首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions of the prograde, peak‐pressure and part of the decompressional P–T path of two Precambrian eclogites in the eastern Sveconorwegian orogen have been determined using the pseudosection approach. Cores of garnet from a Fe–Ti‐rich eclogite record a first prograde and syn‐deformational stage along a Barrovian gradient from ~670 °C and 7 kbar to 710 °C and 8.5 kbar. Garnet rims grew during further burial to 16.5–19 kbar at ~850–900 °C, along a steep dP/dT gradient. The pseudosection model of a kyanite‐bearing eclogite sample of more magnesian bulk composition confirms the peak conditions. Matrix reequilibration associated with subsequent near‐isothermal decompression and partial exhumation produced plagioclase‐bearing symplectites replacing kyanite and clinopyroxene at an estimated 850–870 °C and 10–11 kbar. The validity of the pseudosections is discussed in detail. It is shown that in pseudosection modelling the fractionation of FeO in accessory sulphides may cause a significant shift of field boundaries (here displaced by up to 1.5 kbar and 70 °C) and must not be neglected. Fast burial, exhumation and subsequent cooling are supported by the steepness of both the prograde and the decompressional P–T paths as well as the preservation of garnet growth zoning and the symplectitic reaction textures. These features are compatible with deep tectonic burial of the eclogite‐bearing continental crust as part of the underthrusting plate (Eastern Segment, continent Baltica) in a collisional setting that led to an effectively doubled crustal thickness and subsequent exhumation of the eclogites through tectonic extrusion. Our results are in accordance with regional structural and petrological relationships, which demonstrate foreland‐vergent partial exhumation of the eclogite‐bearing nappe along a basal thrust zone and support a major collisional stage at c. 1 Ga. We argue that the similarities between Sveconorwegian and Himalayan eclogite occurrences emphasize the modern style of Grenvillian‐aged tectonics.  相似文献   

2.
Although eclogites in the Belomorian Province have been regarded as Archean in age and among the oldest in the world, there are also multiple studies that have proposed a Paleoproterozoic age. Here, we present new data for the Gridino‐type eclogites, which occur as boudins and metamorphosed dykes within tonalite–trondhjemite–granodiorite gneisses. Zircon from these eclogites has core and rim structures. The cores display high Th/U ratios (0.18–0.45), negative Eu anomalies and strong enrichment in HREE, and have Neoarchean U–Pb ages of c. 2.70 Ga; they are interpreted to be magmatic in origin. Zircon cores have δ18O of 5.64–6.07‰ suggesting the possibility of crystallization from evolved mantle‐derived magmas. In contrast, the rims, which include the eclogite facies minerals omphacite and garnet, are characterized by low Th/U ratios (<0.035) and flat HREE patterns, and yield U–Pb ages of c. 1.90 Ga; they are interpreted to be metamorphic in origin. Zircon rims have elevated δ18O of 6.23–6.80‰, which was acquired during eclogite facies metamorphism. Based on petrography and phase equilibria modelling, we recognize a prograde epidote amphibolite facies mineral assemblage, the peak eclogite facies mineral assemblage and a retrograde high‐P amphibolite facies mineral assemblage. The peak metamorphic conditions of 695–755°C at >18 kbar for the Gridino‐type eclogites suggest an apparent thermal gradient of <39–42°C/kbar for the Lapland–Kola collisional orogeny.  相似文献   

3.
On Holsnøy, an island off the coast of Western Norway, an anorthositic complex metamorphosed to granulite facies was partially overprinted by a later eclogite facies metamorphism. Eclogite facies rocks (containing omphacite, garnet, kyanite and hydrous phases such as mica and zoisite) occur in shear zones of various scales and adjacent to veins. Previous studies of shear zones on Holsnøy reported evidence for substantial element mobility (Jamtveit et al ., 1990; Mattey et al ., 1994). In this work, we compare chemical compositions of granulite and its undeformed eclogitized equivalent adjacent to veins in locations where a single band of granulite can be traced and sampled as it approaches the vein. This tracing is crucial because the pre-granulite rocks cover a substantial compositional range, indicative of a petrologically variable protolith consisting of anorthosite, gabbro and jotunite. We analysed multiple core samples collected across nine separate granulite-eclogite transition zones located at veins in anorthositic, jotunitic and gabbroic protoliths for major and trace elements. For each transition, no compositional difference between the average granulite and average eclogite composition was found at the 90% confidence level except for LOI (loss on ignition), which was consistently significantly higher in the eclogite samples. Although not significant at the 90% confidence level for any single traverse, the average eclogite concentrations of SiO2 , Na2O, Cs, As and Br exceed the average granulite concentrations for eight or all nine of the traverses. For most traverses, statistical analysis of the data limits any gain of SiO2 in the eclogites to no more than a few relative per cent. Other than the introduction of volatile substances, presumably an H2O-rich fluid, eclogitization associated with vein formation was essentially isochemical.  相似文献   

