首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New (garnet Sm–Nd and Lu–Hf) and existing (Rb–Sr, 40Ar/39Ar, U–Pb and Sm–Nd) ages and data on deformational fabrics and mineral compositions show for the first time that the garnet growth and ductile deformation in the Alpine Schist belt and Southern Alps orogen, New Zealand are diachronous and partly Cenozoic in age. The dominant metamorphic isograds in the Alpine Schist formed during crustal thickening at a previously unsuspected time, at c. 86 Ma, immediately prior to the opening of the Tasman Sea at c. 84–82 Ma. Obvious changes in the textures and compositional zoning patterns of garnet are not always reliable indicators of polymetamorphism, and fabric elements can be highly diachronous. A detailed timing history for the growth of a single garnet is recorded by a Sm–Nd garnet–whole rock age of 97.8 ± 8.1 Ma for the inmost garnet core (zone 1), Lu–Hf ages of 86.2 ± 0.2 Ma and 86.3 ± 0.2 Ma for overgrowth zones 2 and 3, a step‐leach Sm–Nd age of 12 ± 37 Ma for zone 4, and growth of the garnet rim (zone 5) over the Alpine Fault mylonite foliation during the modern phase of oblique collision that began at c. 5–6 Ma. Plate convergence along the New Zealand portion of the Gondwana margin continued after c. 105 Ma, almost certainly culminating in the oblique collision of a large oceanic plateau (Hikurangi Plateau). The metamorphism of the Alpine Schist at c. 86 Ma is evidence of that hit. The mid‐ to late‐Cretaceous extension that is widespread elsewhere in the New Zealand region is attributed to upper plate extension and slab roll‐back. The effects of the collision with the Hikurangi Plateau may have contributed to the changing plate motions in the region leading up to the opening of the Tasman Sea at c. 82 Ma.  相似文献   

2.
The Ross orogen of Antarctica is an extensive (>3000 km‐long) belt of deformed and metamorphosed sedimentary rocks and granitoid batholiths, which formed during convergence and subduction of palaeo‐Pacific lithosphere beneath East Gondwana in the Neoproterozoic–early Palaeozoic. Despite its prominent role in Gondwanan convergent tectonics, and a well‐established magmatic record, relatively little is known about the metamorphic rocks in the Ross orogen. A combination of garnet Lu–Hf and monazite U–Pb (measured by laser‐ablation split‐stream ICP‐MS) geochronology reveals a protracted metamorphic history of metapelites and garnet amphibolites from a major segment of the orogen. Additionally, direct dating of a common rock‐forming mineral (garnet) and accessory mineral (monazite) allows us to test assumptions that are commonly used when linking accessory mineral geochronology to rock‐forming mineral reactions. Petrography, mineral zoning, thermobarometry and pseudosection modelling reveal a Barrovian‐style prograde path, reaching temperatures of ~610–680 °C. Despite near‐complete diffusional resetting of garnet major element zoning, the garnet retains strong rare earth element zoning and preserves Lu–Hf dates that range from c. 616–572 Ma. Conversely, monazite in the rocks was extensively recrystallized, with concordant dates that span from c. 610–500 Ma, and retain only vestigial cores. Monazite cores yield dates that overlap with the garnet Lu–Hf dates and typically have low‐Y and heavy rare earth element (HREE) concentrations, corroborating interpretations of low‐Y and low‐HREE monazite domains as records of synchronous garnet growth. However, ratios of REE concentrations in garnet and monazite do not consistently match previously reported partition coefficients for the REE between these two minerals. High‐Y monazite inclusions within pristine, crack‐free garnet yield U–Pb dates significantly younger than the Lu–Hf dates for the same samples, indicating recrystallization of monazite within garnet. The recrystallization of high‐Y and high‐HREE monazite domains over >50 Ma likely records either punctuated thermal pulses or prolonged residence at relatively high temperatures (up to ~610–680 °C) driving monazite recrystallization. One c. 616 Ma garnet Lu–Hf date and several c. 610–600 Ma monazite U–Pb dates are tentatively interpreted as records of the onset of tectonism metamorphism in the Ross orogeny, with a more robust constraint from the other Lu–Hf dates (c. 588–572 Ma) and numerous c. 590–570 Ma monazite U–Pb dates. The data are consistent with a tectonic model that involves shortening and thickening prior to widespread magmatism in the vicinity of the study area. The early tectonic history of the Ross orogen, recorded in metamorphic rocks, was broadly synchronous with Gondwana‐wide collisional Pan‐African orogenies.  相似文献   

