首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Snow was sampled and analyzed for total mercury (THg) on the Idaho National Engineering and Environmental Laboratory (INEEL) and surrounding region prior to the start-up of a large (9-11 g/h) gaseous mercury emission source. The objective was to determine the effects of the source on local and regional atmospheric deposition of mercury. Snow samples collected from 48 points on a polar grid near the source had THg concentrations that ranged from 4.71 to 27.26 ng/L; snow collected from regional background sites had THg concentrations that ranged from 0.89 to 16.61 ng/L. Grid samples had higher concentrations than the regional background sites, which was unexpected because the source was not operating yet. Emission of Hg from soils is a possible source of Hg in snow on the INEEL. Evidence from Hg profiles in snow and from unfiltered/filtered split samples supports this hypothesis. Ongoing work on the INEEL is investigating Hg fluxes from soils and snow.  相似文献   

2.
北京市土壤Hg污染的区域生态地球化学评价   总被引:8,自引:1,他引:7  
城市土壤Hg异常/污染是中国普遍存在的重大生态环境问题。文章对北京市近1000km2范围内的地表土壤、壤中气、大气干湿沉降、大气颗粒物、大气中的Hg含量水平和空间分布模式进行了系统研究,查明北京地表土壤Hg平均含量为0.41mg/kg,大气干湿沉降物中的Hg平均含量为0.194mg/kg,壤中气Hg的平均含量为559.65ng/m3,大气颗粒物PM10和PM2.5中的Hg含量分别为0.59和0.67ng/m3,大气中的Hg平均含量为3.13ng/m3。北京市自2000年起实现了由燃煤转变为燃气的减排措施,导致干湿沉降物中的Hg沉降通量显著减少,2006年大气干湿沉降物中Hg的沉降通量1.837mg·m-2·a-1,北京市城区(近1000km2)Hg全年沉降为1837kg,空气中总Hg浓度由1998年的8.3~24.7ng/m3下降到2006年的3.13ng/m3,大气颗粒物中Hg含量由2003年的1.18ng/m3下降到2006年的0.59ng/m3(PM10)和0.67ng/m3(PM2.5),表明北京市煤改气减排措施的实施显著改善了大气环境质量。通过对土壤中Hg的存在形式研究,发现土壤中有硫化物(辰砂)及各种Hg盐(HgCl2)的含Hg矿物,Hg也可以各种吸附方式或壤中气方式存在。研究证实北京壤中气Hg与大气Hg存在显著的相关性(n=131,R=0.267,p<0.01),表明壤中气Hg是大气Hg的重要来源之一。利用2005年地表土壤总Hg与Hg释放速率的线性方程估算,土壤Hg平均释放速率为102.42ng·m-2·h-1,2005年土壤释放进大气的Hg通量为936.70kg。在查明土壤中存在大量辰砂矿物的同时,还分布有大量具有高温熔融特征的金属微球粒和玻璃质微球粒,证明燃煤和冶金烟尘是地表土壤Hg的主要来源。土壤中Hg、S、pH和辰砂颗粒浓度在空间上的高度耦合性表明,碱性条件下,土壤中高含量的S和Hg是辰砂形成的重要原因。按国家土壤环境质量标准,北京市I级土壤Hg环境质量的面积为176km2,Ⅱ级为808km2,Ⅲ级为24km2,超Ⅲ为36km2。Ⅲ级、超Ⅲ级主要分布在二环路以内的中心城区。城南(长安街为界)大气Hg环境质量明显优于城北,在北四、北五环之间的部分地区,大气颗粒Hg的环境质量为Ⅲ级或超Ⅲ级。在地表土壤Hg含量较高的中心城区,居民每天因呼吸摄入的Hg高达364ng,对人体健康构成潜在风险。根据我国"十一五"规划中每年实现10%节能减排的目标,对北京市未来50年土壤Hg含量的时空演变趋势预测,预测2050年北京因干湿沉降带来的Hg输入量为16.03kg,地表土壤释放Hg的输出量为37.36kg,明显大于Hg的输入通量,土壤Hg的环境质量将得到根本改善。预测到2040年Ⅲ级土壤Hg环境质量的区域将完全消失,到2060年以Ⅰ级土壤为主。  相似文献   