4.
An Al‐rich, SiO2‐deficient sapphirine–garnet‐bearing rock occurs as a metapelitic boudin within granulite facies Proterozoic charnockitic gneisses and migmatites on the island of Hisøy, Bamble Sector, SE Norway. The boudin is made up of peraluminous sapphirine, garnet, corundum, spinel, orthopyroxene, sillimanite, cordierite, staurolite and biotite in a variety of assemblages. Thermobarometric calculations based on coexisting sapphirine–spinel, garnet–corundum–spinel–sillimanite, sapphirine–orthopyroxene, and garnet–orthopyroxene indicate peak‐metamorphic conditions near to 930 °C at 10 kbar. Corundum occurs as single 200 to 3000 micron sized skeletal crystal intergrowths in cores of optically continuous pristine garnet porphyroblasts. Quartz occurs as 5–60 micron‐sized euhedral to lobate inclusions in the corundum where it is in direct contact with the corundum with no evidence of a reaction texture. Some crystal inclusions exhibit growth zoning, which indicates that textural equilibrium was achieved. Electron Back‐Scatter Diffraction (EBSD) studies reveal that the quartz inclusions share a common c‐axis with the host corundum crystal. The origin of the quartz inclusions in corundum is enigmatic as recent experimental studies have confirmed the instability of quartz–corundum over geologically realistic P–T ranges. The combined EBSD and textural observations suggest the presence of a former silica‐bearing proto‐corundum, which underwent exsolution during post‐peak‐metamorphic uplift and cooling. Exsolution of quartz in corundum is probably confined to fluid‐absent conditions where phase transitions by coupled dissolution–precipitation mechanisms are prevented.  相似文献   

5.
The principle of lithostatic pressure is habitually used in metamorphic geology to calculate burial/exhumation depth from pressure given by geobarometry. However, pressure deviation from lithostatic, i.e. tectonic overpressure/underpressure due to deviatoric stress and deformation, is an intrinsic property of flow and fracture in all materials, including rocks under geological conditions. In order to investigate the influences of tectonic overpressure on metamorphic P–T paths, 2D numerical simulations of continental subduction/collision zones were conducted with variable brittle and ductile rheologies of the crust and mantle. The experiments suggest that several regions of significant tectonic overpressure and underpressure may develop inside the slab, in the subduction channel and within the overriding plate during continental collision. The main overpressure region that may influence the P–T paths of HP–UHP rocks is located in the bottom corner of the wedge‐like confined channel with the characteristic magnitude of pressure deviation on the order of 0.3 GPa and 10–20% from the lithostatic values. The degree of confinement of the subduction channel is the key factor controlling this magnitude. Our models also suggest that subducted crustal rocks, which may not necessarily be exhumed, can be classified into three different groups: (i) UHP‐rocks subjected to significant (≥0.3 GPa) overpressure at intermediate subduction depth (50–70 km, P = 1.5–2.5 GPa) then underpressured at depth ≥100 km (P 3 GPa); (ii) HP‐rocks subjected to ≥0.3 GPa overpressure at peak P–T conditions reached at 50–70 km depth in the bottom corner of the wedge‐like confined subduction channel (P = 1.5–2.5 GPa); (iii) lower‐pressure rocks formed at shallower depths (≤40 km depth, P 1 GPa), which are not subjected to significant overpressure and/or underpressure.  相似文献   

6.
Glaucophane‐bearing ultrahigh pressure (UHP) eclogites from the western Dabieshan terrane consist of garnet, omphacite, glaucophane, kyanite, epidote, phengite, quartz/coesite and rutile with or without talc and paragonite. Some garnet porphyroblasts exhibit a core–mantle zoning profile with slight increase in pyrope content and minor or slight decrease in grossular and a mantle–rim zoning profile characterized by a pronounced increase in pyrope and rapid decrease in grossular. Omphacite is usually zoned with a core–rim decrease in j(o) [=Na/(Ca + Na)]. Glaucophane occurs as porphyroblasts in some samples and contains inclusions of garnet, omphacite and epidote. Pseudosections calculated in the NCKMnFMASHO system for five representative samples, combined with petrographic observations suggest that the UHP eclogites record four stages of metamorphism. (i) The prograde stage, on the basis of modelling of garnet zoning and inclusions in garnet, involves PT vectors dominated by heating with a slight increase in pressure, suggesting an early slow subduction process, and PT vectors dominated by a pronounced increase in pressure and slight heating, pointing to a late fast subduction process. The prograde metamorphism is predominated by dehydration of glaucophane and, to a lesser extent, chlorite, epidote and paragonite, releasing ~27 wt% water that was bound in the hydrous minerals. (ii) The peak stage is represented by garnet rim compositions with maximum pyrope and minimum grossular contents, and PT conditions of 28.2–31.8 kbar and 605–613 °C, with the modelled peak‐stage mineral assemblage mostly involving garnet + omphacite + lawsonite + talc + phengite + coesite ± glaucophane ± kyanite. (iii) The early decompression stage is characterized by dehydration of lawsonite, releasing ~70–90 wt% water bound in the peak mineral assemblages, which results in the growth of glaucophane, j(o) decrease in omphacite and formation of epidote. And, (iv) The late retrograde stage is characterized by the mineral assemblage of hornblendic amphibole + epidote + albite/oligoclase + quartz developed in the margins or strongly foliated domains of eclogite blocks due to fluid infiltration at P–T conditions of 5–10 kbar and 500–580 °C. The proposed metamorphic stages for the UHP eclogites are consistent with the petrological observations, but considerably different from those presented in the previous studies.  相似文献   