3.
The P–T–t path of high‐P metamorphic rocks in subduction zones may reveal valuable information regarding the tectonic processes along convergent plate boundaries. Herein, we present a detailed petrological, pseudosection modelling and radiometric dating study of several amphibole schists of oceanic affinity from the Lhasa Block, Tibet. The amphibole schists experienced an overall clockwise P–T path that was marked by post‐Pmax heating–decompression and subsequent isothermal decompression following the attainment of peak high‐P and low‐T conditions (~490°C and 1.6 GPa). Pseudosection modelling shows that the amphibole schists underwent water‐unsaturated conditions during prograde metamorphism, and the stability field of the assemblage extends to lower temperatures and higher pressures within the water‐unsaturated condition relative to water‐saturated model along the prograde path. The high‐P amphibole schists were highly reduced during retrograde metamorphism. Precise evaluation of the ferric iron conditions determined from the different compositions of epidote inclusions in garnet and matrix epidote is crucial for a true P–T estimate by garnet isopleth thermobarometry. Lu–Hf isotope analyses on garnet size separates from a garnet‐bearing amphibole schist yield four two‐point garnet–whole‐rock isochron ages from 228.2 ± 1.2 Ma to 224.3 ± 1.2 Ma. These Lu–Hf dates are interpreted to constrain the period of garnet growth and approximate the timing of prograde metamorphism because of the low peak metamorphic temperature of the rock and the well‐preserved Mn/Lu growth zoning in garnet. The majority of zircon U–Pb dates provide no constraints on the timing of metamorphism; however, two concordant U–Pb dates of 222.4 ± 3.9 Ma and 223.3 ± 4.2 Ma were obtained from narrow and uncommon metamorphic rims. Coexistence of zircon and sphene in the samples implies that the metamorphic zircon growth was likely assisted by retrogression of rutile to sphene during exhumation. The near coincident radiometric dates of zircon U–Pb and garnet Lu–Hf indicate rapid burial and exhumation of the amphibole schists, suggesting a closure time of c. 224–223 Ma for the fossil ocean basin between the northern and southern Lhasa blocks.  相似文献   

4.
Lower crustal xenoliths erupted from an intraplate diatreme reveal that a portion of the New Zealand Gondwana margin experienced high‐temperature (HT) to ultrahigh‐temperature (UHT) granulite facies metamorphism just after flat slab subduction ceased at c. 110–105 Ma. PT calculations for garnet–orthopyroxene‐bearing felsic granulite xenoliths indicate equilibration at ~815 to 910°C and 0.7 to 0.8 GPa, with garnet‐bearing mafic granulite xenoliths yielding at least 900°C. Supporting evidence for the attainment of HT and UHT conditions in felsic granulite comes from re‐integration of exsolution in feldspar (~900–950°C at 0.8 GPa), Ti‐in‐zircon thermometry on Y‐depleted overgrowths on detrital zircon grains (932°C ± 24°C at aTiO2 = 0.8 ± 0.2), and correlation of observed assemblages and mineral compositions with thermodynamic modelling results (≥850°C at 0.7 to 0.8 GPa). The thin zircon overgrowths, which were mainly targeted by drilling through the cores of grains, yield a U–Pb pooled age of 91.7 ± 2.0 Ma. The cause of Late Cretaceous HT‐UHT metamorphism on the Zealandia Gondwana margin is attributed to collision and partial subduction of the buoyant oceanic Hikurangi Plateau in the Early Cretaceous. The halt of subduction caused the fore‐running shallowly dipping slab to rollback towards the trench position and permitted the upper mantle to rapidly increase the geothermal gradient through the base of the extending (former) accretionary prism. This sequence of events provides a mechanism for achieving regional HT–UHT conditions in the lower crust with little or no sign of this event at the surface.  相似文献   

5.
A regional petrographic reconnaissance of psammitic and pelitic rocks in the Otago Schist, New Zealand, has revealed the presence of garnet (“grossalspite” with typical rim composition almandine41, spessartine25, grossular33, pyrope1) and biotite in 37 new samples, more than doubling the previously known number. A new garnet–biotite–albite zone can now be defined in the greenschist facies Otago Schist that is distinct from the better-known biotite, garnet and oligoclase zones in the along-strike Alpine Schist. The garnet–biotite–albite zone is in part metamorphically discontinuous with adjacent schists and does not support models of simple, continuous, progressive Jurassic regional metamorphism in Otago. The structurally higher (lower grade) boundary of the zone coincides in at least three places with previously mapped regional shear zones. The structurally lower (expected higher grade) boundary of the zone appears to be obliterated by a chlorite zone overprint which can be spatially related to Alpine Schist recrystallisation of ?Cretaceous age. The Otago situation serves as an example of the subtle metamorphic discontinuities that probably pervade many orogenic belts.  相似文献   

