首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Coesite is typically found as inclusions in rock‐forming or accessory minerals in ultrahigh‐pressure (UHP) metamorphic rocks. Thus, the survival of intergranular coesite in UHP eclogite at Yangkou Bay (Sulu belt, eastern China) is surprising and implies locally “dry” conditions throughout exhumation. The dominant structures in the eclogites at Yangkou are a strong D2 foliation associated with tight‐to‐isoclinal F2 folds that are overprinted by close‐to‐tight F3 folds. The coesite‐bearing eclogites occur as rootless intrafolial isoclinal F1 fold noses wrapped by a composite S1–S2 foliation in interlayered phengite‐bearing quartz‐rich schists. To evaluate controls on the survival of intergranular coesite, we determined the number density of intergranular coesite grains per cm2 in thin section in two samples of coesite eclogite (phengite absent) and three samples of phengite‐bearing coesite eclogite (2–3 vol.% phengite), and measured the amount of water in garnet and omphacite in these samples, and also in two samples of phengite‐bearing quartz eclogite (6–7 vol.% phengite, coesite absent). As coesite decreases in the mode, the amount of primary structural water stored in the whole rock, based on the nominally anhydrous minerals (NAMs), increases from 107/197 ppm H2O in the coesite eclogite to 157–253 ppm H2O in the phengite‐bearing coesite eclogite to 391/444 ppm H2O in the quartz eclogite. In addition, there is molecular water in the NAMs and modal water in phengite. If the primary concentrations reflect differences in water sequestered during the late prograde evolution, the amount of fluid stored in the NAMs at the metamorphic peak was higher outside of the F1 fold noses. During exhumation from UHP conditions, where NAMs became H2O saturated, dehydroxylation would have generated a free fluid phase. Interstitial fluid in a garnet–clinopyroxene matrix at UHP conditions has dihedral angles >60°, so at equilibrium fluid will be trapped in isolated pores. However, outside the F1 fold noses strong D2 deformation likely promoted interconnection of fluid and migration along the developing S2 foliation, enabling conversion of some or all of the intergranular coesite into quartz. By contrast, the eclogite forming the F1 fold noses behaved as independent rigid bodies within the composite S1–S2 foliation of the surrounding phengite‐bearing quartz‐rich schists. Primary structural water concentrations in the coesite eclogite are so low that H2O saturation of the NAMs is unlikely to have occurred. This inherited drier environment in the F1 fold noses was maintained during exhumation by deformation partitioning and strain localization in the schists, and the fold noses remained immune to grain‐scale fluid infiltration from outside allowing coesite to survive. The amount of inherited primary structural water and the effects of strain partitioning are important variables in the survival of coesite during exhumation of deeply subducted continental crust. Evidence of UHP metamorphism may be preserved in similar isolated structural settings in other collisional orogens.  相似文献   

2.
The prograde metamorphic history of the Sulu ultrahigh‐pressure metamorphic terrane has been revealed using Raman‐based barometry of the SiO2 phases and other mineral inclusions in garnet porphyroblasts of a coesite eclogite from Yangzhuang, Junan region, eastern China. Garnet porphyroblasts have inner and outer segments with the boundary being marked by discontinuous changes in the grossular content. In the inner segment, the SiO2 phase inclusions are α‐quartz with no coesite or relict features such as radial cracks. The residual pressures retained by the quartz inclusions systematically increase from the crystal centre to the margin of the inner segment. The metamorphic conditions estimated by calculation from the residual pressure and conventional thermodynamic calculation range from 500 to 630 °C and 1.3 to 2.3 GPa for the stage of the inner segment. Coesite and its pseudomorph occur as inclusions in the outer segment of the garnet and matrix omphacite. This occurrence of coesite is consistent with the pressure and temperature conditions of 660–725 °C and 3.1 GPa estimated by conventional geothermobarometry. Our results suggest that the quartz inclusions in the inner segment were trapped by garnet under α‐quartz‐stable conditions and survived phase transition to coesite at the peak metamorphic stage. The SiO2 phases and other inclusions in the garnet have retained evidence of the pre‐eclogite prograde stage even during exhumation stage. The combined Raman spectroscopic and petrological approaches used here offers a powerful means for obtaining more robust constraints prograde stages involving garnet growth where different SiO2 phases are present as inclusions.  相似文献   

