首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The temporary capture of the dust grains in the exterior resonances with planets is studied in the frames of the planar circular three-body problem with Poynting-Robertson (PR) drag. For the Earth and particles ~ 10 m the resonances 4/5, 5/6, 6/7, 7/8 are shown to be most effective. The capture is only temporary (of order 105 years) and the position of resonance may be calculated from semi-analytical model using averaged disturbing function. These semi-analytical results are confirmed by numerical integration. For various planet this picture changes as with increasing planetary mass the more exterior resonances become more important. We showed that for Jupiter (at least in the space between Jupiter and Saturn) the resonance 1/2 plays the dominant role. The capture time is here several myr but again eccentricity is evolving to eccentricity e 0 ~ 0.48 of libration point for this resonance.  相似文献   

3.
The temporary capture of the dust grains in the exterior resonances with planets is studied in the frames of the planar circular three-body problem with Poynting-Robertson (PR) drag. For the Earth and particles ~ 10 Μm the resonances 4/5, 5/6, 6/7, 7/8 are shown to be most effective. The capture is only temporary (of order 105 years) and the position of resonance may be calculated from semi-analytical model using averaged disturbing function. These semi-analytical results are confirmed by numerical integration. For various planet this picture changes as with increasing planetary mass the more exterior resonances become more important. We showed that for Jupiter (at least in the space between Jupiter and Saturn) the resonance 1/2 plays the dominant role. The capture time is here several myr but again eccentricity is evolving to eccentricity e 0 ~ 0.48 of libration point for this resonance.  相似文献   

4.
We review here some relevant problems connected to the evolution of circumstellar dust grains, subjected to Poynting-Robertson (PR) drag, and perturbed by first-order resonances with a planet on a circular orbit. We show that only outer mean motion resonances are able to counteract the damping effect of PR drag. However, the high orbital eccentricities reached by the particle lead to orbit crossings with the planet. This is a serious difficulty for a permanent trapping to be achieved. In any case, we show that the time spent in the resonance is long enough for statistical effects (accumulation at the resonant radius) to be significant. We underline some difficulties associated with this problem, namely, the non-adiabaticity of motion in the resonance phase space and the existence of close encounters with the planet at high eccentricities.  相似文献   

5.
We investigate the possibility of gravitational capture of planetesimals as temporary or permanent satellites of Uranus and Neptune during the process of planetary growth. The capture mechanism is based in the enhancement of the Hill's sphere of action not only due to the mass acquired by the planet, but also by the variation of the planet-Sun distance as a consequence of the scattering of planetesimals by the planets of the outer solar system. Our calculations indicate that satellite capture was very important, specially during the first stages of the accretion process, contributing in a significant way to the planetary growth.  相似文献   

6.
Effect of stellar electromagnetic radiation on the motion of spherical dust particle in mean motion orbital resonances with a planet is investigated. Planar circular restricted three-body problem with the Poynting–Robertson (P–R) effect yields monotonic secular evolution of eccentricity when the particle is trapped in the resonance. Planar elliptic restricted three-body problem with the P–R effect enables nonmonotonous secular evolution of eccentricity and the evolution of eccentricity is qualitatively consistent with the published results for the complicated case of interaction of electromagnetic radiation with nonspherical dust grain. Thus, it is sufficient to allow either nonzero eccentricity of the planet or nonsphericity of the grain and the orbital evolutions in the resonances are qualitatively equal for the two cases. This holds both for exterior and interior mean motion orbital resonances. Evolutions of argument of perihelion in the planar circular and elliptical restricted three-body problems are shown. Numerical integrations show that an analytic expression for the secular time derivative of the particle’s argument of perihelion does not exist, if only dependence on semimajor axis, eccentricity and argument of perihelion is admitted. Connection between the shift of perihelion and oscillations in secular eccentricity is presented for the planar elliptic restricted three-body problem with the P–R effect. Period of the oscillations corresponds to the period of one revolution of perihelion. Change of optical properties of the spherical grain with the heliocentric distance is also considered. The change of the optical properties: (i) does not have any significant influence on the secular evolution of eccentricity, (ii) causes that the shift of perihelion is mainly in the same direction/orientation as the particle motion around the Sun. The statements hold both for circular and noncircular planetary orbits.  相似文献   