6.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

7.
The geochemistry of the metavolcanic rocks from the Granjeno Schist in northeastern Mexico indicates an origin in different tectonic environments: mid‐ocean ridge and ocean island. High ratios of Hf/Th and Th/Nb (4.4–14 and 0.08–0.15), low ratios of LaN/YbN and LaN/SmN (0.74–1.7 and 0.60–1.4) and depleted LREE patterns in metabasalt display mid‐ocean ridge characteristics. In contrast, the pattern of trace‐element ratios and REEs in metabasalt and metapillow lava 60 km to the west indicates a magma source with ocean‐island basalt characteristics. Both areas were metamorphosed during the Late Carboniferous (300 ± 4 Ma). Estimated metamorphic conditions deduced from white mica and chlorite compositions, distinguish greenschist facies (350 °C and 4 kbar) for the mid‐ocean ridge basalt, and prehnite–pumpellyite facies (250 °C and 2.5 kbar) for the ocean‐island‐type basalt. This metamorphism took place at an active continental margin during Pennsylvanian time. Our new tectonic model, which differs from earlier models, suggests that the origin of the Granjeno Schist is related to a subduction zone located at the western margin of Pangaea, active after Laurentia–Gondwana collision. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This study presents Lu–Hf geochronology of zoned garnet in high‐P eclogites from the North Qilian orogenic belt. Selected samples have ~mm‐sized garnet grains that have been sampled with a micro‐drill and analysed for dating. The Lu–Hf dates of bulk garnet separates, micro‐drilled garnet cores and the remnant, rim‐enriched garnet were determined by two‐point isochrons, with cores being consistently older than the bulk‐ and rim‐enriched garnet. The bulk garnet separates of each sample define identical garnet–whole rock isochron date of c. 457 Ma. Consistent U–Pb zircon dates of 455 ± 8 Ma were obtained from the eclogite. The Lu–Hf dates of the drilled cores and rim‐rich separates suggest a minimum garnet growth interval of 468.9 ± 2.4 and 452.1 ± 1.6 Ma. Major and Lu element profiles in the majority of garnet grains show well‐preserved Rayleigh‐style fractionated bell‐shaped Mn and Lu zoning profiles, and increasing Mg from core to rim. Pseudosection modelling indicates that garnet grew along a P–T path from ~470–525°C and ~2.4–2.6 GPa. The exceptional high‐Mn garnet core in one sample indicates an early growth during epidote–blueschist facies metamorphism at <460°C and <0.8 GPa. Therefore, the Lu–Hf dates of drilled cores record the early prograde garnet growth, whereas the Lu–Hf dates of rim‐rich fractions provide a maximum age for the end of garnet growth. The microsampling approach applied in this study can be broadly used in garnet‐bearing rocks, even those without extremely large garnet crystals, in an attempt to retrieve the early metamorphic timing recorded in older garnet cores. Given a proper selection of the drill bit size and a detailed crystal size distribution analysis, the cores of the mm‐sized garnet in most metamorphic rocks can be dated to yield critical constraints on the early timing of metamorphism. This study provides new crucial constraints on the timing of the initial subduction (before c. 469 Ma) and the ultimate closure (earlier than c. 452 Ma) of the fossil Qilian oceanic basin.  相似文献   

9.
Proterozoic mafic dykes from the southwestern Vestfold Block experienced heterogeneous granulite facies metamorphism, characterized by spotted or fractured garnet‐bearing aggregates in garnet‐absent groundmass. The garnet‐absent groundmass typically preserves an ophitic texture composed of lathy plagioclase, intergranular clinopyroxene and Fe–Ti oxides. Garnet‐bearing domains consist mainly of a metamorphic assemblage of garnet, clinopyroxene, orthopyroxene, hornblende, biotite, plagioclase, K‐feldspar, quartz and Fe–Ti oxides. Chemical compositions and textural relationships suggest that these metamorphic minerals reached local equilibrium in the centre of the garnet‐bearing domains. Pseudosection calculations in the model system NCFMASHTO (Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) yield PT estimates of 820–870 °C and 8.4–9.7 kbar. Ion microprobe U–Pb zircon dating reveals that the NW‐ and N‐trending mafic dykes were emplaced at 1764 ± 25 and 1232 ± 12 Ma, respectively, whereas their metamorphic ages cluster between 957 ± 7 and 938 ± 9 Ma. The identification of granulite facies mineral inclusions in metamorphic zircon domains is also consistent with early Neoproterozoic metamorphism. Therefore, the southwestern margin of the Vestfold Block is inferred to have been buried to depths of ~30–35 km beneath the Rayner orogen during the late stage of the late Mesoproterozoic/early Neoproterozoic collision between the Indian craton and east Antarctica (i.e. the Lambert Terrane or the Ruker craton including the Lambert Terrane). The lack of penetrative deformation and intensive fluid–rock interaction in the rigid Vestfold Block prevented the nucleation and growth of garnet and resulted in the heterogeneous granulite facies metamorphism of the mafic dykes.  相似文献   