7.
Kyanite‐ and phengite‐bearing eclogites have better potential to constrain the peak metamorphic P–T conditions from phase equilibria between garnet + omphacite + kyanite + phengite + quartz/coesite than common, mostly bimineralic (garnet + omphacite) eclogites, as exemplified by this study. Textural relationships, conventional geothermobarometry and thermodynamic modelling have been used to constrain the metamorphic evolution of the Tromsdalstind eclogite from the Tromsø Nappe, one of the biggest exposures of eclogite in the Scandinavian Caledonides. The phase relationships demonstrate that the rock progressively dehydrated, resulting in breakdown of amphibole and zoisite at increasing pressure. The peak‐pressure mineral assemblage was garnet + omphacite + kyanite + phengite + coesite, inferred from polycrystalline quartz included in radially fractured omphacite. This omphacite, with up to 37 mol.% of jadeite and 3% of the Ca‐Eskola component, contains oriented rods of silica composition. Garnet shows higher grossular (XGrs = 0.25–0.29), but lower pyrope‐content (XPrp = 0. 37–0.39) in the core than the rim, while phengite contains up to 3.5 Si pfu. The compositional isopleths for garnet core, phengite and omphacite constrain the P–T conditions to 3.2–3.5 GPa and 720–800 °C, in good agreement with the results obtained from conventional geothermobarometry (3.2–3.5 GPa & 730–780 °C). Peak‐pressure assemblage is variably overprinted by symplectites of diopside + plagioclase after omphacite, biotite and plagioclase after phengite, and sapphirine + spinel + corundum + plagioclase after kyanite. Exhumation from ultrahigh‐pressure (UHP) conditions to 1.3–1.5 GPa at 740–770 °C is constrained by the garnet rim (XCaGrt = 0.18–0.21) and symplectite clinopyroxene (XNaCpx = 0.13–0.21), and to 0.5–0.7 GPa at 700–800 °C by sapphirine (XMg = 0.86–0.87) and spinel (XMg = 0.60–0.62) compositional isopleths. UHP metamorphism in the Tromsø Nappe is more widespread than previously known. Available data suggest that UHP eclogites were uplifted to lower crustal levels rapidly, within a short time interval (452–449 Ma) prior to the Scandian collision between Laurentia and Baltica. The Tromsø Nappe as the highest tectonic unit of the North Norwegian Caledonides is considered to be of Laurentian origin and UHP metamorphism could have resulted from subduction along the Laurentian continental margin. An alternative is that the Tromsø Nappe belonged to a continental margin of Baltica, which had already been subducted before the terminal Scandian collision, and was emplaced as an out‐of‐sequence thrust during the Scandian lateral transport of nappes.  相似文献   

8.
Thermobarometric data and compositional zoning of garnet show the discontinuities of both metamorphic pressure conditions at peak‐T and P–T paths across the Main Central Thrust (MCT), which juxtaposes the high‐grade Higher Himalayan Crystalline Sequences (HHCS) over the low‐grade Lesser Himalaya Sequences (LHS) in far‐eastern Nepal. Maximum recorded pressure conditions occur just above the MCT (~11 kbar), and decrease southward to ~6 kbar in the garnet zone and northward to ~7 kbar in the kyanite ± staurolite zone. The inferred nearly isothermal loading path for the LHS in the staurolite zone may have resulted from the underthrusting of the LHS beneath the HHCS. In contrast, the increasing temperature path during both loading and decompression (i.e. clockwise path) from the lowermost HHCS in the staurolite to kyanite ± staurolite transitional zone indicates that the rocks were fairly rapidly buried and exhumed. Exhumation of the lowermost HHCS from deeper crustal depths than the flanking regions, recording a high field pressure gradient (~1.2–1.6 kbar km?1) near the MCT, is perhaps caused by ductile extrusion along the MCT, not the emplacement along a single thrust, resulting in the P–T path discontinuities. These observations are consistent with the overall scheme of the model of channel flow, in which the outward flowing ‘HHCS’ and inward flowing ‘LHS’ are juxtaposed against each other and are rapidly extruded together along the ‘MCT’. A rapid exhumation by channel flow in this area is also suggested by a nearly isothermal decompression path inferred from cordierite corona surrounding garnet in gneiss of the upper HHCS. However, peak metamorphic temperatures show a progressive increase of temperature structurally upward (~570–740 °C) near the MCT and roughly isothermal conditions (~710–810 °C) in the upper structural levels of the HHCS. The observed field temperature gradient is much lower than those predicted in channel flow models. However, the discrepancy could be resolved by taking into account heat advection by melt and/or fluid migration, as these can produce low or nearly no field temperature gradient in the exhumed midcrust, as observed in nature.  相似文献   

