, while nonlinearities originating from STP and WSA suppress these events. For the CNOP-El Niño events, the enhancement effect of NTA is larger than the suppression effect of STP and WSA, resulting in the combined effect of the nonlinearities in the Zebiak-Cane model being an enhancement of the CNOP-El Niño events. However, for the LSV-El Niño events, the enhancement effect of NTA is smaller than the suppression effect of WSA and STP. Consequently, the combined effect of the nonlinearities in the Zebiak-Cane model suppresses the LSV-El Niño events.  相似文献   

4.
In this paper,a nonlinear optimization method is used to explore the finite-time instability of the atmospheric circulation with a three-level quasigeostrophic model under the framework of the conditional nonlinear optimal perturbation (CNOP).As a natural generalization of linear singular vector (SV),CNOP is defined as an initial perturbation that makes the cost function the maximum at a prescribed forecast time under certain physical constraint conditions.Special attentions are paid to the different structures and energy evolutions of the optimal perturbations.The results show that the most instable region of the global atmospheric circulation lies in the midlatitude Eurasian continent.More specially,SV and CNOP in the total energy norm with an optimization time of 2 days both present localness:they are mainly located in the midlatitude Asian continent and its east coast.With extension of the optimization time,SVs are more upstream and less localized in the zonal direction,and CNOPs differ essentially from SVs with broader zonal and meridional coverages; as a result,CNOPs acquire larger kinetic and available potential energy amplifications than SVs in the nonlinear model at the corresponding optimization time.For the climatological wintertime flow,it is seen that the baroclinic terms remain small over the entire time evolution,and the energy production comes essentially from the eddy kinetic energy,which is induced by the horizontal shear of the basic flow.In addition,the effects of SVs and CNOPs on the Eurasian atmospheric circulation are explored.The results show that the weather systems over the Eurasian continent in the perturbed fields by CNOPs are stronger than those by SVs at the optimization time.This reveals that the CNOP method is better in evaluating the instability of the atmospheric circulation while the SV method underestimates the possibility of extreme weather events.  相似文献   

5.
The authors apply the technique of conditional nonlinear optimal perturbations (CNOPs) as a means of providing initial perturbations for ensemble forecasting by using a barotropic quasi-geostrophic (QG) model in a perfect-model scenario. Ensemble forecasts for the medium range (14 days) are made from the initial states perturbed by CNOPs and singular vectors (SVs). 13 different cases have been chosen when analysis error is a kind of fast growing error. Our experiments show that the introduction of CNOP provides better forecast skill than the SV method. Moreover, the spread-skill relationship reveals that the ensemble samples in which the first SV is replaced by CNOP appear superior to those obtained by SVs from day 6 to day 14. Rank diagrams are adopted to compare the new method with the SV approach. The results illustrate that the introduction of CNOP has higher reliability for medium-range ensemble forecasts.  相似文献   

6.
Some intelligent algorithms (IAs) proposed by us, including swarm IAs and single individual IAs, have been applied to the Zebiak-Cane (ZC) model to solve conditional nonlinear optimal perturbation (CNOP) for studying El Ni?o – Southern Oscillation (ENSO) predictability. Compared to the adjoint-based method (the ADJ-method), which is referred to as a benchmark, these IAs can achieve approximate CNOP results in terms of magnitudes and patterns. Using IAs to solve CNOP can avoid the use of an adjoint model and widen the application of CNOP in numerical climate and weather modeling. Of the proposed swarm IAs, PCA-based particle swarm optimization (PPSO) obtains CNOPs with the best patterns and the best stability. Of the proposed single individual IAs, continuous tabu search algorithm with sine maps and staged strategy (CTS-SS) has the highest efficiency. In this paper, we compare the validity, stability and efficiency of parallel PPSO and CTS-SS using these two IAs to solve CNOP in the ZC model for studying ENSO predictability. The experimental results show that CTS-SS outperforms parallel PPSO except with respect to stability. At the same time, we are also concerned with whether these two IAs can effectively solve CNOP when applied to more complicated models. Taking the sensitive areas identification of tropical cyclone adaptive observations as an example and using the fifth-generation mesoscale model (MM5), we design some experiments. The experimental results demonstrate that each of these two IAs can effectively solve CNOP and that parallel PPSO has a higher efficiency than CTS-SS. We also provide some suggestions on how to choose a suitable IA to solve CNOP for different models.  相似文献   