10.
Tibet consists of several terranes that progressively collided with the southern margin of Asia during the Mesozoic following the closure of intervening ocean basins. This Mesozoic amalgamation history, as well as the extent to which it may have contributed to crustal thickening prior to the Cenozoic Indo‐Asia collision, remains poorly constrained and strongly debated. Here, we present a metamorphic petrological and U‐Pb zircon geochronological study of the Amdo metamorphic complex, one of the few exposures of high‐grade metamorphic rocks in central Tibet, located along the Bangong suture between the Qiangtang terrane to the north and the Lhasa terrane to the south. U‐Pb ages of metamorphic zircon in gneiss constrain the timing of peak metamorphism at c. 178 Ma, prior to the Early Cretaceous collision between the two terranes. Peak P–T conditions of gneiss within the metamorphic complex are constrained by conventional as well as multi‐equilibrium (THERMOCALC v.3.21 and v.3.33) geothermobarometry of two samples of garnet‐amphibolite. Whereas THERMOCALC v.3.21 yields similar results as conventional geothermobarometry, THERMOCALC v. 3.33 yields dramatically lower pressures, mostly due to the change in the amphibole activity model used. Using THERMOCALC v.3.21, the two garnet‐amphibolite samples yield similar P–T conditions of 0.83 ± 0.06 GPa at 646 ± 33 °C and 0.97 ± 0.06 GPa at 704 ± 35 °C. Plagioclase coronas on the garnet‐amphibolite sample with lower peak P–T conditions indicate a period of isothermal decompression. Additional geothermometry on two garnet‐free amphibolites yielded similar temperatures of 700–750 °C and suggests similar P–T conditions across most of the complex. However, two exposures of garnet‐kyanite schist located along the southern edge of the metamorphic complex yielded slightly lower peak conditions of 0.75–0.85 GPa and 550–610 °C. Petrographic and field relations suggest the difference in metamorphic grade between the schist and gneiss is due to an intervening thrust fault. The existence of the thrust fault indicates that at least part of the exhumation of the complex was due to contractional deformation, possibly during the Lhasa‐Qiangtang collision. Our P–T–t results indicate the occurrence of a significant Early Jurassic tectonothermal event along the southern, active margin of the Qiangtang terrane that deeply buried the Amdo rocks. We suggest that the metamorphism is a result of arc‐related tectonism that may have been regionally extensive along the southern Qiangtang terrane; geological records of this tectonism may be rarely exposed along strike because of a lack of exhumation or subsequent depositional and structural burial.  相似文献   

11.
The final assembly of Gondwana, known as the late Pan-African orogeny, is characterized by Ediacaran–early Cambrian ultrahigh temperature (UHT) metamorphism, which is widely identified within reconstructed East Gondwana. This distinctive feature likely provides a reliable criterion for identifying new Gondwanan terranes that lack paleo-geomagnetic data. Here we present zircon U–Pb geochronology and phase equilibria calculations for a variety of granulite types newly recognized from western Qaidam, China, which provide the first evidence that the Qaidam block, at least western Qaidam, experienced high-grade metamorphism in excess of 900 °C before/at 540–520 Ma. These UHT metamorphic rocks, similar to many well-known Pan-African UHT metamorphic terranes, is inferred to evolve along a clockwise PT path that is usually related to collisional orogens. Comparison between new metamorphic zircon U–Pb ages from western Qaidam and the published age data from the UHT metamorphic terranes within East Gondwana suggests that the UHT metamorphic rocks found in western Qaidam similarly records the final assembly of Gondwana. Although the exact paleo-geographical location of the Qaidam block during the Gondwana period is unknown yet because of lacking paleo-geomagnetic data, new Pan-African UHT metamorphic record found in western Qaidam indicates, for the first time, that the Qaidam block is a Gondwanan terrane that split from this semi-supercontinent after the Pan-African orogeny.  相似文献   

