首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The X-ray properties of a sample of 11 high-redshift  (0.6 < z < 1.0)  clusters observed with Chandra and/or XMM–Newton are used to investigate the evolution of the cluster scaling relations. The observed evolution in the normalization of the   L – T , M – T , M g– T   and M – L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the Universe at their redshift of observation. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L – T relation is consistent with the high- z clusters having virialized at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material.
The slope of the L – T relation at high redshift  ( B = 3.32 ± 0.37)  is consistent with the local relation, and significantly steeper than the self-similar prediction of   B = 2  . This suggests that the same non-gravitational processes are responsible for steepening the local and high- z relations, possibly occurring universally at   z ≳ 1  or in the early stages of the cluster formation, prior to their observation.
The properties of the intracluster medium at high redshift are found to be similar to those in the local Universe. The mean surface-brightness profile slope for the sample is  β= 0.66 ± 0.05  , the mean gas mass fractions within   R 2500( z )  and   R 200( z )  are  0.069 ± 0.012  and  0.11 ± 0.02  , respectively, and the mean metallicity of the sample is  0.28 ± 0.11 Z  .  相似文献   

2.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

3.
We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to  7 × 109 M  . Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2–5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5–1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1–0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since   z = 1  , 27 per cent of central galaxies (above  3 × 1010 M  ) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain 'central' objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering.  相似文献   

4.
Hubble Space Telescope images of a sample of 285 galaxies with measured redshifts from the Canada–France Redshift Survey (CFRS) and Autofib–Low Dispersion Spectrograph Survey (LDSS) redshift surveys are analysed to derive the evolution of the merger fraction out to redshifts z ∼1. We have performed visual and machine-based merger identifications, as well as counts of bright pairs of galaxies with magnitude differences δm ≤1.5 mag. We find that the pair fraction increases with redshift, with up to ∼20 per cent of the galaxies being in physical pairs at z ∼0.75–1. We derive a merger fraction varying with redshift as ∝(1+ z )3.2±0.6, after correction for line-of-sight contamination, in excellent agreement with the merger fraction derived from the visual classification of mergers for which m =3.4±0.6. After correcting for seeing effects on the ground-based selection of survey galaxies, we conclude that the pair fraction evolves as ∝(1+ z )2.7±0.6. This implies that an average L * galaxy will have undergone 0.8–1.8 merger events from z =1 to z =0, with 0.5 to 1.2 merger events occuring in a 2-Gyr time-span at around z ∼0.9. This result is consistent with predictions from semi-analytical models of galaxy formation. From the simple coaddition of the observed luminosities of the galaxies in pairs, physical mergers are computed to lead to a brightening of 0.5 mag for each pair on average, and a boost in star formation rate of a factor of 2, as derived from the average [O  ii ] equivalent widths. Mergers of galaxies are therefore contributing significantly to the evolution of both the luminosity function and luminosity density of the Universe out to z ∼1.  相似文献   

5.
We present a measurement of the cluster X-ray luminosity–temperature ( L – T ) relation out to high redshift ( z ∼0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fitted in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high-redshift L – T relation not previously sampled, are compared with existing measurements at low redshift in order to constrain the evolution of the L – T relation. We find the best fit to low-redshift ( z <0.2) cluster data, at T >1 keV, to be L ∝ T 3.15±0.06. Our data are consistent with no evolution in the normalization of the L – T relation up to z ∼0.8. Combining our results with ASCA measurements taken from the literature, we find η =0.19±0.38 (for Ω0=1, with 1 σ errors) where L Bol∝(1+ z ) η T 3.15, or η =0.60±0.38 for Ω0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.  相似文献   

6.
We investigate the effect of dust on the scaling properties of galaxy clusters based on hydrodynamic N -body simulations of structure formation. We have simulated five dust models plus radiative cooling and adiabatic models using the same initial conditions for all runs. The numerical implementation of dust was based on the analytical computations of Montier & Giard. We set up dust simulations to cover different combinations of dust parameters that make evident the effects of size and abundance of dust grains. Comparing our radiative plus dust cooling runs with a purely radiative cooling simulation, we find that dust has an impact on cluster scaling relations. It mainly affects the normalization of the scalings (and their evolution), whereas it introduces no significant differences in their slopes. The strength of the effect critically depends on the dust abundance and grain size parameters as well as on the cluster scaling. Indeed, cooling due to dust is effective in the cluster regime and has a stronger effect on the 'baryon driven' statistical properties of clusters such as   L X– M , Y – M , S – M   scaling relations. Major differences, relative to the radiative cooling model, are as high as 25 per cent for the   L X– M   normalization, and about 10 per cent for the Y – M and S – M normalizations at redshift zero. On the other hand, we find that dust has almost no impact on the 'dark matter driven'   T mw– M   scaling relation. The effects are found to be dependent in equal parts on both dust abundances and grain size distributions for the scalings investigated in this paper. Higher dust abundances and smaller grain sizes cause larger departures from the radiative cooling (i.e. with no dust) model.  相似文献   