3.
Several types of multiphase solid (MS) inclusions are identified in garnet from ultrahigh‐pressure (UHP) eclogite in the Dabie orogen. The mineralogy of MS inclusions ranges from pure K‐feldspar to pure quartz, with predominance of intermediate types consisting of K‐feldspar + quartz ± silicate (plagioclase or epidote) ± barite. The typical MS inclusions are usually surrounded with radial cracks in the host garnet, similar to where garnet contains relict coesite. Barite aggregates display significant heterogeneity in major element composition, with total contents of only 57–73% and highly variable SiO2 contents of 0.32–25.85% that are positively correlated with BaO and SO3 contents. The occurrence of MS inclusions provides petrographic evidence for partial melting in the UHP metamorphic rock. The occurrence of barite aggregates with variably high SiO2 contents suggests the coexistence of aqueous fluid with hydrous melt under HP eclogite facies conditions. Thus, local dehydration melting is inferred to take place inside the UHP metamorphic slice during continental collision. This is ascribed to phengite breakdown during ‘hot’ exhumation of the deeply subducted continental crust. As a consequence, the aqueous fluid is internally buffered in chemical composition and its local sink is a basic trigger to the partial melting during the continental subduction‐zone metamorphism.  相似文献   

4.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   

5.
Metamorphic dehydration and partial melting are two important processes during continental collision. They have significant bearing on element transport at the slab interface under subduction‐zone P–T conditions. Petrological and geochemical insights into the two processes are provided by a comprehensive study of leucocratic veins in ultrahigh‐pressure (UHP) metamorphic rocks. This is exemplified by this study of a polymineralic vein within phengite‐bearing UHP eclogite in the Dabie orogen. The vein is primarily composed of quartz, kyanite, epidote and phengite, with minor accessory minerals such as garnet, rutile and zircon. Primary multiphase solid inclusions occur in garnet and epidote from the both vein and host eclogite. They are composed of quartz ± K‐feldspar ± plagioclase ± K‐bearing glass and exhibit irregular to negative crystal shapes that are surrounded by weak radial cracks. This suggests their precipitation from solute‐rich metamorphic fluid/melt that involved the reaction of phengite breakdown. Zircon U–Pb dating for the vein gave two groups of concordant ages at 217 ± 2 and 210 ± 2 Ma, indicating two episodes of zircon growth in the Late Triassic. The same minerals from the two rocks give consistent δ18O and δD values, suggesting that the vein‐forming fluid was directly derived from the host UHP eclogite. The vein is much richer in phengite and epidote than the host eclogite, suggesting that the fluid is associated with remarkable concentration of such water‐soluble elements as LILE and LREE migration. Garnet and rutile in the vein exhibit much higher contents of HREE (2.2–5.7 times) and Nb–Ta (1.8–2.0 times) than those in the eclogite, indicating that these normally water‐insoluble elements became mobile and then were sunken in the vein minerals. Thus, the vein‐forming agent would be primarily composed of the UHP aqueous fluid with minor amounts of the hydrous melt, which may even become a supercritical fluid to have a capacity to transport not only LILE and LREE but also HREE and HFSE at subduction‐zone metamorphic conditions. Taken together, significant amounts of trace elements were transported by the vein‐forming fluid due to the phengite breakdown inside the UHP eclogite during exhumation of the deeply subducted continental crust.  相似文献   