12.
High-precision 40Ar/39Ar dating of lamprophyre dike swarms in the Western Province of New Zealand reveals that these dikes were emplaced into continental crust prior to, during and after opening of the Tasman Sea between Australia and New Zealand. Dike ages form distinct clusters concentrated in different areas. The oldest magmatism, 102–100 Ma, is concentrated in the South Westland region that represents the furthest inboard portion of New Zealand in a Gondwana setting. A later pulse of magmatism from ~ 92 Ma to ~ 84 Ma, concentrated in North Westland, ended when the first oceanic crust formed at the inception of opening of the Tasman Sea. Magmatic quiescence followed until ~ 72–68 Ma, when another swarm of dikes was emplaced. The composition of the dikes reveals a dramatic change in primary melt sources while continental extension and lithospheric thinning were ongoing. The 102–100 Ma South Westland dikes represent the last mafic calc-alkaline magmatism associated with a long-lived history of the area as Gondwana's active margin. The 92–84 Ma North and 72–68 Ma Central Westland dike swarms on the other hand have strongly alkaline compositions interpreted as melts from an intraplate source. These dikes represent the oldest Western Province representatives of alkaline magmatism in the greater New Zealand region that peaked in activity during the Cenozoic and has remained active up to the present day. Cretaceous alkaline dikes were emplaced parallel to predicted normal faults associated with dextral shear along the Alpine Fault. Furthermore, they temporally correspond to polyphase Cretaceous metamorphism of the once distal Alpine Schist. Dike emplacement and distal metamorphism could have been linked by a precursor to the Alpine Fault. Dike emplacement in the Western Province coupled to metamorphism of the Alpine Schist at 72–68 Ma indicates a period of possible reactivation of this proto Alpine Fault before it served as a zone of weakness during the opening of the oceanic Emerald Basin (at ~ 45 Ma) and eventually the formation of the present-day plate boundary (~ 25 Ma–recent).  相似文献   

13.
Garnet granulite facies mid‐to lower crust in Fiordland, New Zealand, provides evidence for pulsed intrusion and deformation occurring in the mid‐to lower crust of magmatic arcs. 238U‐206Pb zircon ages constrain emplacement of the ~595 km2 Malaspina Pluton to 116–114 Ma. Nine Sm‐Nd garnet ages (multi‐point garnet‐rock isochrons) ranging from 115.6 ± 2.6 to 110.6 ± 2.0 Ma indicate that garnet granulite facies metamorphism was synchronous or near synchronous throughout the pluton. Hence, partial melting and garnet granulite facies metamorphism lasted <5 Ma and began within 5 Ma of pluton emplacement. Garnet granulite facies L‐S tectonites in the eastern part of the Malaspina Pluton record the onset of extensional strain and arc collapse. An Sm‐Nd garnet age and thermobarometric results for these rocks directly below the amphibolite facies Doubtful Sound shear zone provide the oldest known age for extension in Fiordland at ≥112.8 ± 2.2 Ma at ~920 °C and 14–15 kbar. Narrow high Ca rims in garnet from some of these suprasolidus rocks could reflect a ≤ 1.5 kbar pressure increase, but may be largely a result of temperature decrease based on the Ca content of garnet predicted from pseudosections. At peak metamorphic conditions >900 °C, garnet contained ~4000 ppm Ti; subsequently, rutile inclusions grew during declining temperature with limited pressure change. Garnet granulite metamorphism of the Malaspina Pluton is c. 10 Ma younger than similar metamorphism of the Pembroke Granulite in northern Fiordland; therefore, high‐P metamorphism and partial melting must have been diachronous for this >3000 km² area of mid‐to‐lower crust. Thus, two or more pulses of intrusion shortly followed by garnet granulite metamorphism and extensional strain occurred from north to south along the axis of the lower crustal root of the Cretaceous Gondwana arc.  相似文献   

14.
Garnet is a prototypical mineral in metamorphic rocks because it commonly preserves chemical and textural features that can be used for untangling its metamorphic development. Large garnet porphyroblasts may show extremely complex internal structures as a result of a polycyclic growth history, deformation, and modification of growth structures by intra‐ and intercrystalline diffusion. The complex internal structure of garnet porphyroblasts from garnet–phengite schists (GPS) of the Zermatt area (Western Alps) has been successfully decoded. The centimetre‐sized garnet porphyroblasts are composed of granulite facies garnet fragments overgrown by a younger generation of grossular‐rich eclogite facies garnet. The early granulite facies garnet (G‐Grt) formed from low‐P, high‐T metamorphism during a pre‐Alpine orogenic event. The late garnet (E‐Grt) is typical of high‐pressure, low‐temperature (HPLT) metamorphism and can be related to Alpine subduction of the schists. Thus, the garnet of the GPS are polycyclic (polymetamorphic). G‐Grt formation occurred at ~670 MPa and 780°C, E‐Grt formed at ~1.7 GPa and 530°C. The G‐Grt is relatively rich in Prp and poor in Grs, while E‐Grt is rich in Grs and poor in Prp. The Alm content (mol.%) of G‐Grt is 68 of E‐Grt 55. After formation of E‐Grt between and around fragmented G‐Grt at 530°C, the GPS have been further subducted and reached a maximum temperature of 580°C before exhumation started. Garnet composition profiles indicate that the initially very sharp contacts between the granulite facies fragments of G‐Grt and fracture seals of HPLT garnet (E‐Grt) have been modified by cation diffusion. The profiles suggest that Ca did not exchange at the scale of 1 µm, whereas Fe and Mg did efficiently diffuse at the derived maximum temperature of 580°C for the GPS at the scale of 7–8 µm. The Grt–Grt diffusion profiles resulted from spending c. 10 Ma at 530–580°C along the P–T–t path. The measured Grt composition profiles are consistent with diffusivities of log DMgFe = ?25.8 m2/s from modelled diffusion profiles. Mg loss by diffusion from G‐Grt is compensated by Fe gain by diffusion from E‐Grt to maintain charge balance. This leads to a distinctive Fe concentration profile typical of uphill diffusion.  相似文献   