7.
We have used recent X-ray and optical data in order to impose some constraints on the cosmology and cluster scaling relations.
Generically, two kinds of hypotheses define our model. First, we consider that the cluster population is well described by the standard Press–Schechter (PS) formalism, and secondly, these clusters are assumed to follow scaling relations with mass: temperature–mass ( T – M ) and X-ray luminosity–mass ( L x– M ) .
In contrast with many other authors we do not assume specific scaling relations to model cluster properties such as the usual T – M virial relation or an observational relation or an observational determination of the L x– T relation. Instead we consider general unconstrained parameter scaling relations.
With the previous model (PS plus scalings) we fit our free parameters to several X-ray and optical data sets with the advantage over preceding works that we consider all the data sets at the same time. This prevents us from being inconsistent with some of the available observations. Among other interesting conclusions, we find that only low-density universes are compatible with all the data considered and that the degeneracy between Ωm and σ 8 is broken. Also we obtain interesting limits on the parameters characterizing the scaling relations.  相似文献   

8.
We present the observed relation between Δ T SZ, the cosmic microwave background (CMB) temperature decrement due to the Sunyaev–Zeldovich (SZ) effect, and L , the X-ray luminosity of galaxy clusters. We discuss this relation in terms of the cluster properties, and show that the slope of the observed Δ T SZ– L relation is in agreement with both the L – T e relation based on numerical simulations and X-ray emission observations, and the M gas– L relation based on observation. The slope of the Δ T SZ– L relation is also consistent with the M tot– L relation, where M tot is the cluster total mass based on gravitational lensing observations. This agreement may be taken to imply a constant gas mass fraction within galaxy clusters, however, there are large uncertainties, dominated by observational errors, associated with these relations. Using the Δ T SZ– L relation and the cluster X-ray luminosity function, we evaluate the local cluster contribution to arcmin-scale cosmic microwave background anisotropies. The Compton distortion y -parameter produced by galaxy clusters through the SZ effect is roughly two orders of magnitude lower than the current upper limit based on FIRAS observations.  相似文献   

9.
We report the spectroscopic confirmation of four further white dwarf members of Praesepe. This brings the total number of confirmed white dwarf members to 11, making this the second largest collection of these objects in an open cluster identified to date. This number is consistent with the high-mass end of the initial mass function of Praesepe being Salpeter in form. Furthermore, it suggests that the bulk of Praesepe white dwarfs did not gain a substantial recoil kick velocity from possible asymmetries in their loss of mass during the asymptotic giant branch phase of evolution. By comparing our estimates of the effective temperatures and the surface gravities of WD0833+194, WD0840+190, WD0840+205 and WD0843+184 to modern theoretical evolutionary tracks, we have derived their masses to be in the range  0.72–0.76 M  and their cooling ages ∼300 Myr. For an assumed cluster age of 625 ± 50 Myr, the inferred progenitor masses are between 3.3 and  3.5 M  . Examining these new data in the context of the initial mass–final mass relation, we find that it can be adequately represented by a linear function  ( a 0= 0.289 ± 0.051,  a 1= 0.133 ± 0.015)  over the initial mass range 2.7–6  M  . Assuming an extrapolation of this relation to larger initial masses is valid and adopting a maximum white dwarf mass of  1.3 M  , our results support a minimum mass for core-collapse supernovae progenitors in the range  ∼6.8–8.6 M  .  相似文献   

10.
The group of galaxies RXJ1340.6+4018 has approximately the same bolometric X-ray luminosity as other bright galaxy groups and poor clusters such as the Virgo cluster. However, 70 per cent of the optical luminosity of the group comes from a dominant giant elliptical galaxy, compared with 5 per cent from M87 in Virgo.The second brightest galaxy in RXJ1340.6+4018 is a factor of 10 fainter (Δ m 12=2.5 mag) than the dominant elliptical, and the galaxy luminosity function has a gap at about L *.
We interpret the properties of the system as a result of galaxy merging within a galaxy group. We find that the central galaxy lies on the Fundamental Plane of ellipticals, has an undisturbed, non-cD morphology, and has no spectral features indicative of recent star formation, suggesting that the last major merger occurred ≳4 Gyr ago. The deviation of the system from the cluster L X− T relation in the opposite sense to most groups may be caused by an early epoch of formation of the group or a strong cooling flow.
The unusual elongation of the X-ray isophotes and the similarity between the X-ray and optical ellipticities at large radii (∼230 kpc) suggest that both the X-ray gas and the outermost stars of the dominant galaxy are responding to an elongated dark matter distribution. RXJ1340.6+4018 may be part of a filamentary structure related to infall in the outskirts of the cluster A1774.  相似文献   