3.
Seven sediment push-cores were extracted from Chiricahueto, a marsh affected by urban, industrial and agricultural wastes. Concentrations of total phosphorus (300-1,620 µg g-1), organic carbon (4-39 mg g-1) and total nitrogen (0.5-4.5 mg g-1) in the sediments showed an exponential decrease with depth, related to the decomposition of organic matter (OM). Between 20 and 40% of OM initially deposited is degraded at the sediment-water interface under oxic conditions. Another fraction (40-60%) of non-refractory OM is decomposed within the sediments by oxidants other than oxygen. Likewise, the preservation of OM (<20%) was estimated as burial concentrations of C, N and P linked to organic compounds. The C/N ratios, '13C and '15N suggested that the major source of OM to the sediments derives from marine phytoplankton. The allochthonous sources of OM were overprinted by the high flux of marine autochthonous OM. However, an indirect terrestrial influence is recognised, in which high nutrient load derived from agricultural, domestic and industrial activities promoted high productivity.  相似文献   

4.
地震活动断裂带能够向大气释放大量的温室气体、放射性气体和有毒气体(CO_2、CH_4、Rn和Hg),并对大气环境的影响产生复杂的影响。利用静态暗箱法,对汶川M_s8.0地震破裂带CO_2、Rn和Hg脱气强度进行实地测量,并计算了CO_2和Hg脱气对大气的年贡献量。结果表明:(1)破裂带土壤气中CO_2、CH_4、Rn和Hg异常浓度最大值分别可以达到7.98%、2.38%、524.30k Bq/m~3和161.00ng/m~3;破裂带CO_2、Rn和Hg脱气平均通量是34.95g·m~(-2)d~(-1)、36.11m Bq·m~(-2)s~(-1)和26.56ng·m~(-2)h~(-1),最大值分别达到259.23g·m~(-2)d~(-1)、580.35m Bq·m~(-2)s~(-1)和387.67ng·m~(-2)h~(-1);(2)汶川Ms8.0地震破裂带向大气脱气的CO_2年贡献量是0.95Mt,Hg的年贡献量是15.94kg。汶川Ms8.0地震破裂带破裂CO_2、CH_4、Rn和Hg等的脱气强度,不仅与破裂带渗透率有关,还与断裂带浅部存在的气藏、煤层以及磷矿层等气体源有重要的联系。  相似文献   

5.
Mercury (Hg) and methylmercury (CH3Hg+) concentrations in streambed sediment and water were determined at 27 locations throughout the Sacramento River Basin, CA. Mercury in sediment was elevated at locations downstream of either Hg mining or Au mining activities where Hg was used in the recovery of Au. Methylmercury in sediment was highest (2.84 ng/g) at a location with the greatest wetland land cover, in spite of lower total Hg at that site relative to other river sites. Mercury in unfiltered water was measured at 4 locations on the Sacramento River and at tributaries draining the mining regions, as well as agricultural regions. The highest levels of Hg in unfiltered water (2248 ng/l) were measured at a site downstream of a historic Hg mining area, and the highest levels at all sites were measured in samples collected during high streamflow when the levels of suspended sediment were also elevated. Mercury in unfiltered water exceeded the current federal and state recommended criterion for protection of aquatic life (50 ng/l as total Hg in unfiltered water) only during high streamflow conditions. The highest loading of Hg to the San Francisco Bay system was attributed to sources within the Cache Creek watershed, which are downstream of historic Hg mines, and to an unknown source or sources to the mainstem of the Sacramento River upstream of historic Au mining regions. That unknown source is possibly associated with a volcanic deposit. Methylmercury concentrations also were dependent on season and hydrologic conditions. The highest levels (1.98 ng/l) in the Sacramento River, during the period of study, were measured during a major flood event. The reactivity of Hg in unfiltered water was assessed by measuring the amount available for reaction by a strong reducing agent. Although most Hg was found to be nonreactive, the highest reactivity (7.8% of the total Hg in water) was measured in the sample collected from the same site with high CH3Hg+ in sediment, and during the time of year when that site was under continual flooded conditions. Although Hg concentrations in water downstream of the Hg mining operations were measured as high as 2248 ng/l during stormwater runoff events, the transported Hg was found to have a low potential for geochemical transformations, as indicated by the low reactivity to the reducing agent (0.0001% of the total), probably because most of the Hg in the unfiltered water sample was in the mercury sulfide form.  相似文献   