7.
张星  穆穆  王强  张坤 《山东气象》2018,38(1):1-9
对近年来利用条件非线性最优扰动(Conditional Nonlinear Optimal Perturbation,CNOP)方法开展的黑潮目标观测研究进行了总结,主要包括日本南部黑潮路径变异的目标观测研究、黑潮延伸体模态转变的目标观测研究和源区黑潮流量变化的目标观测研究。通过计算这些事件的CNOP型扰动,发现这些事件的CNOP型扰动具有局地特征,可以作为实施目标观测的敏感区。理想回报试验结果表明,如果在由CNOP方法识别的敏感区内实施目标观测,则会大幅度提高上述事件的预报技巧。  相似文献   

8.
In this paper, several sets of observing system simulation experiments (OSSEs) were designed for three typhoon cases to determine whether or not the additional observation data in the sensitive regions identified by conditional nonlinear optimal perturbations (CNOPs) could improve the short-range forecast of typhoons. The results show that the CNOPs capture the sensitive regions for typhoon forecasts, which implies that conducting additional observation in these specific regions and eliminating initial errors could reduce forecast errors. It is inferred from the results that dropping sondes in the CNOP sensitive regions could lead to improvements in typhoon forecasts.  相似文献   

9.
条件非线性最优扰动方法在适应性观测研究中的初步应用   总被引:15,自引:3,他引:12  
穆穆  王洪利  周菲凡 《大气科学》2007,31(6):1102-1112
针对适应性观测中敏感性区域的确定问题,考虑初始误差对预报结果的影响, 比较了条件非线性最优扰动(CNOP)与第一线性奇异向量(FSV)在两个降水个例中的空间结构的差异,考察了它们总能量范数随时间发展演变的异同。结合敏感性试验的分析,揭示了预报结果对CNOP类型的初始误差的敏感性要大于对FSV类型的初始误差的敏感性,因而减少初值中CNOP类型误差的振幅比减少FSV类型的收益要大。这一结果表明可以把CNOP方法应用于适应性观测来识别大气的敏感区。关于将CNOP方法有效地应用于适应性观测所面临的挑战及需要采取的对策等也进行了讨论。  相似文献   

10.
A variant constrained genetic algorithm (VCGA) for effective tracking of conditional nonlinear optimal perturbations (CNOPs) is presented. Compared with traditional constraint handling methods, the treatment of the constraint condition in VCGA is relatively easy to implement. Moreover, it does not require adjustments to indefinite pararneters. Using a hybrid crossover operator and the newly developed multi-ply mutation operator, VCGA improves the performance of GAs. To demonstrate the capability of VCGA to catch CNOPS in non-smooth cases, a partial differential equation, which has "on off" switches in its forcing term, is employed as the nonlinear model. To search global CNOPs of the nonlinear model, numerical experiments using VCGA, the traditional gradient descent algorithm based on the adjoint method (ADJ), and a GA using tournament selection operation and the niching technique (GA-DEB) were performed. The results with various initial reference states showed that, in smooth cases, all three optimization methods are able to catch global CNOPs. Nevertheless, in non-smooth situations, a large proportion of CNOPs captured by the ADJ are local. Compared with ADJ, the performance of GA-DEB shows considerable improvement, but it is far below VCGA. Further, the impacts of population sizes on both VCGA and GA-DEB were investigated. The results were used to estimate the computation time of ~CGA and GA-DEB in obtaining CNOPs. The computational costs for VCGA, GA-DEB and ADJ to catch CNOPs of the nonlinear model are also compared.  相似文献   

