首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
挡土墙主动土压力的库仑统一解   总被引:6,自引:1,他引:5  
彭明祥 《岩土力学》2009,30(2):379-386
基于极限平衡理论,视墙后填土为服从Mohr-Coulomb屈服准则的理想弹塑性材料,指出库仑土压力理论存在的一些缺陷,明确提出极限土压力是由墙后塑性土体产生,并假定塑性区的一族滑移线为直线,即平面滑裂面,建立了更为完善的滑楔分析模型,求解了在一般情况下考虑黏性土作用的挡土墙主动土压力、滑裂面土反力以及它们的分布,而经典库仑和朗肯主动土压力为其特例。  相似文献   

2.
《岩土力学》2017,(8):2182-2188
土体滑裂面形状对挡土墙主动土压力有重要影响。以无黏性填土挡墙为研究对象,假设在考虑土拱效应时,极限状态下墙后土体的滑裂面为曲线,基于水平微分单元法推导出平动模式下挡土墙主动土压力的分布。首先将计算与模型试验结果及已有理论研究成果进行对比分析,验证了方法的可靠性;其次,研究土体内摩擦角和墙-土摩擦角对主动土压力分布、合力大小和作用点高度的影响。结果表明:基于曲线滑裂面假设得到的滑动楔体范围略大于采用直线滑裂面的假设;对于不同高度的挡土墙,建议的计算结果与模型试验结果更为符合;对于不同的土体内摩擦角和墙-土摩擦角,土压力的分布形式和合力作用点与Paik解较为接近,但合力略大于Paik解。  相似文献   

3.
非极限主动土压力计算方法初探   总被引:5,自引:2,他引:3  
卢坤林  杨扬 《岩土力学》2010,31(2):615-619
针对未达到极限位移的刚性挡土墙,提出了一种简单可行的主动土压力计算方法。根据反映墙后主动区土体应力-应变性状的卸荷应力路径试验确定的应力-应变关系,建立非极限状态摩擦角与墙体位移的关系。对于未达到极限位移的挡土墙,结合已取得的位移与摩擦角之间的关系,采用与滑裂面相平行的微条对墙后滑动楔体进行划分,对微条进行受力分析,建立平衡方程,推导了滑裂面的倾角,从而得到非极限主动土压力计算公式。随后与一例模型试验数据作了对比分析,计算值与实测值基本吻合,仅在墙下部1/3墙高范围内存在一定的差距。研究表明,所提出的计算方法能够用于计算处于非极限状态下挡土墙的土压力,具有一定的理论意义和工程参考价值。  相似文献   

4.
基于土拱效应原理求解挡土墙被动土压力   总被引:1,自引:0,他引:1  
侯键  夏唐代  孔祥冰  孙苗苗 《岩土力学》2012,33(10):2996-3000
对平移模式下的刚性挡土墙和滑裂面间的楔形土体处于被动极限平衡状态的应力进行分析,考虑墙面和滑裂面之间土体水平力平衡,运用土拱效应原理推导出被动土压力系数和滑裂面水平倾角。并根据水平单元土体的静力平衡条件建立平衡方程,提出被动土压力分布、土压力合力及其作用位置的公式。将公式计算结果与试验结果以及库仑、朗肯理论所得结果进行比较,结果表明,与试验结果接近,验证了所得计算方法的合理性。  相似文献   

5.
章瑞文  徐日庆  郭印 《岩土力学》2006,27(Z2):119-124
对挡土墙背离填土绕墙脚转动时墙后滑裂土体的应力状态进行了详细分析,建立了墙后滑裂体水平土层墙面反力、滑裂面反力、土层间剪力和土层竖向土压力强度之间的关系式。为了考虑挡土墙绕墙脚转动时墙脚局部土体并未达到极限状态,对墙面摩擦角、滑裂面土体的内摩擦角予以折减。在水平土层单元法的基础上,考虑水平土层间剪力作用、每一土层的墙面摩擦角和滑裂面水平倾角等的变化,建立了土层竖向土压力强度的逐层渐近的计算方法,并给出了挡土墙主动土压力强度、土压力合力及其作用位置的计算公式。经比较表明:挡土墙主动土压力分布曲线与试验结果基本一致,计算得的主动土压力系数与试验结果很接近,比库仑解大;计算得出的滑裂面为一曲面,其顶部开裂宽度比库仑滑裂面小,与工程实际相符。  相似文献   