7.
8.
Andrew W. Smith 《Icarus》2009,201(1):381-58
An investigation of the stability of systems of 1 M (Earth-mass) bodies orbiting a Sun-like star has been conducted for virtual times reaching 10 billion years. For the majority of the tests, a symplectic integrator with a fixed timestep of between 1 and 10 days was employed; however, smaller timesteps and a Bulirsch-Stoer integrator were also selectively utilized to increase confidence in the results. In most cases, the planets were started on initially coplanar, circular orbits, and the longitudinal initial positions of neighboring planets were widely separated. The ratio of the semimajor axes of consecutive planets in each system was approximately uniform (so the spacing between consecutive planets increased slowly in terms of distance from the star). The stability time for a system was taken to be the time at which the orbits of two or more planets crossed. Our results show that, for a given class of system (e.g., three 1 M planets), orbit crossing times vary with planetary spacing approximately as a power law over a wide range of separation in semimajor axis. Chaos tests indicate that deviations from this power law persist for changed initial longitudes and also for small but non-trivial changes in orbital spacing. We find that the stability time increases more rapidly at large initial orbital separations than the power-law dependence predicted from moderate initial orbital separations. Systems of five planets are less stable than systems of three planets for a specified semimajor axis spacing. Furthermore, systems of less massive planets can be packed more closely, being about as stable as 1 M planets when the radial separation between planets is scaled using the mutual Hill radius. Finally, systems with retrograde planets can be packed substantially more closely than prograde systems with equal numbers of planets.  相似文献   

9.
We numerically investigate the stability of systems of 1 \({{\rm M}_{\oplus}}\) planets orbiting a solar-mass star. The systems studied have either 2 or 42 planets per occupied semimajor axis, for a total of 6, 10, 126, or 210 planets, and the planets were started on coplanar, circular orbits with the semimajor axes of the innermost planets at 1 AU. For systems with two planets per occupied orbit, the longitudinal initial locations of planets on a given orbit were separated by either 60° (Trojan planets) or 180°. With 42 planets per semimajor axis, initial longitudes were uniformly spaced. The ratio of the semimajor axes of consecutive coorbital groups in each system was approximately uniform. The instability time for a system was taken to be the first time at which the orbits of two planets with different initial orbital distances crossed. Simulations spanned virtual times of up to 1 × 108, 5 × 105, and 2 × 105 years for the 6- and 10-planet, 126-planet, and 210-planet systems, respectively. Our results show that, for a given class of system (e.g., five pairs of Trojan planets orbiting in the same direction), the relationship between orbit crossing times and planetary spacing is well fit by the functional form log(t c /t 0) = b β + c, where t c is the crossing time, t 0 = 1 year, β is the separation in initial orbital semimajor axis (in terms of the mutual Hill radii of the planets), and b and c are fitting constants. The same functional form was observed in the previous studies of single planets on nested orbits (Smith and Lissauer 2009). Pairs of Trojan planets are more stable than pairs initially separated by 180°. Systems with retrograde planets (i.e., some planets orbiting in the opposite sense from others) can be packed substantially more closely than can systems with all planets orbiting in the same sense. To have the same characteristic lifetime, systems with 2 or 42 planets per orbit typically need to have about 1.5 or 2 times the orbital separation as orbits occupied by single planets, respectively.  相似文献   

10.
We present a continuation of our numerical study on planetary systems with similar characteristics to the Solar System. This time we examine the influence of three giant planets on the motion of terrestrial-like planets in the habitable zone (HZ). Using the Jupiter–Saturn–Uranus configuration we create similar fictitious systems by varying Saturn’s semi-major axis from 8 to 11 AU and increasing its mass by factors of 2–30. The analysis of the different systems shows the following interesting results: (i) Using the masses of the Solar System for the three giant planets, our study indicates a maximum eccentricity (max-e) of nearly 0.3 for a test-planet placed at the position of Venus. Such a high eccentricity was already found in our previous study of Jupiter–Saturn systems. Perturbations associated with the secular frequency g 5 are again responsible for this high eccentricity. (ii) An increase of the Saturn-mass causes stronger perturbations around the position of the Earth and in the outer HZ. The latter is certainly due to gravitational interaction between Saturn and Uranus. (iii) The Saturn-mass increased by a factor 5 or higher indicates high eccentricities for a test-planet placed at the position of Mars. So that a crossing of the Earth’ orbit might occur in some cases. Furthermore, we present the maximum eccentricity of a test-planet placed in the Earth’ orbit for all positions (from 8 to 11 AU) and masses (increased up to a factor of 30) of Saturn. It can be seen that already a double-mass Saturn moving in its actual orbit causes an increase of the eccentricity up to 0.2 of a test-planet placed at Earth’s position. A more massive Saturn orbiting the Sun outside the 5:2 mean motion resonance (a S  ≥9.7 AU) increases the eccentricity of a test-planet up to 0.4.  相似文献   