11.
An attempt has been made to apply Arnol’d type nonlinear stability criteria to the diagnostic study of the persistence (stability) or breakdown (instability) of the atmospheric flows. In the case of the blocking high, the cut-off low and the zonal flow, the relationships of the geostrophic stream function versus the po-tential vorticity of the observed atmosphere are analyzed, which indicates that Arnol'd second type nonlinear stability theorem is more relevant to the observed atmosphere than the first one. For both the sta-ble and unstable zonal flows, Arnol’d second type nonlinear stability criteria are applied to the diagnosis. The primary results show that our analyses correspond well to the evolution of the atmospheric motions. The synoptically stable zonal flows satisfy Arnol'd second type nonlinear stability criteria; while the synoptically unstable ones violate the nonlinear stability criteria.  相似文献   

12.
The initial errors constitute one of the main limiting factors in the ability to predict the El Nio–Southern Oscillation(ENSO) in ocean–atmosphere coupled models. The conditional nonlinear optimal perturbation(CNOP) approach was employed to study the largest initial error growth in the El Nio predictions of an intermediate coupled model(ICM). The optimal initial errors(as represented by CNOPs) in sea surface temperature anomalies(SSTAs) and sea level anomalies(SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of El Nio, the El Nio event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier(SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly,weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events.  相似文献   

13.
Large-eddy simulation (LES) is conducted to investigate the mechanism of pollutant removal from a two-dimensional street canyon with a building-height to street-width (aspect) ratio of 1. A pollutant is released as a ground-level line source at the centre of the canyon floor. The mean velocities, turbulent fluctuations, and mean pollutant concentration estimated by LES are in good agreement with those obtained by wind-tunnel experiments. Pollutant removal from the canyon is mainly determined by turbulent motions, except in the adjacent area to the windward wall. The turbulent motions are composed of small vortices and small-scale coherent structures of low-momentum fluid generated close to the plane of the roof. Although both small vortices and small-scale coherent structures affect pollutant removal, the pollutant is largely emitted from the canyon by ejection of low-momentum fluid when the small-scale coherent structures appear just above the canyon where the pollutant is retained. Large-scale coherent structures also develop above the canyon, but they do not always affect pollutant removal.  相似文献   

14.
穆穆  段晚锁  徐辉  王波 《大气科学进展》2006,23(6):992-1002
Considering the limitation of the linear theory of singular vector (SV), the authors and their collaborators proposed conditional nonlinear optimal perturbation (CNOP) and then applied it in the predictability study and the sensitivity analysis of weather and climate system. To celebrate the 20th anniversary of Chinese National Committee for World Climate Research Programme (WCRP), this paper is devoted to reviewing the main results of these studies. First, CNOP represents the initial perturbation that has largest nonlinear evolution at prediction time, which is different from linear singular vector (LSV) for the large magnitude of initial perturbation or/and the long optimization time interval. Second, CNOP, rather than linear singular vector (LSV), represents the initial anomaly that evolves into ENSO events most probably. It is also the CNOP that induces the most prominent seasonal variation of error growth for ENSO predictability; furthermore, CNOP was applied to investigate the decadal variability of ENSO asymmetry. It is demonstrated that the changing nonlinearity causes the change of ENSO asymmetry. Third, in the studies of the sensitivity and stability of ocean’s thermohaline circulation (THC), the nonlinear asymmetric response of THC to finite amplitude of initial perturbations was revealed by CNOP. Through this approach the passive mechanism of decadal variation of THC was demonstrated; Also the authors studies the instability and sensitivity analysis of grassland ecosystem by using CNOP and show the mechanism of the transitions between the grassland and desert states. Finally, a detailed discussion on the results obtained by CNOP suggests the applicability of CNOP in predictability studies and sensitivity analysis.  相似文献   