6.
李超  卫龙武 《岩土力学》2008,29(11):3165-3169
针对基坑支护结构的工作特点和土体的具体情况,对朗肯土压理论的合理性和局限性进行了有益探讨,指出朗肯土压理论在支护结构土压力计算上的不足。在支护结构墙后土体化分为3个分区的基础上,以土体达到朗肯主动极限平衡状态时为例,得出墙后土体极限水平变位随土层深度呈抛物线形变化的规律。结合工程实际情况,提出了在小变位条件下考虑墙体位移、开挖深度和嵌固深度影响的朗肯主动土压力计算公式。  相似文献   

7.
目前土压力研究大都以极限状态下的土体为研究对象,且假定土体处于饱和或干燥状态,未考虑墙体位移与土体非饱和特性对土压力的影响,在实际工程的应用中有局限性。鉴于此,开展主动平动模式下墙后不同含水量砂土的刚性挡墙土压力室内模型试验,并采用渗压计和土压力盒分别量测不同深度处土中的基质吸力和土压力,以及利用DIC图像关联技术观察不同挡墙位移时的土体位移情况。试验结果表明,当墙后土体处于非极限状态时,土体破坏面始终通过墙踵,且其形态接近于平面;其次,在此基础上,结合非极限状态下墙土摩擦强度发挥特性和非饱和土强度准则,提出位移相关的非饱和土强度模型,并建立非极限状态下非饱和土主动土压力计算模型,以及与室内试验结果对比验证了该模型的合理性;最后,针对提出的计算方法探讨了墙体位移和土体基质吸力对主动土压力的影响。参数分析结果表明,非饱和土主动土压力随挡墙位移量的增大而逐渐减小,而随着基质吸力的增大呈现先减小再增加的趋势,且存在一极小土压力值,朗肯土压力值和Fredlund扩展朗肯土压力值分别为该模型在饱和与非饱和情况下位移达到极限状态时的特殊值。  相似文献   

8.
狭窄基坑平动模式刚性挡墙被动土压力分析   总被引:2,自引:0,他引:2  
应宏伟  郑贝贝  谢新宇 《岩土力学》2011,32(12):3755-3762
对于地铁车站、地下管道沟槽等狭窄基坑,其被动区土体宽度有限,不满足半无限体的假定,采用经典的库仑、朗肯土压力理论计算挡墙被动土压力是不合适的。首先建立了无黏性土中狭窄基坑刚性挡墙的有限元分析模型,研究了挡墙相对平移时不同宽度土体的被动滑裂面的分布规律;借鉴库仑平面土楔假定,建立了狭窄基坑刚性平动挡墙被动土压力的理论计算模型,推导了被动极限状态下滑裂面倾角及被动土压力系数的解析公式;再采用水平薄层单元法,得到了被动土压力分布、土压力合力作用点高度的理论公式。结合算例,深入研究了这种工程背景下挡墙被动滑裂面倾角的影响因素,以及被动土压力合力、土压力分布及合力作用点位置与经典库仑土压力理论的差别,与数值计算结果的对比验证了该理论方法的合理性。研究发现,当被动区土体宽度小于满足半无限体的临界值、且墙土摩擦角大于0时,被动滑裂面倾角大于传统库仑被动滑裂面倾角,被动土压力大于经典库仑解,合力作用点高度则小于库仑解,且基坑越窄,墙土摩擦角越大,其差别越大。  相似文献   

9.
作用于挡土墙侧土压力的计算一直沿用经典的土压力理论,其土压力分布沿墙高呈直线分布,但实践证明它们与实际情况不符。在已有研究成果的基础上,为提高计算精度,假定挡土墙后土体潜在滑裂面为由对数螺线面和平面组合而成,根据挡土墙后土体薄层单元的极限平衡条件推导出土压力的计算公式。由于土压力计算值与滑裂面的位置有关,为寻找潜在最危险滑裂面,在简单遗传算法中引入复合形搜索法得到一种高效的复合形遗传算法,并将其用于墙后填土潜在最危险滑裂面搜索和相应主动土压力计算。最后,对室内模型挡墙和现场实际挡墙后填土土压力进行了分析计算,计算值与实测值吻合很好,这表明该方法不仅可行,而且可靠。  相似文献   