6.
Carbonate mud from three small isolated carbonate platforms of Belize (Central America) is largely a product of the breakdown of skeletal grains. The composition of the 63-20- and 20-4-µm fractions of 37 samples was determined by point counting under SEM; composition of the <4-µm fraction was assessed qualitatively under SEM. The 63-4-µm fractions are dominated by fragments of mollusks, the codiacean alga Halimeda, and other skeletal types. About one-third of the particles in the 63-4-µm fractions remained unidentified, probably due to obliteration of diagnostic features by early recrystallization processes such as micritization. Nanograins (<1 µm) and short (3-5 µm) aragonite needles are most common in the <4-µm fraction. These grains are interpreted to be largely fragments of codiacean algae (Halimeda, Penicillus). The 20-4- and <4-µm sediment fractions are composed of 80 and 75% aragonite on average, respectively. Trace element composition of strontium averages 7,900 ppm in the 20-4-µm fraction and in codiacean algae samples, and 5,600 ppm in the <4-µm fraction. Geochemical (trace element) data also argue against inorganic aragonite precipitation within the water column, and favor a skeletal origin. The lower strontium contents in the <4-µm fraction as compared with the 20-4-µm fraction may also be a consequence of early recrystallization processes.  相似文献   

7.
The aim of this study was to evaluate Hg distribution in mangrove plants and changes of Hg content during leaf aging; the contribution of litterfall to Hg enrichment in mangrove ecosystems is also discussed. Contents of total Hg (THg) and methylmercury (MeHg) in mangrove plants and sediments were determined. Contents of THg and MeHg in the sediments were 225 ± 157 ng/g and 0.800 ± 0.600 ng/g. Concentrations of THg and MeHg in the mangrove plants were 1760 ± 1885 ng/g and 0.721 ± 0.470 ng/g (dry weight), respectively, which were much higher than those in terrestrial plants. Enrichment of THg in mangrove plants was different, following the order Rhizophra apiculata > Rhizophora stylosa > Kandelia candel > Aegiceras corniculatum Avicennia marina; while MeHg contents in mangrove plants decreased in the order of R. stylosa > K. candel > A. corniculatum > R. apiculata > A. marina. There were obvious interspecies differences, regional differences, individual differences and tissue differences between THg and MeHg contents of mangrove plants, all of which were closely related to the environmental and the physiological characteristics of mangrove plants. In juvenile leaves, mature leaves and leaf litter, THg contents ranged 55.3-1760 ng/g, 204-1800 ng/g, and 385-2130 ng/g (dry weight), respectively; MeHg contents ranged 0.17-2.39 ng/g, 0.01-1.28 ng/g, and 0.13-1.47 ng/g (dry weight), respectively. Except for A. corniculatum and Bruguier gymnorrhiza, THg content of mature leaves was always higher than that in juvenile leaves, but MeHg showed a contrasting trend. THg content of litter leaves was between that of juvenile leaves and mature leaves, while MeHg content was generally lower than that of juvenile leaves and mature leaves. In the mangrove ecosystem, Hg enrichment contributed by the litterfall decreased in the order of K. candel > A. corniculatum > A. marina.  相似文献   

8.
土壤样品用水浴加热王水溶解1 h,在10%的盐酸介质下,用0.5 L/min的载气流量,10 g/L的硼氢化钠-氢氧化钠作为还原剂,将自行设计的一种新型氢化物发生器与电感耦合等离子体发射光谱法(ICP-AES)联用测定痕量砷、锑、铋、汞,一次溶样即可实现多元素在同母液同条件下同时测定。方法检出限为0.01~0.06 ng/g,加标回收率为92.0%~102.0%,精密度(RSD)低于5%。此方法通过加入抗坏血酸-硫脲溶液预先将砷和锑还原,汞的测定不受还原剂的影响,同时解决了目前多元素分次测量带来的不便和试剂消耗多等问题,样品前处理及测量过程快速、简单,无记忆效应的影响,适合环境样品中痕量砷、锑、铋、汞的同时测定。  相似文献   