9.
A largely undocumented region of eclogite associated with a thick blueschist unit occurs in the Kotsu area of the Sanbagawa belt. The composition of coexisting garnet and omphacite suggests that the Kotsu eclogite formed at peak temperatures of around 600 °C synchronous with a penetrative deformation (D1). There are local significant differences in oxygen fugacity of the eclogite reflected in mineral chemistries. The peak pressure is constrained to lie between 14 and 25 kbar by microstructural evidence for the stability of paragonite throughout the history recorded by the eclogite, and the composition of omphacite in associated eclogite facies pelitic schist. Application of garnet‐phengite‐omphacite geobarometry gives metamorphic pressures around 20 kbar. Retrograde metamorphism associated with penetrative deformation (D2) is in the greenschist facies. The composition of syn‐D2 amphibole in hematite‐bearing basic schist and the nature of the calcium carbonate phase suggest that the retrograde P–T path was not associated with a significant increase or decrease in the ratio of P–T conditions following the peak of metamorphism. This P–T path contrasts with the open clockwise path derived from eclogite of the Besshi area. The development of distinct P–T paths in different parts of the Sanbagawa belt shows the shape of the P–T path is not primarily controlled by tectonic setting, but by internal factors such as geometry of metamorphic units and exhumation rates.  相似文献   

10.
The exposed residual crust in the Eastern Ghats Province records ultrahigh temperature (UHT) metamorphic conditions involving extensive crustal anatexis and melt loss. However, there is disagreement about the tectonic evolution of this late Mesoproterozoic–early Neoproterozoic orogen due to conflicting petrological, structural and geochronological interpretations. One of the petrological disputes in residual high Mg–Al granulites concerns the origin of fine‐grained mineral intergrowths comprising cordierite + K‐feldspar ± quartz ± biotite ± sillimanite ± plagioclase. These intergrowths wrap around porphyroblast phases and are interpreted to have formed by the breakdown of primary osumilite in the presence of melt trapped in the equilibration volume by the melt percolation threshold. The pressure (P)–temperature (T) evolution of four samples from three localities across the central Eastern Ghats Province is constrained using phase equilibria modelling in the chemical system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO). Results of the modelling are integrated with published geochronological results for these samples to show that the central Eastern Ghats Province followed a common P–T–t history. This history is characterized by peak UHT metamorphic conditions of 945–955 °C and 7.8–8.2 kbar followed by a slight increase in pressure and close‐to‐isobaric cooling to the conditions of the elevated solidus at 940–900 °C and 8.5–8.3 kbar. In common with other localities from the Eastern Ghats Province, the early development of cordierite before osumilite and the peak to immediate post‐peak retrograde reaction between osumilite and melt to produce the intergrowth features requires that the prograde evolution was one of contemporaneous increasing pressure with increasing temperature. This counter‐clockwise (CCW) evolution is evaluated for one sample using inverse phase equilibria modelling along a schematic P–T path of 150 °C kbar?1 starting from the low P–T end of the prograde P–T path as constrained by the phase equilibria modelling. The inverse modelling is executed by step‐wise down temperature reintegration of sufficient melt into the residual bulk chemical composition at the P–T point of the 1 mol.% melt isopleth at each step, representing the melt remaining on grain boundaries after each prograde drainage event, to reach the melt connectivity transition (MCT) of 7 mol.%. The procedure is repeated until a plausible protolith composition is recovered. The result demonstrates that clastic sedimentary rocks that followed a CCW P–T evolution could have produced the observed mineral assemblages and microstructures preserved in the central Eastern Ghats Province. This study also highlights the role of melt during UHT metamorphism, particularly its importance to both chemical and physical processes along the prograde and retrograde segments of the P–T path. These processes include: (i) an increase in diffusive length scales during the late prograde to peak evolution, creating equilibration volumes larger than a standard thin section; (ii) the development of retrograde mineral assemblages, which is facilitated if some melt is retained post‐peak; (iii) the presence of melt as a weakening mechanism and the advection of heat by melt, allowing the crust to thicken; and (iv) the effect of melt loss, which makes the deep crust both denser and stronger, and reduces heat production at depth, limiting crustal thickening and facilitating the transition to close‐to‐isobaric cooling.  相似文献   