10.
挡土墙后三维被动滑裂面的空间形态难以确定。基于数值模拟,取墙-土接触面摩擦角比值δ/?=0(δ为墙-土接触面摩擦角,?为土体内摩擦角),采用薄板光顺样条函数搜索出不同土体内摩擦角下挡土墙端部三维滑裂面,类比地基承载力破坏对不同土体内摩擦角下挡土墙端部三维滑裂面进行函数方程的拟合,拟合效果较好,并归纳总结挡土墙端部三维滑裂面方程。在刚性挡土墙平移模式、墙背直立、填土水平且为无黏性土、δ/?=0等条件下,基于挡土墙端部三维滑裂面方程,求出三维滑裂面的体积。通过力学分析推导了一种三维被动土压力计算方法,并对该方法进行了验证分析。分析结果表明:相较于Soubra被动土压力系数,计算方法得出的三维土压力系数更加接近数值模拟被动土压力系数。三维计算被动土压力系数和朗肯被动土压力系数在挡土墙长深比小于4的时候有明显的差异。随着挡土墙的长深比的增大和土体内摩擦角的减小,三维计算被动土压力系数趋向朗肯被动土压力系数,三维计算被动土压力合力作用点的位置趋向朗肯被动土压力合力作用点位置。  相似文献   

11.
Coulomb土压力理论的两种解法   总被引:2,自引:0,他引:2  
李兴高  刘维宁 《岩土力学》2006,27(6):981-985
采用极限平衡变分法和Culmann分析方法,对土压力问题进行了研究。在极限平衡变分法中,以滑动体静力平衡的2个力的平衡方程为基础,引入Lagrange乘子,将以变分学观点来描述的主动土压力和被动土压力问题,转化为确定含有2个函数自变量的泛函极值问题。依据泛函取极值时,必须满足Euler方程,得出了主动土压力和被动土压力取极值时墙后土体沿平面滑动破坏的结论。在Culmann分析方法中,沿用了Coulomb土压力理论关于平面滑动破坏的假定,而在推导土压力计算公式的过程中,仅利用了滑动体沿某一特定方向的一个力的平衡方程。与目前通行的Coulomb土压力公式的证明过程相比,Culmann分析方法更为简洁。  相似文献   

12.
经典的Rankine和Coulomb土压力计算理论均建立在土体达到极限平衡状态的基础上,并不适用于位移需要严格控制的基坑工程。以柔性支护的黏性土基坑边坡为研究对象,考虑边坡土拱效应、非极限状态下柔性支护结构与土体间内摩擦角以及黏聚力发挥值、土体内摩擦角以及黏聚力发挥值的影响,从黏性土应力莫尔圆出发,采用微层分析法建立静力平衡,搜索边坡土体潜在滑动面,推导柔性支护黏性土基坑的非极限被动土压力计算式。通过实例计算对比分析了本文计算理论与经典Rankine计算理论,推导公式计算得到的被动土压力小于Rankine计算值19%,合力作用位置低于Rankine计算值,作用位置距桩底距离较Rankine计算值小1.5%,计算得到的潜在滑动面为一水平倾角随深度逐渐减小的曲面,潜在滑动面范围小于Rankine极限状态滑动面。  相似文献   

13.
陈建功  徐晓核  张海权 《岩土力学》2015,36(Z2):310-314
基于库仑土压力理论的假设,主动土压力是由墙后填土在极限平衡状态下出现的滑动体产生,从墙后滑动体整体静力平衡方程出发,推导出坡面起伏且有不均匀超载、倾斜墙背、黏性填土等一般情况下的主动土压力泛函极值的等周模型。在该基础上,引入拉格朗日乘子,将主动土压力问题转化为确定含有两个函数自变量的泛函极值问题。依据泛函取极值时必须满足的欧拉方程,得到了线性的滑面函数和沿滑面线性分布的法向应力函数。结合边界条件和横截条件,主动土压力泛函极值问题进一步转化为单个未知量的一维方程问题。通过算例,土压力计算结果与库仑土压力理论解完全一致,但土压力作用点在墙体的相对位置却并非总是作用在墙高的1/3 处。通过算例进一步表明,坡面的起伏和坡面超载的不均匀性对主动土压力大小和作用点位置有显著的影响。  相似文献   

14.
均布荷载作用下挡土墙后粘性填土的土压力计算   总被引:3,自引:0,他引:3  
基于极限分析下限定理,导出了均布荷载作用下倾斜坡面挡土墙后粘性填土的侧向土压力的解析解,并通过具体数值计算以图表的形式给出了填土摩擦角、无量纲粘结力cγz、无量纲荷载强度qγz及填土表面倾角α等参数不同组合情况下的综合主动和被动土压力系数值,可供工程实践直接采用。在此基础上,就各参数对综合主动和被动土压力系数的影响进行了有意义的探讨  相似文献   