9.
Sediment cores were used to investigate the mercury deposition histories of Connecticut and Long Island Sound. Most cores show background (pre-1800s) concentrations (50-100 ppb Hg) below 30-50 cm depth, strong enrichments up to 500 ppb Hg in the core tops with lower Hg concentrations in the surface sediments (200-300 ppb Hg). A sediment core from the Housatonic River has peak levels of 1,500 ppb Hg, indicating the presence of a Hg point source in this watershed. The Hg records were translated into Hg contamination chronologies through 210Pb dating. The onset of Hg contamination occurred in ~1840-1850 in eastern Connecticut, whereas in the Housatonic River the onset is dated at around 1820. The mercury accumulation profiles show periods of peak contamination at around 1900 and at 1950-1970. Peak Hg* (Hg*= Hg measured minus Hg background) accumulation rates in the salt marshes vary, dependent on the sediment character, between 8 and 44 ng Hg/cm2 per year, whereas modern Hg* accumulation rates range from 4-17 ng Hg/cm2 per year; time-averaged Hg* accumulation rates are 15 ng Hg/cm2 per year. These Hg* accumulation rates in sediments are higher than the observed Hg atmospheric deposition rates (about 1-2 ng Hg/cm2 per year), indicating that contaminant Hg from the watershed is focused into the coastal zone. The Long Island Sound cores show similar Hg profiles as the marsh cores, but time-averaged Hg* accumulation rates are higher than in the marshes (26 ng Hg/cm2 a year) because of the different sediment characteristics. In-situ atmospheric deposition of Hg in the marshes and in Long Island Sound is only a minor component of the total Hg budget. The 1900 peak of Hg contamination is most likely related to climatic factors (the wet period of the early 1900s) and the 1950-1970 peak was caused by strong anthropogenic Hg emissions at that time. Spatial trends in total Hg burdens in cores are largely related to sedimentary parameters (amount of clay) except for the high inventories of the Housatonic River, which are related to Hg releases from hat-making in the town of Danbury. Much of the contaminated sediment transport in the Housatonic River Basin occurs during floods, creating distinct layers of Hg-contaminated sediment in western Long Island Sound. The drop of about 40% in Hg accumulation rates between the 1960s and 1990s seems largely the result of reduced Hg emissions and to a much lesser extent of climatic factors.  相似文献   

10.
《Applied Geochemistry》2006,21(11):1940-1954
Speciation and microbial transformation of Hg was studied in mine waste from abandoned Hg mines in SW Texas to evaluate the potential for methyl-Hg production and degradation in mine wastes. In mine waste samples, total Hg, ionic Hg2+, Hg0, methyl-Hg, organic C, and total S concentrations were measured, various Hg compounds were identified using thermal desorption pyrolysis, and potential rates of Hg methylation and methyl-Hg demethylation were determined using isotopic-tracer methods. These data are the first reported for Hg mines in this region. Total Hg and methyl-Hg concentrations were also determined in stream sediment collected downstream from two of the mines to evaluate transport of Hg and methylation in surrounding ecosystems. Mine waste contains total Hg and methyl-Hg concentrations as high as 19,000 μg/g and 1500 ng/g, respectively, which are among the highest concentrations reported at Hg mines worldwide. Pyrolysis analyses show that mine waste contains variable amounts of cinnabar, metacinnabar, Hg0, and Hg sorbed onto particles. Methyl-Hg concentrations in mine waste correlate positively with ionic Hg2+, organic C, and total S, which are geochemical parameters that influence processes of Hg cycling and methylation. Net methylation rates were as high as 11,000 ng/g/day, indicating significant microbial Hg methylation at some sites, especially in samples collected inside retorts. Microbially-mediated methyl-Hg demethylation was also observed in many samples, but where both methylation and demethylation were found, the potential rate of methylation was faster. Total Hg concentrations in stream sediment samples were generally below the probable effect concentration of 1.06 μg/g, the Hg concentration above which harmful effects are likely to be observed in sediment dwelling organisms; whereas total Hg concentrations in mine waste samples were found to exceed this concentration, although this is a sediment quality guideline and is not directly applicable to mine waste. Although total Hg and methyl-Hg concentrations are locally high in some mine waste samples, little Hg appears to be exported from these Hg mines in stream sediment primarily due to the arid climate and lack of precipitation and mine runoff in this region.  相似文献   