6.
A coesite-bearing eclogite breccia is reported here for the first time at Yangkou in the Chinese Su–Lu ultrahigh-pressure (UHP) metamorphic belt. It is thrusted over a coesite-bearing coronitic eclogite and is gradational to a foliated eclogite at the contact. The coronitic eclogite is characterized by garnet coronas between fine-grained high-pressure mineral aggregates forming pseudomorphs after plagioclase, ilmenite, biotite, and pyroxene in a gabbroic protolith. The breccia consists of fine-grained cataclastic eclogite fragments (garnet + omphacite + coesite/quartz ± phengite ± kyanite) and a coarser-grained matrix schist (garnet + quartz + phengite + kyanite). The foliated eclogite consists of intercalating bands of the cataclastic eclogite and a schist similar to the fragments and the matrix, respectively, in the breccia. The igneous fabric of the eclogitized gabbro is increasingly obliterated from the coronitic eclogite through the foliated eclogite to the breccia. Micropoikilitic amoeboid garnet containing numerous inclusions of omphacite and other high-pressure minerals is characteristic of eclogite facies pseudotachylytes and suggests flash melting and rapid crystallization. In the breccia and foliated eclogite, quartz + K-feldspar ± albite aggregates are included in garnet or form strings cutting across the cataclasites. In some aggregates, quartz grains are cemented by K-feldspar and vesicular albite, also implying crystallization from melts in a rapid cooling and decompression process from the UHP condition. The field context, the locally preserved igneous fabric in the breccia, the similar whole-rock compositions, as well as the complementary mineral assemblages in the fragments and the matrix with respect to the coronitic eclogite, suggest that the breccia was formed by cataclasis and segregation of minerals in a former coronitic eclogite in response to a sudden pressure release. Intergranular coesite is found only in the eclogite cataclasites and may have survived via the rapid cooling event, as coesite converts to quartz completely in a few years when being cooled slowly at lower pressures. Such rate information is incompatible with the presumed deep subduction/exhumation process but implies transient UHP metamorphism coeval with the seismic event.  相似文献   

7.
Detailed X‐ray compositional mapping and microtomography have revealed the complex zoning and growth history of garnet in a kyanite‐bearing eclogite. The garnet occurs as clusters of coalesced grains with cores revealing slightly higher Ca and lower Mg than the rims forming the coalescence zones between the grains. Core regions of the garnet host inclusions of omphacite with the highest jadeite, and phengite with the highest Si, similar to values in the cores of omphacite and phengite located in the matrix. Therefore, the core compositions of garnet, omphacite, and phengite have been chosen for the peak pressure estimate. Coupled conventional thermobarometry, average P–T, and phase equilibrium modelling in the NCKFMMnASHT system yields P–T conditions of 26–30 kbar at 800–930°C. Although coesite is not preserved, these P–T conditions partially overlap the coesite stability field, suggesting near ultra‐high–pressure (UHP) conditions during the formation of this eclogite. Therefore, the peak pressure assemblage is suggested to have been garnet–omphacite–kyanite–phengite–coesite/quartz–rutile. Additional lines of evidence for the possible UHP origin of the Mi?dzygórze eclogite are the presence of rod‐shaped inclusions of quartz parallel to the c‐axis in omphacite as well as relatively high values of Ca‐Tschermak and Ca‐Eskola components. Late zoisite, rare diopside–plagioclase symplectites rimming omphacite, and minor phlogopite–plagioclase symplectites replacing phengite formed during retrogression together with later amphibole. These retrograde assemblages lack minerals typical of granulite facies, which suggests simultaneous decompression and cooling during exhumation before the crustal‐scale folding that was responsible for final exhumation of the eclogite.  相似文献   

8.
Fluid availability during high‐grade metamorphism is a critical factor in dictating petrological, geochemical and isotopic reequilibration between metamorphic minerals, with fluid‐absent metamorphism commonly resulting in neither zircon growth/recrystallization for U‐Pb dating nor Sm‐Nd isotopic resetting for isochron dating. While peak ultra‐high pressure (UHP) metamorphism is characterized by fluid immobility, high‐pressure (HP) eclogite‐facies recrystallization during exhumation is expected to take place in the presence of fluid. A multichronological study of UHP eclogite from the Sulu orogen of China indicates zircon growth at 216 ± 3 Ma as well as mineral Sm‐Nd and Rb‐Sr reequilibration at 216 ± 5 Ma, which are uniformly younger than UHP metamorphic ages of 231 ± 4 to 227 ± 2 Ma as dated by the SHRIMP U‐Pb method for coesite‐bearing domains of zircon. O isotope reequilibration was achieved between the Sm‐Nd and Rb‐Sr isochron minerals, but Hf isotopes were not homogenized between different grains of zircon. The HP eclogite‐facies recrystallization is also evident from petrography. Thus this process occurred during exhumation with fluid availability from decompression dehydration of hydrous minerals and the exsolution of hydroxyl from nominally anhydrous minerals. This provides significant amounts of internally derived fluid for extensive retrogression within the UHP metamorphosed slabs. Based on available experimental diffusion data, the consistent reequilibration of U‐Pb, Sm‐Nd, Rb‐Sr and O isotope systems in the eclogite minerals demonstrates that time‐scale for the HP eclogite‐facies recrystallization is c. 1.9–9.3 Myr or less. This provides a maximum estimate for duration of the fluid‐facilitated process in the HP eclogite‐facies regime during the exhumation of deeply subducted continental crust.  相似文献   