15.
The sensitive regions of conditional nonlinear optimal perturbations (CNOPs) and the first singular vector (FSV) for a northwest Pacific typhoon case are reported in this paper. A large number of probes have been designed in the above regions and the ensemble transform Kalman filter (ETKF) techniques are utilized to examine which approach can locate more appropriate regions for typhoon adaptive observations. The results show that, in general, the majority of the probes in the sensitive regions of CNOPs can reduce more forecast error variance than the probes in the sensitive regions of FSV. This implies that adaptive observations in the sensitive regions of CNOPs are more effective than in the sensitive regions of FSV. Furthermore, the reduction of the forecast error variance obtained by the best probe identified by CNOPs is twice the reduction of the forecast error variance obtained by FSV. This implies that dropping sondes, which is the best probe identified by CNOPs, can improve the forecast more than the best probe identified by FSV. These results indicate that the sensitive regions identified by CNOPs are more appropriate for adaptive observations than those identified by FSV.  相似文献   

16.
奇异向量(singular vectors,SVs)和条件非线性最优扰动(conditional nonlinear optimal perturbation,CNOP)已广泛应用于研究大气—海洋系统的不稳定性以及与其相关的可预报性、集合预报和目标观测问题研究。本文首先回顾了SVs和CNOP的发展历史,并简单描述了它们的基本原理;然后针对二维正压准地转模式,使用不同的范数组合,分析了第一线性奇异向量(first singular vector,FSV)和CNOP之间的异同。结果表明,当优化时间较短时,度量SVs和CNOP大小的范数不同也将导致FSV和CNOP相差很大,而当度量SVs和CNOP大小的范数相同时,FSV和CNOP之间的差别则主要是由非线性物理过程作用的结果。因此,针对不同的物理问题,应该选取合适的度量范数研究FSV和CNOP以及其所引起的大气或海洋动力学的异同,从而揭示非线性物理过程的影响机理。  相似文献   

17.
边缘区域扰动演变对台风结构的影响   总被引:8,自引:3,他引:8  
罗哲贤 《大气科学》1994,18(5):513-519
在台风环流边缘区域给出不稳定模态的扰动四波分布作为初始场,用准地转正压模式实施四组数值积分,研究了边缘区域扰动演变及其对台风非对称结构及外区流型的影响。结果表明:线性平流对于外缘区域扰动的发展起主要作用。β项导致一个气旋—反气旋涡旋对和非对称结构的形成。非线性平流则使外缘区域较小尺度的涡旋破碎,形成更小尺度的涡旋。在线性平流、β项和非线性平流的共同作用下,台风结构与外区形成象螺旋云系的分布。外缘区域扰动引起的结构变化,进而能影响到台风的移动路径。  相似文献   

18.
Previous studies concerning the interaction of dual vortices have been made generally in the deterministic framework. In this paper, by using an advection equation model, eight numerical experiments whose integration times are 30 h are performed in order to analyze the interaction of dual vortices and the vortex self-organization in a coexisting system of deterministic and stochastic components. The stochastic components are introduced into the model by the way that the Iwayama scheme is used to produce the randomly distributed small-scale vortices which are then added into the initial field. The different intensity of the small-scale vortices is described by parameter K being 0.0, 0.4, 0.6, 0.8, and 1.0, respectively. When there is no small-scale vortex (K=0.0), two initially separated meso-beta vortices rotate counterclockwise mutually, and their quasi-final flow pattern is still two separated vortices; after initially incorporating small-scale vortices (K=0.8, 1.0), the two separated meso-beta vortices of initially same intensity gradually evolve into a major and a secondary vortex in time integration. The major vortex pulls the secondary one, which gradually evolves into the spiral band of the major vortex. The quasi-final flow pattern is a self-organized vortex with typhoon-like circulation, and the relative vorticity at its center increases with increasing in K value, suggesting that small-scale vortices feed the self-organized vortex with vorticity. This may be a possible mechanism responsible for changes in the strength of the self-organized vortex. Results also show that the quasi-final pattern not only relates with the initial intensity of the small-scale vortices, but also with their initial distribution. In addition, three experiments are also performed in the case of various boundary conditions. Firstly, the periodic condition is used on the E-W boundary, but the fixed condition on the S-N boundary; secondly, the fixed condition is set on all the boundaries; and thirdly, the periodic conditio  相似文献   