11.
Medium‐temperature ultrahigh pressure (MT‐UHP) eclogites from the south Dabie orogen, as represented by samples from the Jinheqiao, Shuanghe and Bixiling areas, consist of garnet, omphacite, phengite, epidote, hornblendic amphibole, quartz/coesite and rutile with or without kyanite and talc. Garnet is mostly anhedral and unzoned, but a few porphyroblasts are weakly zoned with core–mantle increasing grossular (Xgr) and decreasing pyrope (Xpy) contents. Garnet compositions are closely correlated with the bulk compositions. For instance, the Xpy and Xgr contents are positively correlated with the bulk MgO and CaO contents. Phengite is occasionally zoned with core–rim deceasing Si content, and phengite grains as inclusions in garnet show higher Si than in the matrix, suggesting differently resetting during post‐peak stages. The maximum Si contents are mostly 3.60–3.63 p.f.u. for the three areas. Pseudosections calculated using THERMOCALC suggest that the MT‐UHP eclogites should have a peak assemblage of garnet + omphacite + lawsonite + phengite + coesite in most rocks of higher MgO content. In this assemblage, the Xpy in garnet mostly depends on bulk compositions, whereas the Xgr in garnet and the Si contents in phengite regularly increase, respectively, as temperature and as pressure rise, and thus, can provide robust thermobarometric constraints. Using the Xgr and Si isopleths in pseudosections, the peak P–T conditions were estimated to be 40 kbar/730 °C for the Jinheqiao, 41 kbar/726 °C for the Shuanghe, and 37–52 kbar and 700–830 °C for the Bixiling eclogites. Some eclogites with higher FeO are predicted to have a peak assemblage of garnet + omphacite + coesite ± phengite without lawsonite, where the garnet and phengite compositions highly depend on bulk compositions and generally cannot give available thermobarometric constraints. Decompression of the eclogites with lawsonite in the peak stage is inferred to be accompanied with cooling and involves two stages: an early‐stage decompression is dominated by lawsonite dehydration, resulting in increase in the mode of anhydrous minerals, or further eclogitization, and formation of epidote porphyroblasts and kyanite‐bearing quartz veins in eclogite. As lawsonite dehydration can facilitate evolution of assemblages under fluid‐present conditions, it is difficult to recover real peak P–T conditions for UHP eclogites with lawsonite. This may be a reason why the P–T conditions estimated for eclogites using thermobarometers are mostly lower than those estimated for the coherent ultramafic rocks, and lower than those suggested from the inclusion assemblages in zircon from marble. A late‐stage decompression is dominated by formation of hornblendic amphibole and plagioclase with fluid infiltration. The lawsonite‐absent MT‐UHP eclogites have only experienced a decompression metamorphism corresponding to the later stage and generally lack the epidote overprinting.  相似文献   

12.
The Blåhø Nappe on the island of Fjørtoft, which represents an isolated portion of the Seve Nappe Complex in the Western Gneiss Region, Norway, has been suggested to have experienced two deep burial cycles during the Caledonian orogeny. However, evidence on this multiple burial process by the derivation of a pressure–temperature–time (P–T–t) path has never been given in the literature. In this study, the ‘diamondiferous’ kyanite–garnet gneiss from the Blåhø Nappe on Fjørtoft was revisited to determine if such a process was correct. Two types of garnet, porphyroblastic garnet‐1 and fine‐grained garnet‐2, were recognized in the gneiss. The core of garnet‐1 is poor in Ca and documents P–T conditions of 1.2–1.3 GPa at c. 880°C based on pseudosection modelling. The inner rims of garnet‐1 and the core of garnet‐2 are both richer in Ca, recording P–T conditions of 1.35–1.45 GPa and 770–820°C. Application of conventional geothermobarometry on the outer rim of garnet‐1 and the rim of garnet‐2 yielded retrograde P–T conditions of 0.75–0.90 GPa and 610–685°C. These estimates define an anticlockwise P–T path at pressures below 1.5 GPa. Accessory monazite was dated with the electron microscope. Relicts of detrital monazite in the gneiss point to Sveconorwegian and possibly also Cryogenian provenance for the detritus of the sedimentary protolith. Metamorphic monazite in the gneiss records a wide age range from 460 to 380 Ma, with a peak c. 435 Ma and a shoulder at 395 Ma. These data suggest that the original (Ediacaran?) Baltica margin sediment (gneiss protolith) was transported to the base of an overlying plate during the early Caledonian (pre‐Scandian) orogeny. A long residence time of the metasedimentary rock at this base caused its heating to 880°C and homogenization of the early garnet chemistry. The late Caledonian (Scandian) collision between Baltica and Laurentia led to further burial, during which the studied gneiss was close to the former surface of the downgoing continental plate and, thus, cooled. The reconstructed P–T–t path confirms the multiple burial history of the Blåhø Nappe but contradicts previous ideas of deep burial of the Fjørtoft gneiss to more than 100 km.  相似文献   