15.
A petrological and thermobarometric study of the Lago Teleccio hornfelses was undertaken to reconstruct the polymetamorphic evolution and constrain the P–T conditions of Permian contact metamorphism. The Lago Teleccio metasedimentary rocks record a Variscan regional metamorphism characterized by amphibolite facies mineral assemblages including quartz, plagioclase, K‐feldspar (Kfs 1), biotite, garnet (Grt 1) and staurolite; this was followed by a late‐Variscan mylonitization event. Metamorphism of the Variscan metamorphic rocks at the contact with a Permian granitic intrusion produced static recrystallization and/or new growth of quartz, garnet (Grt 2), plagioclase, K‐feldspar (Kfs 2), cordierite, green spinel, biotite and prismatic sillimanite (Contact 1). This thermal event, which occurred at a peak pressure of 0.23–0.35 GPa, temperature of 670–700 °C and aH2O of 0.751, was followed either during post‐contact metamorphism cooling or, more likely, during the early‐Alpine metamorphism by the breakdown of cordierite into an anhydrous kyanite + orthopyroxene + quartz assemblage. The poorly developed early‐Alpine eclogite facies metamorphism (Alpine 1) was characterized by relatively anhydrous mineral associations and low strain, which locally produced coronitic and pseudomorphous microstructures in metasedimentary rocks, with scanty formation of jadeite, zoisite and a new high‐pressure garnet (Grt 3). Greenschist facies retrogression (Alpine 2) was characterized by the local development of a chlorite‐ and muscovite‐bearing mineral association, suggestive of aqueous fluid incursion. In the hornfelses, the limited extent of metamorphic overprinting is suggested by the fine grain size of the Alpine mineral associations, which formed at the expense of the Permian contact metamorphic associations, and was favoured by the anhydrous mineralogy of the hornfelses.  相似文献   

16.
Recent work in Barrovian metamorphic terranes has found that rocks experience peak metamorphic temperatures across several grades at similar times. This result is inconsistent with most geodynamic models of crustal over‐thickening and conductive heating, wherein rocks which reach different metamorphic grades generally reach peak temperatures at different times. Instead, the presence of additional sources of heat and/or focusing mechanisms for heat transport, such as magmatic intrusions and/or advection by metamorphic fluids, may have contributed to the contemporaneous development of several different metamorphic zones. Here, we test the hypothesis of temporally focussed heating for the Wepawaug Schist, a Barrovian terrane in Connecticut, USA, using Sm–Nd ages of prograde garnet growth and U–Pb zircon crystallization ages of associated igneous rocks. Peak temperature in the biotite–garnet zone was dated (via Sm–Nd on garnet) at 378.9 ± 1.6 Ma (2σ), whereas peak temperature in the highest grade staurolite–kyanite zone was dated (via Sm–Nd on garnet rims) at 379.9 ± 6.8 Ma (2σ). These garnet ages suggest that peak metamorphism was pene‐contemporaneous (within error) across these metamorphic grades. Ion microprobe U–Pb ages for zircon from igneous rocks hosted by the metapelites also indicate a period of syn‐metamorphic peak igneous activity at 380.6 ± 4.7 Ma (2σ), indistinguishable from the peak ages recorded by garnet. A 388.6 ± 2.1 Ma (2σ) garnet core age from the staurolite–kyanite zone indicates an earlier episode of growth (coincident with ages from texturally early zircon and a previously published monazite age) along the prograde regional metamorphic Tt path. The timing of peak metamorphism and igneous activity, as well as the occurrence of extensive syn‐metamorphic quartz vein systems and pegmatites, best supports the hypothesis that advective heating driven by magmas and fluids focussed major mineral growth into two distinct episodes: the first at c. 389 Ma, and the second, corresponding to the regionally synchronous peak metamorphism, at c. 380 Ma.  相似文献   