11.
We present new K - and L '-band imaging observations for members of the young (3–5 Myr) σ Orionis cluster, obtained at the United Kingdom Infrared Telescope (UKIRT) with the UKIRT 1–5 micron Imager Spectrometer (UIST). We determine ( K − L ') colour excesses with respect to the photospheres, finding evidence for warm circumstellar dust around 27 out of 83 cluster members that have masses between 0.04 and  1.0 M  . This indicates a circumstellar disc frequency of at least (33 ± 6) per cent for this cluster, consistent with previous determinations from smaller samples and also consistent with the 3-Myr disc half-life suggested by Haisch et al. There is marginal evidence that the disc frequency declines towards lower masses, but the data are also consistent with no mass dependence at all. There is no evidence for spatial segregation of objects with and without circumstellar discs.  相似文献   

12.
We present XMM–Newton observations of three optically selected   z > 0.6  clusters from the European Southern Observatory (ESO) Distant Cluster Survey (EDisCS), comprising the first results of a planned X-ray survey of the full EDisCS high-redshift sample. The EDisCS clusters were identified in the Las Campanas Distant Cluster Survey as surface brightness fluctuations in the optical sky and their masses and galaxy populations are well described by extensive photometric and spectroscopic observations. We detect two of the three clusters in the X-ray and place a firm upper limit on diffuse emission in the third cluster field. We are able to constrain the X-ray luminosity and temperature of the detected clusters and estimate their masses. We find that the X-ray properties of the detected EDisCS clusters are similar to those of X-ray-selected clusters of comparable mass and – unlike other high-redshift, optically selected clusters – are consistent with the T –σ and   L X–σ  relations determined from X-ray-selected clusters at low redshift. The X-ray determined mass estimates are generally consistent with those derived from weak-lensing and spectroscopic analyses. These preliminary results suggest that the novel method of optical selection used to construct the EDisCS catalogue may, like selection by X-ray luminosity, be well suited for identification of relaxed, high-redshift clusters whose intracluster medium is in place and stable by   z ∼ 0.8  .  相似文献   

13.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

14.
We present an analysis of BeppoSAX observations of three clusters of galaxies that are amongst the most luminous in the Universe: RXJ1347−1145, Zwicky 3146 and Abell 2390. Using data from both the Low Energy (LECS) and Medium Energy (MECS) Concentrator Spectrometers, and a joint analysis with the Phoswich Detection System (PDS) data above 10 keV, we constrain, with a relative uncertainty of between 7 and 42 per cent (90 per cent confidence level), the mean gas temperature in the three clusters. These measurements are checked against any possible non-thermal contribution to the plasma emission and are shown to be robust.
We confirm that RXJ1347−1145 has a gas temperature that lies in the range between 13.2 and 22.3 keV at the 90 per cent confidence level, and is larger than 12.1 keV at 3 σ level. The existence of such a hot galaxy cluster at redshift of about 0.45 implies an upper limit on the mean mass density in the Universe, Ωm, of 0.5.
Combining the BeppoSAX estimates for gas temperature and luminosity of the three clusters presented in this work with ASCA measurements available in the literature, we obtain a slope of 2.7 in the L – T relation once the physical properties are corrected from the contamination from the central cooling flows.  相似文献   

15.
The colour–magnitude relation (CMR) of cluster elliptical galaxies has been widely used to constrain their star formation histories (SFHs) and to discriminate between the monolithic collapse and merger paradigms of elliptical galaxy formation. We use a Λ cold dark matter hierarchical merger model of galaxy formation to investigate the existence and redshift evolution of the elliptical galaxy CMR in the merger paradigm. We show that the SFH of cluster ellipticals predicted by the model is quasi-monolithic , with only ∼10 per cent of the total stellar mass forming after   z ∼ 1  . The quasi-monolithic SFH results in a predicted CMR that agrees well with its observed counterpart in the redshift range  0 < z < 1.27  . We use our analysis to argue that the elliptical-only CMR can be used to constrain the SFHs of present-day cluster ellipticals only if we believe a priori in the monolithic collapse model. It is not a meaningful tool for constraining the SFH in the merger paradigm, since a progressively larger fraction of the progenitor set of present-day cluster ellipticals is contained in late-type star-forming systems at higher redshift, which cannot be ignored when deriving the SFHs. Hence, the elliptical-only CMR is not a useful discriminant between the two competing theories of elliptical galaxy evolution.  相似文献   