13.
High‐P metamorphic rocks that are formed at the onset of oceanic subduction usually record a single cycle of subduction and exhumation along counterclockwise (CCW) P–T paths. Conceptual and thermo‐mechanical models, however, predict multiple burial–exhumation cycles, but direct observations of these from natural rocks are rare. In this study, we provide a new insight into this complexity of subduction channel dynamics from a fragment of Middle‐Late Jurassic Neo‐Tethys in the Nagaland Ophiolite Complex, northeastern India. Based on integrated textural, mineral compositional, metamorphic reaction history and geothermobarometric studies of a medium‐grade amphibolite tectonic unit within a serpentinite mélange, we establish two overprinting metamorphic cycles (M1–M2). These cycles with CCW P–T trajectories are part of a single tectonothermal event. We relate the M1 metamorphic sequence to prograde burial and heating through greenschist and epidote blueschist facies to peak metamorphism, transitional between amphibolite and hornblende‐eclogite facies at 13.8 ± 2.6 kbar, 625 ± 45 °C (error 2σ values) and subsequent cooling and partial exhumation to greenschist facies. The M2 metamorphic cycle reflects epidote blueschist facies prograde re‐burial of the partially exhumed M1 cycle rocks to peak metamorphism at 14.4 ± 2 kbar, 540 ± 35 °C and their final exhumation to greenschist facies along a relatively cooler exhumation path. We interpret the M1 metamorphism as the first evidence for initiation of subduction of the Neo‐Tethys from the eastern segment of the Indus‐Tsangpo suture zone. Reburial and final exhumation during M2 are explained in terms of material transport in a large‐scale convective circulation system in the subduction channel as the latter evolves from a warm nascent to a cold and more mature stage of subduction. This Neo‐Tethys example suggests that multiple burial and exhumation cycles involving the first subducted oceanic crust may be more common than presently known.  相似文献   

14.
The Winding Stair Gap in the Central Blue Ridge province exposes granulite facies schists, gneisses, granofelses and migmatites characterized by the mineral assemblages: garnet–biotite–sillimanite–plagioclase–quartz, garnet–hornblende–biotite–plagioclase–quartz ± orthopyroxene ± clinopyroxene and orthopyroxene–biotite–quartz. Multiple textural populations of biotite, kyanite and sillimanite in pelitic schists support a polymetamorphic history characterized by an early clockwise P–T path in which dehydration melting of muscovite took place in the stability field of kyanite. Continued heating led to dehydration melting of biotite until peak conditions of 850 ± 30 °C, 9 ± 1 kbar were reached. After equilibrating at peak temperatures, the rocks underwent a stage of near isobaric cooling during which hydrous melt ± K‐feldspar were replaced by muscovite, and garnet by sillimanite + biotite + plagioclase. Most monazite crystals from a pelitic schist display patchy zoning for Th, Y and U, with some matrix crystals having as many as five compositional zones. A few monazite inclusions in garnet, as well as Y‐rich cores of some monazite matrix crystals, yield the oldest dates of c. 500 Ma, whereas a few homogeneous matrix monazites that grew in the main foliation plane yield dates of 370–330 Ma. Culling and analysis of individual spot dates for eight monazite grains yields three age populations of 509 ± 14 Ma, 438 ± 5 Ma and 360 ± 5 Ma. These data suggest that peak‐temperature metamorphism and partial melting in the central Blue Ridge occurred during the Salinic or Taconic orogeny. Following near isobaric cooling, a second weaker thermal pulse possibly related to intrusion of nearby igneous bodies resulted in growth of monazite c. 360 Ma, coinciding with the Neoacadian orogeny.  相似文献   

15.
16.
The Palaeo‐Mesoproterozoic metapelite granulites from northern Garo Hills, western Shillong‐Meghalaya Gneissic Complex (SMGC), northeast India, consist of resorbed garnet, cordierite and K‐feldspar porphyroblasts in a matrix comprising shape‐preferred aggregates of biotite±sillimanite+quartz that define the penetrative gneissic fabric. An earlier assemblage including biotite and sillimanite occurs as inclusions within the garnet and cordierite porphyroblasts. Staurolite within cordierite in samples without matrix sillimanite is interpreted to have formed by a reaction between the sillimanite inclusion and the host cordierite during retrogression. Accessory monazite occurs as inclusions within garnet as well as in the matrix, whereas accessory xenotime occurs only in the matrix. The monazite inclusions in garnet contain higher Ca, and lower Y and Th/U than the matrix monazite outside resorbed garnet rims. On the other hand, matrix monazite away from garnet contains low Ca and Y, and shows very high Th/U ratios. The low Th/U ratios (<10) of the Y‐poor garnet‐hosted monazite indicate subsolidus formation during an early stage of prograde metamorphism. A calculated P–T pseudosection in the MnCKFMASH‐PYCe system indicates that the garnet‐hosted monazite formed at <3 kbar/600 °C (Stage A). These P–T estimates extend backward the previously inferred prograde P–T path from peak anatectic conditions of 7–8 kbar/850 °C based on major mineral equilibria. Furthermore, the calculated P–T pseudosections indicate that cordierite–staurolite equilibrated at ~5.5 kbar/630 °C during retrograde metamorphism. Thus, the P–T path was counterclockwise. The Y‐rich matrix monazite outside garnet rims formed between ~3.2 kbar/650 °C and ~5 kbar/775 °C (Stage B) during prograde metamorphism. If the effect of bulk composition change due to open system behaviour during anatexis is considered, the P–T conditions may be lower for Stage A (<2 kbar/525 °C) and Stage B (~3 kbar/600 °C to ~3.5 kbar/660 °C). Prograde garnet growth occurred over the entire temperature range (550–850 °C), and Stage‐B monazite was perhaps initially entrapped in garnet. During post‐peak cooling, the Stage‐B monazite grains were released in the matrix by garnet dissolution. Furthermore, new matrix monazite (low Y and very high Th/U ≤80, ~8 kbar/850–800 °C, Stage C), some monazite outside garnet rims (high Y and intermediate Th/U ≤30, ~8 kbar/800–785 °C, Stage D), and matrix xenotime (<785 °C) formed through post‐peak crystallization of melt. Regardless of textural setting, all monazite populations show identical chemical ages (1630–1578 Ma, ±43 Ma). The lithological association (metapelite and mafic granulites), and metamorphic age and P–T path of the northern Garo Hills metapelites and those from the southern domain of the Central Indian Tectonic Zone (CITZ) are similar. The SMGC was initially aligned with the southern parts of CITZ and Chotanagpur Gneissic Complex of central/eastern India in an ENE direction, but was displaced ~350 km northward by sinistral movement along the north‐trending Eastern Indian Tectonic Zone in Neoproterozoic. The southern CITZ metapelites supposedly originated in a back‐arc associated with subducting oceanic lithosphere below the Southern Indian Block at c. 1.6 Ga during the initial stage of Indian shield assembly. It is inferred that the SMGC metapelites may also have originated contemporaneously with the southern CITZ metapelites in a similar back‐arc setting.  相似文献   