11.
The distribution and bioavailability of Hg in vegetable-growing soils collected from the estuary areas of Jiulong River, China, were studied. Concentrations of Hg in top-soils, soil profiles and plant samples were measured with the method of hydride generation atomic fluorescence spectrometry after microwave digestion. Mercury species in soils were determined with the sequential extraction procedures based on Kingston method. Results showed that Hg concentrations in top-soils ranged from 49.8 to 1,685 ng g?1, with an average of 510 ng g?1 which was more than twice higher than the mercury limit (250 ng g?1 at pH < 6.5) of soil quality set for edible agricultural products in China (HJ 332-2006). High levels of Hg were found to mainly distribute in the top-soils from the northern, western and southern part of the estuary areas. Hg concentrations decreased with the increases of profile depths, except for one sample (S15) in which Hg level in the depth of 0–20 cm was found lower than that in the 20–40 cm. Hg in most of soil samples in non-mobile forms accounted for 46–82 % of total Hg in soils, while Hg in the mobile forms only 0.6–8.7 %. No significant correlation of Hg concentrations between the vegetables and the soils was observed in the studied areas, which indicates that the transfer factors could only reflect the abilities of Hg uptake and accumulation in a specific plant, but they are unsuitable to be used as the general indexes for the mobility and bioavailability of Hg in soils.  相似文献   

12.
The spatial and temporal variability of Hg emissions from urban paved surfaces was assessed through repeated measurements under varying environmental conditions at six sample sites in Toronto, Ontario, Canada. The results show significant spatial variability of the Hg emissions with median values ranging from below detection limit to 5.2 ng/m2/h. Two of the sites consistently had higher Hg emissions (on several occasions >20 ng/m2/h) than the other 4, which were equivalently low (maximum emission: 2.1 ng/m2/h). A surrogate measure of the pavement Hg concentrations was obtained during each day of sampling through the collection of street dust. The median street dust concentration also showed significant spatial variability (ranging from 9.6 to 44.5 ng/g). Regression analysis showed that the spatial variability of the Hg emissions was significantly related to the street dust concentrations. Controlled experiments using Hg amended street dust confirmed the relationship between Hg surface concentration and emission magnitude. Within a given sample site, Hg emissions varied temporally and multiple regression analysis showed that within-site variability was significantly influenced by changes in solar radiation with only a minor effect from surface temperature. Controlled experiments using shade cloths confirmed that solar radiation can have a large influence on the magnitude of Hg emissions within a given site. The emissions measured in Toronto were contextualized through comparison sampling in Austin, Texas. The Hg emissions measured in Austin were within the range detected in Toronto and also showed significant correlation with Hg street dust concentrations between sites. To provide a holistic assessment of Hg emissions from urban environments, samples were also collected from other common urban surfaces (soil, roofs, and windows). Soils consistently had higher emissions than all the other surfaces (7.3 ng/m2/h, n = 39).  相似文献   