16.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

17.
We present velocity dispersion measurements for 69 faint early-type galaxies in the core of the Coma cluster, spanning  −22.0 ≲ MR ≲−17.5 mag  . We examine the   L –σ  relation for our sample and compare it to that of bright elliptical galaxies (Es) from the literature. The distribution of the the faint early-type galaxies in the   L –σ  plane follows the relation   L ∝σ2.01±0.36  , which is significantly shallower from   L ∝σ4  as defined for the bright Es. While increased rotational support for fainter early-type galaxies could account for some of the difference in slope, we show that it cannot explain it. We also investigate the colour–σ relation for our Coma galaxies. Using the scatter in this relation, we constrain the range of galaxy ages as a function of their formation epoch for different formation scenarios. Assuming a strong coordination in the formation epoch of faint early-type systems in Coma, we find that most had to be formed at least 6 Gyr ago and over a short 1-Gyr period.  相似文献   

18.
We present the K -band Hubble diagrams ( K – z relations) of submillimetre-selected galaxies and hyperluminous galaxies (HLIRGs). We report the discovery of a remarkably tight K – z relation of HLIRGs, indistinguishable from that of the most luminous radio galaxies. Like radio galaxies, the HLIRG K – z relation at   z ≲ 3  is consistent with a passively evolving ∼3 L * instantaneous starburst starting from a redshift of   z ∼ 10  . In contrast, many submillimetre-selected galaxies are ≳2 mag fainter, and the population has a much larger dispersion. We argue that dust obscuration and/or a larger mass range may be responsible for this scatter. The galaxies so far proved to be hyperluminous may have been biased towards higher AGN bolometric contributions than submillimetre-selected galaxies due to the 60-μm selection of some, so the location on the K – z relation may be related to the presence of the most massive active galactic nucleus. Alternatively, a particular host galaxy mass range may be responsible for both extreme star formation and the most massive active nuclei.  相似文献   

19.
A detailed dynamical analysis of the nearby rich Norma cluster (ACO 3627) is presented. From radial velocities of 296 cluster members, we find a mean velocity of 4871 ± 54 km s−1 and a velocity dispersion of 925 km s−1. The mean velocity of the E/S0 population (4979 ± 85 km s−1) is offset with respect to that of the S/Irr population (4812 ± 70 km s−1) by  Δ v = 164 km s−1  in the cluster rest frame. This offset increases towards the core of the cluster. The E/S0 population is free of any detectable substructure and appears relaxed. Its shape is clearly elongated with a position angle that is aligned along the dominant large-scale structures in this region, the so-called Norma wall. The central cD galaxy has a very large peculiar velocity of 561 km s−1 which is most probably related to an ongoing merger at the core of the cluster. The spiral/irregular galaxies reveal a large amount of substructure; two dynamically distinct subgroups within the overall spiral population have been identified, located along the Norma wall elongation. The dynamical mass of the Norma cluster within its Abell radius is  1–1.1 × 1015  h −173 M  . One of the cluster members, the spiral galaxy WKK 6176 which recently was observed to have a 70 kpc X-ray tail, reveals numerous striking low-brightness filaments pointing away from the cluster centre suggesting strong interaction with the intracluster medium.  相似文献   

20.
We present spatially resolved X-ray spectroscopy of the luminous lensing cluster Abell 2390, using observations made with the Chandra observatory. The temperature of the X-ray gas rises with increasing radius within the central ∼ 200 kpc of the cluster, and then remains approximately isothermal, with kT =11.5−1.6+1.5 keV , out to the limits of the observations at r ∼1.0 Mpc . The total mass profile determined from the Chandra data has a form in good agreement with the predictions from numerical simulations. Using the parametrization of Navarro, Frenk and White, we measure a scale radius r s∼0.8 Mpc and a concentration parameter c ∼3 . The best-fitting X-ray mass model is in good agreement with independent gravitational lensing results and optical measurements of the galaxy velocity dispersion in the cluster. The X-ray gas to total mass ratio rises with increasing radius with f gas∼21 per cent at r =0.9 Mpc . The azimuthally averaged 0.3–7.0 keV surface brightness profile exhibits a small core radius and a clear 'break' at r ∼500 kpc , where the slope changes from S X   r −1.5 to S X   r −3.6 . The data for the central region of the cluster indicate the presence of a cooling flow with a mass deposition rate of 200–300 M yr−1 and an effective age of 2–3 Gyr .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号