9.
Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite‐bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite‐bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na‐Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi‐phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet‐clinopyroxene thermometry yields peak temperatures of 420–520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P–T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4–2.7 GPa and 470–510 °C. Modelled modal abundances of major minerals along a 5 °C km?1 geothermal gradient suggests two critical dehydration processes at ~430 and ~510 °C respectively. Computed garnet composition patterns are in good agreement with measured core‐rim profiles. The petrological study of coesite‐bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP‐LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP‐LT assemblages at most localities.  相似文献   

10.
Widespread evidence for ultrahigh‐pressure (UHP) metamorphism is reported in the Dulan eclogite‐bearing terrane, the North Qaidam–Altun HP–UHP belt, northern Tibet. This includes: (1) coesite and associated UHP mineral inclusions in zircon separates from paragneiss and eclogite (identified by laser Raman spectroscopy); (2) inclusions of quartz pseudomorphs after coesite and polycrystalline K‐feldspar + quartz in eclogitic garnet and omphacite; and (3) densely oriented SiO2 lamellae in omphacitic clinopyroxene. These lines of evidence demonstrate that the Dulan region is a UHP metamorphic terrane. In the North Dulan Belt (NDB), eclogites are characterized by the peak assemblage Grt + Omp + Rt + Phn + Coe (pseudomorph) and retrograde symplectites of Cpx + Ab and Hbl + Pl. The peak conditions of the NDB eclogites are P = 2.9–3.2 GPa, and T = 631–687 °C; the eclogite shows a near‐isothermal decompression P–T path suggesting a fast exhumation. In the South Dulan Belt (SDB), three metamorphic stages are recognized in eclogites: (1) a peak eclogite facies stage with the assemblage Grt + Omp + Ky + Rt + Phn at P = 2.9–3.3 GPa and T = 729–746 °C; (2) a high‐pressure granulite facies stage with Grt + Cpx (Jd < 30) + Pl (An24–29) + Scp at P = 1.9–2.0 GPa, T = 873–948 °C; and (3) an amphibolite facies stage with the assemblage Hbl + Pl + Ep/Czo at P = 0.7–0.9 GPa and T = 660–695 °C. The clockwise P–T path of the SDB eclogites is different from the near‐isothermal decompression P–T path from the NDB eclogites, which suggests that the SDB was exhumed to a stable crustal depth at a slower rate. In essence these two sub‐belts formed in different tectonic settings; they both subducted to mantle depths of around 100 km, but were exhumed to the Earth's surface separately along different paths. This UHP terrane plays an important role in understanding continental collision in north‐western China.  相似文献   

11.
Geothermometry of eclogites and other high pressure (HP)/ultrahigh‐pressure (UHP) rocks has been a challenge, due to severe problems related to the reliability of the garnet–clinopyroxene Fe–Mg exchange thermometer to omphacite‐bearing assemblages. Likewise, reliable geobarometers for eclogites and related HP/UHP rocks are scarce. In this paper, a set of internally consistent geothermobarometric expressions have been formulated for reactions between the UHP assemblage garnet–clinopyroxene–kyanite–phengite–coesite, and the corresponding HP assemblage garnet–clinopyroxene–kyanite–phengite–quartz. In the system KCMASH, the end members grossular (Grs) and pyrope (Prp) in garnet, diopside (Di) in clinopyroxene, muscovite (Ms) and celadonite (Cel) in phengite together with kyanite and coesite or quartz define invariant points in the coesite and quartz stability field, respectively, depending on which SiO2 polymorph is stable. Thus, a set of net transfer reactions including these end members will uniquely define equilibrium temperatures and pressures for phengite–kyanite–SiO2‐bearing eclogites. Application to relevant eclogites from various localities worldwide show good consistency with petrographic evidence. Eclogites containing either coesite or polycrystalline quartz after coesite all plot within the coesite stability field, while typical quartz‐bearing eclogites with no evidence of former coesite fall within the quartz stability field. Diamondiferous coesite–kyanite eclogite and grospydite xenoliths in kimberlites all fall into the diamond stability field. The present method also yields consistent values as compared with the garnet–clinopyroxene Fe–Mg geothermometer for these kinds of rocks, but also indicates some unsystematic scatter of the latter thermometer. The net transfer geothermobarometric method presented in this paper is suggested to be less affected by later thermal re‐equilibration than common cation exchange thermometers.  相似文献   