15.
陈建功  周廷强  胡日成 《岩土力学》2016,37(12):3365-3370
从基坑柔性支护结构后的滑动土楔体的整体静力平衡方程出发,推导了考虑作用点位置的主动土压力泛函极值等周模型。在此基础上引入拉格朗日乘子,将主动土压力问题转化为确定含有两个函数自变量的泛函极值问题。对于一般黏性土,依据泛函取极值时必须满足的欧拉方程,得到了对数螺旋线的滑裂面函数和沿滑裂面分布的法向应力函数。结合边界条件和横截条件,主动土压力泛函极值问题进一步转化为以两个拉格朗日常数为未知量的函数优化问题。同时,讨论了滑裂面为平面和圆弧面两种特殊情况。通过算例表明,对于一般土体,在作用点位置系数下限处,主动土压力最小,滑裂面为平面;随着作用点位置的上移,主动土压力呈非线性增长,相应滑裂面为对数螺旋面。对于砂性土,位置系数上限值随内摩擦角的增大而增大,其相应的土压力值也随之增加。对于软黏土,滑裂面为圆弧面,随着作用点位置的上移,主动土压力呈非线性下降,滑裂面背离基坑方向移动。  相似文献   

16.
为探究挡墙前存在斜坡临空面条件下土体破坏与侧土压力特征,采用强度折减法研究了不同临坡距与嵌入深度下的挡墙前侧有限斜坡土体的破坏特征,并用水平层分析法与静力平衡法,推导了一种考虑斜坡坡度、临坡距及临空斜坡内土体层间剪切力的被动土压力理论计算公式。通过与室内试验、数值模型及其他计算理论对比,建议方法同模型试验、数值解及其他理论计算结果基本吻合,证明了建议方法对计算有限斜坡条件下被动土压力的有效性,最后分析了斜坡坡度、临坡距对被动土压力与临空斜坡土层中层间剪力的影响。研究表明:平动模式下的有限斜坡土体破坏面主要沿墙底与斜坡坡脚附近破坏,这与半无限空间条件的破坏特征明显不同;斜坡条件下的被动土压力随深度呈指数增加规律,且随临坡距减小与坡度增大,被动土压力均出现了一定程度的减小,其中临坡距为0时,被动土压力相比半无限空间条件时降低幅度达到30% ~50%;平动模式下的临空斜坡土体中的层间剪切系数为0.07~0.1;当墙背光滑且临坡距足够大时,建议方法可简化为理想条件的朗肯被动土压力公式。  相似文献   

17.
Lin  Yu-jian  Chen  Fu-quan  Lv  Yan-ping 《Acta Geotechnica》2021,16(9):2975-2995

Currently, knowledge of the failure mechanisms of narrow backfills with retaining walls rotating about the top (RT mode) is still lacking which leads to inaccurate estimations of the earth pressure. Numerical simulations using finite element limit analysis find that under the effects of backfill geometries, interface strengths, and soil properties, the upper soil layer supported by soil arching retains its integrity and the lower soil layer is sheared by multiple curved sliding surfaces in the limit state. Based on the failure mechanisms of narrow backfills, a calculation model is established which considers the soil arching effect, curved sliding surface, and cohesive soils. Analytical solutions for the earth pressure of narrow cohesive backfills with retaining walls rotating about the top are derived by using the limit equilibrium horizontal slice method. Compared with previous studies, the present method predicts the earth pressure distribution with higher accuracy. Several extensive parametric studies have also been conducted. Thus, decreasing the aspect ratio of backfills, increasing the inclined angle of natural slopes, interface strengths, and soil cohesion are beneficial for maintaining backfill integrity and reducing earth pressure against retaining walls.

  相似文献   

18.
考虑土拱效应预应力锚拉桩土压力研究   总被引:2,自引:1,他引:1  
李成芳  叶晓明  李有文 《岩土力学》2011,32(6):1683-1689
针对预应力锚拉桩设计中土压力计算模式存在的问题,借鉴工程设计中的点锚和格构锚原理,提出了一种新的计算方法--基于三维土拱效应的土压力计算模式。利用土条极限平衡原理,推导了作用在桩及挡板上的土压力,建立了表征土压力强度的1阶线性微分方程,得到了沿桩身轴线的土压力分布曲线,并从参数 和 的变化对土压力的影响方面,与《重庆市地质灾害防治工程设计规范》[1]和《建筑边坡工程技术规范》[3]的计算结果进行了对比分析,结果表明桩板上所受土压力沿桩板竖向呈锯齿状分布,土压力强度计算值远小于规范计算值; 的变化对土压力有明显影响,工程设计中不应忽略 对减小土压力的贡献;考虑土拱效应更符合工程实际受力特性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号