17.
The timing and thermal effects of granitoid intrusions into accreted sedimentary rocks are important for understanding the growth process of continental crust. In this study, the petrology and geochronology of pelitic gneisses in the Tseel area of the Tseel terrane, SW Mongolia, are examined to understand the relationship between igneous activity and metamorphism during crustal evolution in the Central Asian Orogenic Belt (CAOB). Four mineral zones are recognized on the basis of progressive changes in the mineral assemblages in the pelitic gneisses, namely: the garnet, staurolite, sillimanite and cordierite zones. The gneisses with high metamorphic grades (i.e. sillimanite and cordierite zones) occur in the central part of the Tseel area, where granitoids are abundant. To the north and south of these granitoids, the metamorphic grade shows a gradual decrease. The composition of garnet in the pelitic gneisses varies systematically across the mineral zones, from grossular‐rich garnet in the garnet zone to zoned garnet with grossular‐rich cores and pyrope‐rich rims in the staurolite zone, and pyrope‐rich garnet in the sillimanite and cordierite zones. Thermobarometric analyses of individual garnet crystals reveal two main stages of metamorphism: (i) a high‐P and low‐T stage (as recorded by garnet in the garnet zone and garnet cores in the staurolite zone) at 520–580 °C and 4.5–7 kbar in the kyanite stability field and (ii) a low‐P and high‐T stage (garnet rims in the staurolite zone and garnet in the sillimanite and cordierite zones) at 570–680 °C and 3.0–6.0 kbar in the sillimanite stability field. The earlier high‐P metamorphism resulted in the growth of kyanite in quartz veins within the staurolite and sillimanite zones. The U–Pb zircon ages of pelitic gneisses and granitoids reveal that (i) the protolith (igneous) age of the pelitic gneisses is c. 510 Ma; (ii) the low‐P and high‐T metamorphism occurred at 377 ± 30 Ma; and (iii) this metamorphic stage was coeval with granitoid intrusion at 385 ± 7 Ma. The age of the earlier low‐T and high‐P metamorphism is not clearly recorded in the zircon, but probably corresponds to small age peaks at 450–400 Ma. The low‐P and high‐T metamorphism continued for c. 100 Ma, which is longer than the active period of a single granitoid body. These findings indicate that an elevation of geotherm and a transition from high‐P and low‐T to low‐P and high‐T metamorphism occurred, associated with continuous emplacement of several granitoids, during the crustal evolution in the Devonian CAOB.  相似文献   

18.
The inherited localization model for shear zone development suggests that ductile deformation in the middle and lower continental crust is localized on mechanical anisotropies, like fractures, referred to as shear zone brittle precursors. In the Neves area (Western Tauern Window, Eastern Alps), although the structural control of these brittle precursors on ductile strain localization is well established, the relative timing of the brittle deformation and associated localized fluid flow with respect to ductile deformation remains in most cases a matter of debate. The present petrological study, carried out on a brittle precursor of a shear zone affecting the Neves metagranodiorite, aims to determine whether brittle and ductile deformations are concomitant and therefore relate to the same tectonic event. The brittle precursor consists of a 100–500 µm wide recrystallized zone with a host mineral‐controlled stable mineral assemblage composed of plagioclase–garnet–quartz–biotite–zoisite±white mica±pyrite. Plagioclase and garnet preserve an internal compositional zoning interpreted as the fingerprint of Alpine metamorphism and fluid–rock interactions concomitant with the brittle deformation. Phase equilibrium modelling of this garnet‐bearing brittle precursor shows that metamorphic garnet and plagioclase both nucleated at 0.6 ± 0.05 GPa, 500 ± 20°C and then grew along a prograde path to 0.75 ± 0.05 GPa, 530 ± 20°C. These amphibolite facies conditions are similar to those inferred from ductile shear zones from the same area, suggesting that both brittle and ductile deformation were active in the ductile realm above 500°C for a depth range between 17 and 21 km. We speculate that the Neves area fulfils most of the required conditions to have hosted slow earthquakes during Alpine continental collision, that is, coupled frictional and viscous deformation under high‐fluid pressure conditions ~450°C. Further investigation of this potential geological record is required to demonstrate that slow earthquakes may not be restricted to subduction zones but are also very likely to occur in modern continental collision settings.  相似文献   