12.
To understand the preservation of coesite inclusions in ultrahigh‐pressure (UHP) metamorphic rocks, an integrated petrological, Raman spectroscopic and focussed ion beam (FIB) system–transmission electron microscope (TEM) study was performed on a UHP kyanite eclogite from the Sulu belt in eastern China. Coesite grains have been observed only as rare inclusions in kyanite from the outer segment of garnet and in the matrix. Raman mapping analysis shows that a coesite inclusion in kyanite from the garnet rim records an anisotropic residual stress and retains a maximum residual pressure of ~0.35 GPa. TEM observations show quartz is absent from the coesite inclusion–host kyanite grain boundaries. Numerous dislocations and sub‐grain boundaries are present in the kyanite, but dislocations are not confirmed in the coesite. In particular, dislocations concentrate in the kyanite adjacent to the boundary with the coesite inclusion, and they form a dislocation concentration zone with a dislocation density of ~109 cm?2. A high‐resolution TEM image and a fast Fourier transform‐filtered image reveal that a tiny dislocation in the dislocation concentration zone is composed of multiple edge dislocations. The estimated dislocation density in most of the kyanite away from the coesite inclusion–host kyanite grain boundaries is ~108 cm?2, being lower than that in kyanite adjacent to the coesite. In the case of a coesite inclusion in a matrix kyanite, using Raman and TEM analyses, we could not identify any quartz at the grain boundaries. Dislocations are not observed in the coesite, but numerous dislocations and stacking faults are developed in the kyanite. The estimated overall dislocation density in the coesite‐bearing matrix kyanite is ~108 cm?2, but a high dislocation density region of ~109 cm?2 is also present near the coesite inclusion–host kyanite grain boundaries. Inclusion and matrix kyanite grains with no coesite have dislocation densities of ≤108 cm?2. Dislocation density is generally reduced during an annealing process, but our results show that not all dislocations in the kyanite have recovered uniformly during exhumation of the UHP rocks. Hence, one of the key factors acting as a buffer to inhibit the coesite to quartz transformation is the mechanical interaction between the host and the inclusion that lead to the formation of dislocations in the kyanite. The kyanite acts as an excellent pressure container that can preserve coesite during the decompression of rocks from UHP conditions. The search for and study of inclusions in kyanite may be a more suitable approach for tracing the spatial distribution of UHP metamorphic rocks.  相似文献   