17.
Meta‐anorthosite bodies are typical constituents of the Neoproterozoic Eastern Granulites in Tanzania. The mineral assemblage (and accessory components) is made up of clinopyroxene, garnet, amphibole; scapolite, epidote, biotite, rutile, titanite, ilmenite and quartz. Within the feldspar‐rich matrix (70–90% plagioclase), mafic domains with metamorphic corona textures were used for P–T calculations. Central parts of these textures constitute high‐Al clinopyroxene – which is a common magmatic mineral in anorthosites – and is therefore assumed to be a magmatic relict. The clinopyroxene rims have a diopsidic composition and are surrounded by a garnet corona. Locally the pyroxene is surrounded by amphibole and scapolite suggesting that a mixed CO2–H2O fluid was present during their formation. Thermobarometric calculations give the following conditions for the metamorphic peak of the individual meta‐anorthosite bodies: Mwega: 11–13 kbar, 850–900 °C; Pare Mountains: 12–14 kbar, 850–900 °C; Uluguru Mountains: 12–14 kbar, 850–900 °C. The P–T evolution of these bodies was modelled using pseudosections. The amount and composition of the metamorphic fluid and <0.5 mol.% fluid in the bulk composition is sufficient to produce fluid‐saturated assemblages at 10 kbar and 800 °C. Pseudosection analysis shows that the corona textures most likely formed under fluid undersaturated conditions or close to the boundary of fluid saturation. The stabilities of garnet and amphibole are dependent on the amount of fluid present during their formation. Mode isopleths of these minerals change their geometry drastically between fluid‐saturated and fluid‐undersaturated assemblages. The garnet coronae developed during isobaric cooling following the metamorphic peak. The cooling segment is followed by decompression as indicated by the growth of amphibole and plagioclase. The estimated of the metamorphic fluid is ~0.3–0.5. Although the meta‐anorthosites have different formation ages (Archean and Proterozoic) they experienced the same Pan‐African metamorphic overprint with a retrograde isobaric cooling path. Similar P–T evolutionary paths are known from the hosting granulites. The presented data are best explained by a tectonic model of hot fold nappes that brought the different aged anorthosites and surrounding rocks together in the deep crust followed by an isobaric cooling history.  相似文献   

18.
The Changning–Menglian orogenic belt (CMOB) in the southeastern Tibetan Plateau, is considered as the main suture zone marking the closure of the Palaeo‐Tethys Ocean between the Indochina and Sibumasu blocks. Here, we investigate the recently discovered retrograded eclogites from this suture zone in terms of their petrological, geochemical and geochronological features, with the aim of constraining the metamorphic evolution and protolith signature. Two types of metabasites are identified: retrograded eclogites and mafic schists. The igneous precursors of the retrograded eclogites exhibit rare earth element distribution patterns and trace element abundance similar to those of ocean island basalts, and are inferred to have been derived from a basaltic seamount in an intra‐oceanic tectonic setting. In contrast, the mafic schists show geochemical affinity to arc‐related volcanics with the enrichment of Rb, Th and U, and depletion of Nb, Ta, Zr, Hf and Ti, and their protoliths possibly formed at an active continental margin tectonic setting. Retrograded eclogites are characterized by peak metamorphic mineral assemblages of garnet, omphacite, white mica, lawsonite and rutile, and underwent five‐stage metamorphic evolution, including pre‐peak prograde stage (M1) at 18–19 kbar and 400–420°C, peak lawsonite‐eclogite facies (M2) at 24–26 kbar and 520–530°C, post‐peak epidote–eclogite facies decompression stage (M3) at 13–18 kbar and 530–560°C, subsequent amphibolite facies retrogressive stage (M4) at 8–10 kbar and 530–600°C, and late greenschist facies cooling stage (M5) at 5–8 kbar and 480–490°C. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb spot analyses of zircon show two distinct age groups. The magmatic zircon from both the retrograded eclogite and mafic schist yielded protolith ages of 451 ± 3 Ma, which is consistent with the ages of Early Palaeozoic ophiolitic complexes and ocean island sequences in the CMOB reported in previous studies. In contrast, metamorphic zircon from the retrograded eclogite samples yielded consistent Triassic metamorphic ages of 246 ± 2 and 245 ± 2 Ma, which can be interpreted as the timing of closure of the Palaeo‐Tethys Ocean. The compatible peak metamorphic mineral assemblages, P–T–t paths and metamorphic ages, as well as the similar protolith signatures for the eclogites in the CMOB and Longmu Co–Shuanghu suture (LCSS) suggest that the two belts formed part of a cold oceanic subduction system in the Triassic. The main suture zone of the Palaeo‐Tethyan domain extends at least 1,500 km in length from the CMOB to the LCSS in the Tibetan Plateau. The identification of lawsonite‐bearing retrograded eclogites in the CMOB provides important insights into the tectonic framework and complex geological evolution of the Palaeo‐Tethys.  相似文献   