19.
The Karakoram–Hindu Kush–Pamir and adjacent Tibetan plateau belt comprise a series of Gondwana‐derived crustal fragments that successively accreted to the Eurasian margin in the Mesozoic as the result of the progressive Tethys ocean closure. These domains provide unique insights into the thermal and structural history of the Mesozoic to Cenozoic Eurasian plate margin, which are critical to inform the initial boundary conditions (e.g. crustal thickness, structure and thermo‐mechanical properties) for the subsequent development of the large and hot Tibetan–Himalaya orogen, and the associated crustal deformation processes. Using a combination of microstructural analyses, thermobarometry modelling and U–Th–Pb monazite and Lu–Hf garnet geochronology, the study reappraises the metamorphic history of exposed mid‐crustal metapelites in the Chitral region of the South Pamir–Hindu Kush (NW Pakistan). This study also demonstrates that trace elements in monazite (especially Y and Dy), combined with thermodynamical modelling and Lu–Hf garnet dating, provides a powerful integrated toolbox for constraining long‐lived and polyphased tectono‐metamorphic histories in all their spatial and temporal complexity. Rocks from the Chitral region were progressively deformed and metamorphosed at sub‐ and supra‐solidus conditions through at least four distinct episodes from the Mesozoic to the Cenozoic. Rocks were first metamorphosed at ~400–500°C and ~0.3 GPa in the Late Triassic–Early Jurassic (210–185 Ma), likely in response to the accretion of the Karakoram during the Cimmerian orogeny. Pressure and temperature subsequently increased by ~0.3 GPa and 100°C in the Early‐ to Mid Cretaceous (140–80 Ma), coinciding with the intrusion of calcalkaline granitic plutons across the Karakoram and Pamir regions. This event is interpreted as the record of crustal thickening and the development of a proto‐plateau within the Eurasian margin due to a long‐lived episode of slab flattening in an Andean‐type margin. Peak metamorphism was reached in the Late Eocene–Early Oligocene (40–30 Ma) at conditions of 580–600°C and ~0.6 GPa and 700–750°C and 0.7–0.8 GPa for the investigated staurolite schists and sillimanite migmatites respectively. This crustal heating up to moderate anatexis likely resulted in the underthrusting of the Indian plate after a NeoTethyan slab‐break off or to the Tethyan Himalaya–Lhasa microcontinent collision and subsequent oceanic slab flattening. Near‐isothermal decompression/exhumation followed in the Late Oligocene (28–23 Ma) as marked by a pressure decrease in excess of ~0.1 GPa. This event was coeval with the intrusion of the 24 Ma Garam Chasma leucogranite. This rapid exhumation is interpreted to be related to the reactivation of the South Pamir–Karakoram suture zone during the ongoing collision with India. The findings of this study confirm that significant crustal shortening and thickening of the south Eurasian margin occurred during the Mesozoic in an accretionary‐type tectonic setting through successive episodes of terrane accretions and probably slab flattening, transiently increasing the coupling at the plate interface. Moreover, they indicate that the south Eurasian margin was already hot and thickened prior to Cenozoic collision with India, which has important implications for orogen‐scale strain‐accommodation mechanisms.  相似文献   

20.
Dating ultra‐high–pressure (UHP) metamorphic rocks provides important timing constraints on deep subduction zone processes. Eclogites, deeply subducted rocks now exposed at the surface, undergo a wide range of metamorphic conditions (i.e. deep subduction and exhumation) and their mineralogy can preserve a detailed record of chronologic information of these dynamic processes. Here, we present an approach that integrates multiple radiogenic isotope systems in the same sample to provide a more complete timeline for the subduction–collision–exhumation processes, based on eclogites from the Dabie–Sulu orogenic belt in eastern China, one of the largest UHP terranes on Earth. In this study, we integrate garnet Lu–Hf and Sm–Nd ages with zircon and titanite U–Pb ages for three eclogite samples from the Sulu UHP terrane. We combine this age information with Zr‐in‐rutile temperature estimates, and relate these multiple chronometers to different P–T conditions. Two types of rutile, one present as inclusions in garnet and the other in the matrix, record the temperatures of UHP conditions and a hotter stage, subsequent to the peak pressure (‘hot exhumation') respectively. Garnet Lu–Hf ages (c. 238–235 Ma) record the initial prograde growth of garnet, while coupled Sm–Nd ages (c. 219–213 Ma) reflect cooling following hot exhumation. The maximum duration of UHP conditions is constrained by the age difference of these two systems in garnet (c. 235–220 Ma). Complementary zircon and titanite U–Pb ages of c. 235–230 Ma and c. 216–206 Ma provide further constraints on the timing of prograde metamorphism and the ‘cold exhumation' respectively. We demonstrate that timing of various metamorphic stages can thus be determined by employing complementary chronometers from the same samples. These age results, combined with published data from adjacent areas, show lateral diachroneity in the Dabie–Sulu orogeny. Three sub‐blocks are thus defined by progressively younger garnet ages: western Dabie (243–238 Ma), eastern Dabie–northern Sulu (238–235 Ma) and southern Sulu terranes (225–220 Ma), which possibly correlate to different crustal slices in the recently proposed subduction channel model. These observed lateral chronologic variations in a large UHP terrane can possibly be extended to other suture zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号