13.
Based on the analysis of the enrichment characteristics of Hg and MeHg in bird feathers from Caohai National Nature Reserve in Guizhou, the risks of Hg pollution to the birds from Caohai wetland have been evaluated. The total Hg content of bird feathers ranges from 40 to 5058 ng/g with an average of 924 ng/g. The content of MeHg is significantly correlated with total Hg (r = 0.68, p < 0.01), and the content are among 0.75 and 113 ng/g. The total Hg content in the birds feathers is significantly dependent on their feeding habits, which is mainly in accordance with the following rule: carnivorous birds > omnivorous birds that are mainly carnivorous > omnivorous birds that are mainly herbivorous. There are also differences in the Hg enrichment ability in the different parts of bird feathers, and the total Hg and MeHg content in the wing feathers are significantly higher than that in the other parts of feathers. The bioaccumulation coefficients of aqueous Hg and MeHg by bird feathers are 0.9 × 104–112.13 × 104 (mean value is 20.47 × 104) and 0.47 × 104–70.4 × 104 (mean value is 9.52 × 104), respectively. Although the whole Hg level in Caohai bird feathers is not too high, the Hg content in some carnivorous birds exceeds over or approaches the abnormal threshold when birds are breeding (5 μg/g), which indicates that the birds in Caohai wetland are faced with some risks of ecological Hg pollution.  相似文献   

14.
为研究不同土壤类型中有机氯农药的残留特征、降解程度和来源途径,采集了山东烟台9个不同地质单元苹果园根系土壤和剖面土壤样品,用电子捕获检测器气相色谱法测定其中的滴滴涕(DDTs)和六六六(HCHs)。结果表明,研究区所有类型根系土壤中DDTs和HCHs均未超出《土壤环境质量标准》的二级土壤限值(500 ng/g);土壤中DDTs的残留量及检出率均高于HCHs,DDTs检出率为100%,平均残留量为71.7ng/g,而HCHs的检出率为19.70%,平均残留量为7.9 ng/g;根系土壤中DDTs各异构体平均浓度依次为p,p’-DDT>p,p’-DDE>o,p’-DDT>p,p’-DDD,而HCHs大部分以α-HCH形式存在,部分以β-HCH、γ-HCH存在。不同类型土壤中有机氯农药残留分布特征明显不同:DDTs在棕壤土(臧家庄)中最高(145.5 ng/g),在中粗粒砂土(武宁)中最低(24.1 ng/g);而HCHs在细砂质壤土(蛇窝泊)中最高(27.9ng/g)。各剖面土壤DDTs均在<20 cm层位中残留最高。DDTs和HCHs来源解析表明:研究区土壤为好氧条件;麻砂棕壤(官道和桃村)、黏细壤土(牟平)、细砂质壤土(蛇窝泊)和棕壤土(臧家庄)近年来仍有新的DDTs输入;大部分根系土壤均未发现HCHs新来源,但麻砂棕壤(桃村)在HCHs禁用后可能仍存在林丹的使用。  相似文献   

15.
Concentrations of total Hg (T-Hg) were measured in mine waste, stream water, soil and moss samples collected from the Tongren area, Guizhou, China to identify potential Hg contamination to local environments, which has resulted from artisanal Hg mining. Mine waste contained high T-Hg concentrations, ranging from 1.8 to 900 mg/kg. High concentrations of Hg were also found in the leachates of mine waste, confirming that mine waste contains significant water-soluble Hg compounds. Total Hg distribution patterns in soil profiles showed that top soil is contaminated with Hg, which has been derived from atmospheric deposition. Data suggest that organic matter plays an important role in the binding and transport of Hg in soil. Elevated T-Hg concentrations (5.9–44 mg/kg) in moss samples suggest that atmospheric deposition is the dominant source of Hg to local terrestrial ecosystems. Concentrations of T-Hg were highly elevated in stream water samples, varying from 92 to 2300 ng/L. Particulate Hg in water constituted a large proportion of the T-Hg and played a major role in Hg transport. Methyl–Hg (Me–Hg) concentrations in the water samples was as high as 7.9 ng/L. Data indicate that Hg contamination is dominantly from artisanal Hg mining in the study area, but the extent of Hg contamination is dependent on the mining history and the scale of artisanal Hg mining.  相似文献   