11.
In this study,a new expansion of planetary disturbing function is developed for describing the resonant dynamics of minor bodies with arbitrary inclinations and...  相似文献   

12.
I consider the range of Hill stability in the restricted circular problem of three bodies when the larger one of the two principal bodies has a finite oblateness. I show that the range r satisfies the equation
r = 1? μCcr ? 3μ + μr2 ? v (1? μ)r?3 ±(2 + 3v)(1 ? μ 1 + 3vr2r,
where μ is the mass parameter and v is an oblateness parameter. This result is applied to the solar system, the Earth-Moon system and binary star systems. It is then shown that, all the inner planets of the solar system, the great majority of asteroids and some short-period comets are Hill stable, that direct artificial satellites of the Earth are more stable than retrograde ones, and that contact binaries possess cores between which no mass exchange takes place.  相似文献   

13.
The stability evolution of family f of the planar circular restricted three-body problem in the Earth–Moon case is explored numerically using the Poincaré surface of section. It is shown that third order resonances are the main cause of the reduction of the stability region of retrograde satellites. Several branches of family f are also computed and these are seen by the configuration of their family characteristics to roughly determine the stability region. Previous results on smaller mass ratios of primaries are thus extended to the Earth–Moon system.  相似文献   

14.
One of the most interesting features in the libration domain of co-orbital motions is the existence of secondary resonances. For some combinations of physical parameters, these resonances occupy a large fraction of the domain of stability and rule the dynamics within the stable tadpole region. In this work, we present an application of a recently introduced ‘basic Hamiltonian model’ \(H_\mathrm{b}\) for Trojan dynamics (Páez and Efthymiopoulos in Celest Mech Dyn Astron 121(2):139, 2015; Páez et al. in Celest Mech Dyn Astron 126:519, 2016): we show that the inner border of the secondary resonance of lowermost order, as defined by \(H_\mathrm{b}\), provides a good estimation of the region in phase space for which the orbits remain regular regardless of the orbital parameters of the system. The computation of this boundary is straightforward by combining a resonant normal form calculation in conjunction with an ‘asymmetric expansion’ of the Hamiltonian around the libration points, which speeds up convergence. Applications to the determination of the effective stability domain for exoplanetary Trojans (planet-sized objects or asteroids) which may accompany giant exoplanets are discussed.  相似文献   

15.
16.
We use a three dimensional generalization of Szebehely’s invariant relation obtained by us (Makó and Szenkovits, Celest. Mech. Dyn. Astron. 90, 51, 2004) in the elliptic restricted three-body problem, to establish more accurate criterion of the Hill stability. By using this criterion, the Hill stability of four extrasolar planets (γ Cephei Ab, Gliese 86 Ab, HD 41004 Ab and HD 41004 Bb) is investigated.  相似文献   

17.
18.
The equilibrium point O of an autonomous Hamiltonian system of two degrees of freedom is considered for small-oscillation frequencies related as 2=21+. If under the precise resonance (=0) the equilibrium is unstable, the inner diameter () of the domain of stability containing the point O is estimated. It is shown that for the normalized variables ()/b where b is the corresponding resonance coefficient. The estimates () for other main resonances are reported.  相似文献   

19.
We analyze our earlier data on the numerical integration of the equations of motion for 274 short-period comets (with the period P<200 yr) on a time interval of 6000 yr. As many as 54 comets had no close approaches to planets, 13 comets passed through the Saturnian sphere of action, and one comet passed through the Uranian sphere of action. The orbital elements of these 68 comets changed by no more than ±3 percent in a space of 6000 yr. As many as 206 comets passed close to Jupiter. We confirm Everhart’s conclusion that Jupiter can capture long-period comets with q = 4–6 AU and i < 9° into short-period orbits. We show that nearly parabolic comets cross the solar system mainly in the zone of terrestrial planets. No relationship of nearly parabolic comets and terrestrial planets was found for the epoch of the latest apparition of comets. Guliev’s conjecture about two trans-Plutonian planets is based on the illusory excess of cometary nodes at large heliocentric distances. The existence of cometary nodes at the solar system periphery turns out to be a solely geometrical effect.  相似文献   

20.
J. Henrard 《Icarus》1983,53(1):55-67
C.F. Yoder's scenario 1979 for the capture into resonance of the first three Galilean satellites is reexamined. A more refined dynamical model for the resonance and for the tidal effects is proposed and analyzed. The results agree qualitatively with those of Yoder but differ numerically by 10 to 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号