19.
Previous studies concerning the interaction of dual vortices have been made generally in the determin-istic framework. In this paper, by using an advection equation model, eight numerical experiments whose integration times are 30 h are performed in order to analyze the interaction of dual vortices and the vortex self-organization in a coexisting system of deterministic and stochastic components. The stochastic compo-nents are introduced into the model by the way that the Iwayama scheme is used to produce the randomly distributed small-scale vortices which are then added into the initial field. The different intensity of the small-scale vortices is described by parameter K being 0.0, 0.4, 0.6, 0.8, and 1.0, respectively. When there is no small-scale vortex (K=0.0), two initially separated meso-beta vortices rotate counterclockwise mutu-ally, and their quasi-final flow pattern is still two separated vortices; after initially incorporating small-scale vortices (K=0.8, 1.0), the two separated meso-beta vortices of initially same intensity gradually evolve into a major and a secondary vortex in time integration. The major vortex pulls the secondary one, which gradually evolves into the spiral band of the major vortex. The quasi-final flow pattern is a self-organized vortex with typhoon-like circulation, and the relative vorticity at its center increases with increasing in K value, suggesting that small-scale vortices feed the self-organized vortex with vorticity. This may be a pos-sible mechanism responsible for changes in the strength of the self-organized vortex. Results also show that the quasi-final pattern not only relates with the initial intensity of the small-scale vortices, but also with their initial distribution. In addition, three experiments are also performed in the case of various boundary conditions. Firstly, the periodic condition is used on the E-W boundary, but the fixed condition on the S-N boundary; secondly, the fixed condition is set on all the boundaries; and thirdly, the periodic condition is chosen on all the boundaries. Their quasi-final flow patterns in the three experiments are the same with each other, exhibiting a larger scale typhoon-like circulation. Based on these results mentioned above, authors think that the transition of vortex self-organization study from the deterministic system to the coexisting system of deterministic and stochastic components is worth exploring.  相似文献   

20.
罗哲贤  李春虎 《气象学报》2007,65(6):856-863
以往双涡相互作用的动力学一般都在决定性的框架内研究。文中用一个平流方程模式,实施积分时间为30 h的8组试验,分析决定性和随机性共存系统中双涡相互作用和涡旋自组织的问题。随机性通过以下方式引入模式:先用Iwayama方案生成随机分布的小尺度涡,再将这些小尺度涡加入初始场。试验中,初始随机分布小尺度涡的强度参数K分别取0.0、0.4、0.6、0.8和1.0。结果表明,没有小尺度涡的条件下(K=0.0),初始分离的两个β中尺度涡逆时针互旋,其准终态流型是两个分离的涡;引进小尺度涡后,K取0.8、1.0时,初始分离强度相同的两个β中尺度涡,逐渐形成主次之分。主涡将次涡拉伸成为螺旋带,其准终态流型是一个自组织起来的类似于台风环流的涡旋。准终态涡中心的相对涡度值随K值的加大而加大。结果还表明,准终态流型不仅与初始小尺度涡的强度参数有关,而且与初始小尺度涡的分布有关。此外,在相同初始场的情况下,还实施了3类不同边畀条件的试验:第1类,在东西边界取周期条件,在南北边界取固定条件;第2类,在所有边界均取固定条件;第3类,在所有边界均取周期条件。这3类试验的准终态流型相同,都显示出一个类似于台风涡旋的环流。根据这些结果可以初步认为,涡旋自组织的研究从决定性动力学向随机动力学的过渡是值得探索的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号