16.
Recent Lake Tanganyika Hg deposition records were derived using 14C and excess 210Pb geochronometers in sediment cores collected from two contrasting depositional environments: the Kalya Platform, located mid-lake and more removed from watershed impacts, and the Nyasanga/Kahama River delta region, located close to the lake’s shoreline north of Kigoma. At the Kalya Platform area, pre-industrial Hg concentrations are 23 ± 0.2 ng/g, increasing to 74 ng/g in modern surface sediment, and the Hg accumulation rate has increased from 1.0 to 7.2 μg/m2/a from pre-industrial to present, which overall represents a 6-fold increase in Hg concentration and accumulation. At the Nyasanga/Kahama delta region, pre-industrial Hg concentrations are 20 ± 3 ng/g, increasing to 46 ng/g in surface sediment. Mercury accumulation rate has increased from 30 to 70 μg/m2/a at this site, representing a 2–3-fold increase in Hg concentration and accumulation. There is a lack of correlation between charcoal abundance and Hg accumulation rate in the sediment cores, demonstrating that local biomass burning has little relationship with the observed Hg concentration or Hg accumulation rates. Examined using a sediment focusing-corrected mass accumulation rate approach, the cores have similar anthropogenic atmospheric Hg deposition profiles, suggesting that after accounting for background sediment concentrations the source of accumulating Hg is predominantly atmospheric in origin. In summary, the data document an increase of Hg flux to the Lake Tanganyika ecosystem that is consistent with increasing watershed sediment delivery with background-level Hg contamination, and regional as well as global increases in atmospheric Hg deposition.  相似文献   

17.
The Idrija mine was the second largest Hg mine in the world surpassed only by the Almaden mine in Spain. It has been estimated that almost 145,000 tons of Hg was produced during operation (1490-1995) of the mine. In the first decade of Hg mining in Idrija the ore was roasted in piles; after that it was roasted for 150 years, until 1652, in earthen vessels at various sites in the woods around Idrija. Pšenk is one out of 21 localities of ancient roasting sites established on the hills surrounding Idrija and one of the largest localities of roasting vessel fragments. The unique way of roasting very rich Hg ore at this site has resulted in soil contamination and considerable amounts of waste material that potentially leach Hg into the surrounding environment. The main aim of this study was to determine the distribution and the forms of Hg in contaminated soils in order to evaluate potential environmental risk. Detailed soil sampling was performed on 37,800 m2 area to establish the extent of Hg pollution and to investigate Hg transformations and transport characteristics through the 400 a-long period. A total of 156 soil (0-15 cm and 15-30 cm) and SOM (soil organic matter) samples were collected from 73 sampling points. Three soil profiles were sampled to determine vertical distribution of Hg. The main Hg phases were determined by the Hg-thermo-desorption technique. The measured Hg contents in soil samples in the study area vary from 5.5 to almost 9000 mg/kg with a median of 200 mg/kg. In SOM, Hg contents range from 1.4 to 4200 mg/kg with a median of 20 mg/kg. Extremely high Hg contents were found in soil profiles where the metal reaches 37,020 mg/kg. In general, Hg concentrations in all three profiles show a gradual decrease with depth with the minimum values between 140 mg/kg and 1080 mg/kg. The Hg-thermo-desorption curves indicate the presence of Hg in the form of cinnabar and that of Hg bound to organic or mineral soil matter. The distribution of Hg species in soil and SOM samples show almost equal distribution of cinnabar and non-cinnabar Hg compounds. The non-cinnabar fraction shows a little increase with depth, but cinnabar represents a high portion of total Hg (about 40%). Large amounts of potentially mobile and transformable non-cinnabar Hg compounds exist at the roasting site, which are potentially bioavailable.  相似文献   

18.
土壤中重金属有效态分析方法研究   总被引:2,自引:0,他引:2  
土壤中重金属的不同形态决定了对于生物的有效性。自然界的重金属元素参与生态迁移能够被生物吸收利用的部分为生物有效态。土壤重金属可交换态的研究可以为其生物有效态研究提供参考。本文对于土壤中砷、汞、铬、镉、铅和铊的酸溶态、络合态和盐溶态这几种单一提取方式的可交换态的分析方法进行了研究比较,以其提取效率高的为有效态的表现方式,以p H值7.5为土壤酸碱度的界限,建立了土壤中的砷、汞、铬、镉、铅和铊在不同酸碱度下的分析方法。本方法的Cr的方法检出限为4.65ng/g;Cd的方法检出限为0.49ng/g;Pb的方法检出限为9.73ng/g;As的方法检出限为21.89ng/g;Hg的方法检出限为0.30ng/g;Tl的方法检出限为0.54ng/g。采用GBW7412,GBW7413,GBW7416这三个国家一级标准物质样品测得的方法精密度范围6.01%~19.3%。本方法适用于土地质量评估的要求。  相似文献   