13.
Northward subduction of the leading edge of the Indian continental margin to depths greater than 100 km during the early Eocene resulted in high‐pressure (HP) quartz‐eclogite to ultrahigh‐pressure (UHP) coesite–eclogite metamorphism at Tso Morari, Ladakh Himalaya, India. Integrated pressure–temperature–time determinations within petrographically well‐constrained settings for zircon‐ and/or monazite‐bearing assemblages in mafic eclogite boudins and host aluminous gneisses at Tso Morari uniquely document segments of both the prograde burial and retrograde exhumation path for HP/UHP units in this portion of the western Himalaya. Poikiloblastic cores and inclusion‐poor rims of compositionally zoned garnet in mafic eclogite were utilized with entrapped inclusions and matrix minerals for thermobarometric calculations and isochemical phase diagram construction, the latter thermodynamic modelling performed with and without the consideration of cation fractionation into garnet during prograde metamorphism. Analysis of the garnet cores document (M1) conditions of 21.5 ± 1.5 kbar and 535 ± 15 °C during early garnet growth and re‐equilibration. Sensitive high resolution ion microprobe (SHRIMP) U–Pb analysis of zircon inclusions in garnet cores yields a maximum age determination of 58.0 ± 2.2 Ma for M1. Peak HP/UHP (M2) conditions are constrained at 25.5–27.5 kbar and 630–645 °C using the assemblage garnet rim–omphacite–rutile–phengite–lawsonite–talc–quartz (coesite), with mineral compositional data and regional considerations consistent with the upper PT bracket. A SHRIMP U–Pb age determination of 50.8 ± 1.4 Ma for HP/UHP metamorphism is given by M2 zircons analysed in the eclogitic matrix and that are encased in the garnet rim. Two garnet‐bearing assemblages from the Puga gneiss (host to the mafic eclogites) were utilized to constrain the subsequent decompression path. A non‐fractionated isochemical phase diagram for the assemblage phengite–garnet–biotite–plagioclase–quartz–melt documents a restricted (M3) P–T stability field centred on 12.5 ± 0.5 kbar and 690 ± 25 °C. A second non‐fractionated isochemical phase diagram calculated for the lower pressure assemblage garnet–cordierite–sillimanite–biotite–plagioclase–quartz–melt (M4) documents a narrow P–T stability field ranging between 7–8.4 kbar and 705–755 °C, which is consistent with independent multiequilibria PT determinations. Th–Pb SHRIMP dating of monazite cores surrounded by allanite rims is interpreted to constrain the timing of the M4 equilibration to 45.3 ± 1.1 Ma. Coherently linking metamorphic conditions with petrographically constrained ages at Tso Morari provides an integrated context within which previously published petrological or geochronological results can be evaluated. The new composite path is similar to those published for the Kaghan UHP locality in northern Pakistan, although the calculated 12‐mm a?1 rate of post‐pressure peak decompression at Tso Morari would appear less extreme.  相似文献   

14.
大别山-苏鲁超高压变质带的矿物学和岩石学研究进展   总被引:11,自引:0,他引:11  
本文总结了近年来大别山 苏鲁超高压变质带的矿物学和岩石学进展。针对大别山 苏鲁超高压变质带中的区域片麻岩围岩是否经历超高压变质的问题 ,研究者在常规岩石学和矿物学手段不能奏效的情况下 ,引入显微喇曼光谱测试 ,最终在各种类片麻岩的锆石中发现柯石英、硬玉和雯石等高压和超高压矿物包裹体 ,证明大别山 苏鲁超高压变质带中的大多数岩石曾与榴辉岩一起被俯冲到地幔深度 ,后又一起回返到地表。在喇曼光谱的测试过程中 ,发现锆石中的柯石英包裹体有 0~ 2 3 0 0MPa不等的现时晶内超压 ,并证明这种晶内超压是超高压变质岩回返过程中 ,柯石英向石英转化而导致的体积膨胀造成的。研究者在产于青岛仰口榴辉岩的石榴子石中发现大量单斜辉石、金红石和磷灰石出熔 ,精细的晶体化学和岩石学研究证明出熔前的石榴子石形成于大于 70 0 0MPa的压力条件 ,说明苏鲁地区的部分陆壳岩石可能曾被俯冲到大于 2 0 0km深的地幔。岩石学研究发现产于桃行地区的榴辉岩在角闪岩相区域退变质之前 ,在 4 0~ 5 0km的浅部地幔深度发育有一期高压麻粒岩相 过渡榴辉岩相变质。进一步研究发现这期变质是由于峰期的多硅白云母在回返到 4 0~5 0km深的浅部地幔时脱水熔融导致的  相似文献   

15.
The Flatraket Complex, a granulite facies low strain enclave within the Western Gneiss Region, provides an excellent example of metastability of plagioclase‐bearing assemblages under eclogite facies conditions. Coesite eclogites are found <200 m structurally above and <1 km below the Flatraket Complex, and are separated from it by amphibolite facies gneisses related to pervasive late‐orogenic deformation and overprinting. Granulites within the Flatraket Complex equilibrated at 9–11 kbar, 700–800°C. These predate eclogite facies metamorphism and were preserved metastably in dry undeformed zones under eclogite facies conditions. Approximately 5% of the complex was transformed to eclogite in zones of fluid infiltration and deformation, which were focused along lithological contacts in the margin of the complex. Eclogitisation proceeded by domainal re‐equilibration and disequilibrium breakdown of plagioclase by predominantly hydration reactions. Both hydration and anhydrous plagioclase breakdown reactions were kinetically linked to input of fluid. More pervasive hydration of the complex occurred during exhumation, with fluid infiltration linked to dehydration of external gneisses. Eclogite facies shear zones within the complex equilibrated at 20–23 kbar, 650–800°C, consistent with the lack of coesite and with the equilibration conditions of external HP eclogites. If the complex experienced pressures equivalent to those of nearby coesite eclogites (> 28 kbar), unprecedented metastability of plagioclase and quartz is implied. Alternatively, a tectonic break exists between the Flatraket Complex and UHP eclogites, supporting the concept of a tectonic boundary to the UHP zone of the Western Gneiss Region. The distribution of eclogite and amphibolite facies metamorphic overprints demonstrates that the reactivity of the crust during deep burial and exhumation is strongly controlled by fluid availability, and is a function of the protolith.  相似文献   