19.
Volume diffusion rates for five rare earth elements (La, Ce, Nd, Dy, and Yb) have been measured in single crystals of natural diopside at pressures of 0.1 MPa to 2.5 GPa and temperatures of 1,050 to1,450 °C. Polished, pre-annealed crystals were coated with a thin film of rare earth element oxides, then held at constant temperature and pressure for times ranging from 20 to 882 h. Diffusion profiles in quenched samples were measured by SIMS (secondary ion mass spectrometry) depth profiling. At 1 atm pressure, with the oxygen fugacity controlled near the quartz-fayalite-magnetite buffer, the following Arrhenius relations were obtained for diffusion normal to (001) (diffusion coefficient D in m2/s): log10DYb=(-4.64ǂ.42)-(411ᆠ kJ/mol/2.303RT); log10DDy=(-3.31ǃ.44)-(461ᆽ kJ/mol/2.303RT); log10DNd=(-2.95DŽ.64)-(496ᇡ kJ/mol/2.303RT); log10DCe=(-4.10ǃ.08)-(463ᆳ kJ/mol/2.303RT); log10DLu=(-4.22DŽ.66)-(466ᇢ kJ/mol/2.303RT). Diffusion rates decrease significantly with increasing ionic radius, with La a factor of ~35 slower than Yb. The relationship between diffusivity and ionic radius is consistent with a model in which elastic strain plays a critical role in governing the motion of an ion through the crystal lattice. Activation volumes for Yb and Ce diffusion, at constant temperature and oxygen fugacity, are 9.0DŽ.0 cm3/mol and 8.9Dž.2 cm3/mol, respectively, corresponding to an order of magnitude decrease in diffusivity as pressure is increased from 0 to 3 GPa at 1,200 °C. Diffusion of Nd is such that grain-scale isotopic equilibrium in the mantle can be achieved in ~1 My under conditions near the peridotite solidus (~1,450 °C at 2.5 GPa). The equilibration time is much longer under P, T conditions of the lithospheric mantle or at the eclogite solidus (~1 Gy at 1.5 GPa and 1,150 °C). Because of the relatively strong decrease in diffusivity with pressure (two orders of magnitude between 2.5 and 15 GPa along an adiabatic temperature gradient), Nd transport in clinopyroxene will be effectively frozen at pressures approaching the transition zone, on time scales less than 100 My. Rare earth element diffusion rates are slow enough that significant disequilibrium uptake of REE by growing clinopyroxene phenocrysts may be preserved under natural conditions of basalt crystallization. The relative abundances and spatial distributions of REE in such crystals may provide a sensitive record of the cooling and crystallization history of the host lava.  相似文献   

20.
Concentrations of total Hg in sediments near six drilling sites in the Gulf of Mexico were elevated well above average background values of 40–80 ng/g. The excess Hg was associated with barite from discharged drilling mud. In contrast with total Hg, concentrations of methylmercury (MeHg) in these sediments did not vary significantly at nearfield (<100 m) versus farfield (>3 km) distances from the drilling sites. Observed variability in concentrations of MeHg were related to local differences in redox state in the top 10 cm of sediment. Low to non-detectable concentrations of MeHg were found in nearfield sediments that were anoxic, highly reducing and contained abundant H2S. At most drilling sites, nearfield samples with high concentrations of total Hg (>200 ng/g) had similar or lower amounts of MeHg than found at background (farfield) stations. Higher values of MeHg were found in a few nearfield sediments at one site where concentrations of TOC were higher and where sediments were anoxic and moderately reducing. Overall, results from this study support the conclusion that elevated concentrations of MeHg in sediments around drilling sites are not a common phenomenon in the Gulf of Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号