16.
Recently, a huge ultrahigh‐pressure (UHP) metamorphic belt of oceanic‐type has been recognized in southwestern (SW) Tianshan, China. Petrological studies show that the UHP metamorphic rocks of SW Tianshan orogenic belt include mafic eclogites and blueschists, felsic garnet phengite schists, marbles and serpentinites. The well‐preserved coesite inclusions were commonly found in eclogites, garnet phengite schists and marbles. Ti‐clinohumite and Ti‐chondrodite have been identified in UHP metamorphic serpentinites. Based on the PT pseudosection calculation and combined U‐Pb zircon dating, the P‐T‐t path has been outlined as four stages: cold subduction to UHP conditions before ~320 Ma whose peak ultrahigh pressure is about 30 kbar at 500oC, heating decompression from the Pmax to the Tmax stage before 305 Ma whose peak temperature is about 600oC at 22kbar, then the early cold exhumation from amphibolite eclogite facies to epidote‐amphibolite facies metamorphism characterized by ITD PT path before 220 Ma and the last tectonic exhumation from epidote amphibolite facies to greenschist facies metamorphism. Combining with the syn‐subduction arc‐like 333‐326 Ma granitic rocks and 280‐260 Ma S‐type granites in the coeval low‐pressure and high‐temperature (LP‐HT) metamorphic belt, the tectonic evolution of Tianshan UHP metamorphic belt during late Cambrian to early Triassic has been proposed.  相似文献   

17.
中国大陆科学钻探主孔0-4500米的岩心主要由榴辉岩、斜长角闪岩、副片麻岩、正片麻岩以及少量的超基性岩所组成。岩相学研究结果表明,榴辉岩的围岩普遍经历了强烈角闪岩相退变质作用的改造,峰期超高压变质的矿物组合已完全被后期退变质过程中角闪岩相矿物组合所替代。采用激光拉曼技术,配备电子探针和阴极发光测试,发现主孔224件岩心中有121件(包括榴辉岩、斜长角闪岩、副片麻岩和正片麻岩)样品的锆石中普遍隐藏以柯石英为代表的超高压矿物包体,且不同岩石类型锆石中所保存的超高压矿物包体组合存在明显差异。(含多硅白云母)金红石石英榴辉岩锆石中保存的典型超高压包体矿物组合为柯石英 石榴石、柯石英 石榴石 绿辉石 金红石和柯石英 多硅白云母 磷灰石。黑云绿帘斜长角闪岩锆石中保存的超高压矿物组合为柯石英 石榴石 绿辉石、柯石英 石榴石 多硅白云母和柯石英 绿辉石 金红石,与榴辉岩所保存的超高压矿物组合十分相似,表明该类斜长角闪岩是由超高压榴辉岩在构造折返过程中退变质而成。在副片麻岩类岩石,如石榴绿帘黑云二长片麻岩锆石中,代表性的超高压包体矿物组合为柯石英 多硅白云母和柯石英 石榴石等;而在石榴黑云角闪钠长片麻岩锆石中,则保存柯石英 硬玉 石榴石 磷灰石、柯石英 硬玉 多硅白云母 磷灰石和柯石英 石榴石 磷灰石等超高压矿物包体。在正片麻岩锆石中,标志性的超高压矿物包体为柯石英、柯石英 多硅白云母、柯石英 蓝晶石 磷灰石和柯石英 蓝晶石 榍石等。此外,在南苏鲁东海至临沭一带的地表露头以及一系列卫星孔岩心的锆石中,也普遍发现以柯石英为代表的标志性超高压矿物包体,表明在南苏鲁地区由榴辉岩及其围岩的原岩所组成的巨量陆壳物质(方圆>5000km2,厚度超过4.5km)曾整体发生深俯冲,并经历了超高压变质作用。该项研究对于重塑苏鲁-大别超高压变质带俯冲-折返的动力学模式有着重要的科学意义。  相似文献   

18.
New petrographic evidence and a review of the latest radiometric age data are taken to indicate that formation of the ultra‐high pressure (UHP) eclogites within the Western Gneiss Region of Norway probably occurred within the 400–410 Ma time frame. Thus, this event took place significantly later than the previous, widely accepted age of c. 425 Ma for the timing of the high pressure metamorphism in this part of the Scandinavian Caledonides. Garnet growth under UHP (coesite‐stable) conditions is recognised as a discrete, younger event following on from earlier garnet formed under firstly amphibolite facies then quartz‐stable, eclogite facies conditions. Currently, the best constrained and most precise age, specifically for UHP mineral growth, is the 402 ± 2 Ma U–Pb age for metamorphic zircon (some of which retain coesite inclusions) from the Hareidland eclogite. Exhumation must have followed shortly thereafter and, based on synoptic pressure–temperature and depth–time curves, must have been very fast. Our data and those of others indicate an initial fast exhumation to about 35 km depth by about 395 Ma at a mean rate of about 10 mm a?1. This rapid exhumation rate may have been driven by the appreciable residual buoyancy of the deeply subducted continental crustal slab due to incomplete eclogitization of the dominant Proterozoic orthogneisses during the short‐lived UHP event. Subsequent exhumation to 8–10 km depth by about 375 Ma occurred at a much slower mean rate of about 1.3 mm a?1 with the late‐stage extensional collapse of the Caledonian orogen playing an increasingly important role, especially in the final unroofing of the Western Gneiss Region with some remarkably preserved UHP rocks.  相似文献   

19.
Previous studies on the atoll-shaped garnets in ultrahigh-pressure (UHP) metamorphic eclogites from the Dabie orogen, east-central China, suggest a fluid-enhanced overgrowth origin at the onset of exhumation. The atoll-garnets bearing eclogite place better constraints on the timing of the retrograde fluid activity and are a straightforward target to gain insight into the isotopic equilibrium and/or disequilibrium during exhumation. Comprehensive textural, chemical and Lu–Hf geochronological analyses on the atoll garnet-bearing eclogite show that the retrograde fluid activity event likely occurred at ca. 221 Ma. The Lu–Hf age of 221.0?±?2.3 Ma marks the last garnet overgrowth episode during exhumation rather than prograde metamorphism. This somewhat restricted study suggests that dating the prograde-zoning-preserved garnets may bias results towards a particular metamorphic event rather than the prograde timing, as previously thought. The general assumption that larger garnet crystals in metamorphic rocks are older should be made with caution, and it is likely invalid in atoll garnet-bearing metamorphic eclogites because the preliminary garnet cores have been largely consumed. These observations highlight that linking textural and chemical analyses is crucial for interpreting geochronological data.  相似文献   

20.
Two types of eclogite pebbles were discovered in Middle to Upper Jurassic conglomerates from the Hefei Basin north of the Dabie ultrahigh-pressure (UHP) terrain, China. Type A eclogite pebbles are characterized by idioblastic garnet with well preserved chemical zonation. Si content in phengite is lower than 3.5 per formula unit (pfu). The maximum metamorphic pressure is lower than 2.5 GPa, and the temperature is below 600 °C. Type B eclogite pebbles contain coesite pseudomorphs in xenoblastic garnet. Si content in phengite is higher than 3.5 pfu. The maximum metamorphic pressure is 2.8–4.0 GPa at 700 °C indicating UHP metamorphism.

Types A and B eclogite pebbles are comparable with eclogites occurring in the southern portion of the Dabie UHP terrain. Based on the petrologic similarities and northeastwards directed paleocurrents, we infer that the eclogite pebbles were eroded from the Dabie UHP terrain. Sandstones containing detrital phengite with Si content higher than 3.5 pfu are also derived from UHP rocks. These petrologic and stratigraphic data place time constraints on exhumation and erosion history of the Dabie UHP terrain.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号