19.
Major element, trace element and Lu–Hf geochronological data from amphibolite facies pelitic schist in the Raft River and Albion Mountains of northwest Utah and southern Idaho indicate that garnet grew during increasing pressure, interpreted to be the result of tectonic burial and crustal thickening during Sevier orogenesis. Garnet growth was interrupted by hiatuses interpreted from discontinuities in major element zonation. Pressure–temperature paths were determined from the pre‐hiatus portions of the garnet chemical zoning profiles and indicate an increase of ~2 kbar and ~50 °C in the western Raft River Mountains. Garnet Lu–Hf dates of 150 ± 1 Ma in the western Raft River Mountains and 138.7 ± 0.7 Ma and 132 ± 5 Ma in the southern Albion Mountains indicate the timing of garnet growth. Lutetium garnet zoning profiles indicate that the Lu–Hf ages are biased towards the post‐hiatus or outer pre‐hiatus segments, indicating that the determined ages likely post‐date the recorded P–T path history or date the tail end of the paths. Crustal thickening associated with Sevier orogenesis in the western Raft River Mountains thus began slightly before 150 ± 1 Ma, in the Late Jurassic. This study shows that integrating P–T paths determined from garnet growth zoning with Lu–Hf garnet geochronology and in situ garnet trace element analyses is an effective approach for interpreting and dating deformation events in orogenic belts.  相似文献   

20.
Garnet amphibolites can provide valuable insights into geological processes of orogenic belts, but their metamorphic evolution is still poorly constrained. Garnet amphibolites from the Wutai–Hengshan area of the North China Craton mainly consist of garnet, hornblende, plagioclase, quartz, rutile and ilmenite, with or without titanite and epidote. Four samples selected in a south–north profile were studied by the pseudosection approach in order to elucidate the characteristics of their metamorphic evolution, and to better reveal the northwards prograde change in P–T conditions as established previously. For the sample from the lower Wutai Subgroup, garnet exhibits obvious two‐substage growth zoning characteristic of pyrope (Xpy) increasing but grossular (Xgr) decreasing outwards in the core, and both Xpy and Xgr increasing outwards in the rim. Phase modelling using thermocalc suggests that the garnet cores were formed by chlorite breakdown over 7–9 kbar at 530–600 °C, and rims grew from hornblende and epidote breakdown over 9.5–11.5 kbar at 600–670 °C. The isopleths of the minimum An in plagioclase and maximum Xpy in garnet were used to constrain the peak P–T conditions of ~11.5 kbar/670 °C. The modelled peak assemblage garnet + hornblende + epidote+ plagioclase + rutile + quartz matches well the observed one. Plagioclase–hornblende coronae around garnet indicate post‐peak decompression and fluid ingress. For the samples from the south Hengshan Complex, the garnet zoning weaken gradually, reflecting modifications during decompression of the rocks. Using the same approach, the rocks are inferred to have suprasolidus peak conditions, increasing northwards from 11.5 kbar/745 °C, 12.5 kbar/780 °C to 13 kbar/800 °C. Their modelled peak assemblages involve diopside, garnet, hornblende, plagioclase, rutile and quartz, yet diopside is not observed petrographically. The post‐peak decompression is characterized by diopside + garnet + quartz + melt = hornblende + plagioclase, causing the diopside consumption and garnet compositions to be largely modified. Thus, the pesudosection approach is expected to provide better pressure results than conventional thermobarometry, because the later approach cannot be applied with confidence to rocks with multi‐generation assemblages. U–Pb dating of zircon in the Wutai sample records a protolith age of c. 2.50 Ga, and a metamorphic age of c. 1.95 Ga, while zircon in the Hengshan samples records metamorphic ages of c. 1.92 Ga. The c. 1.95 Ga is interpreted to represent the pre‐peak or peak metamorphic stages, and the ages of c. 1.92 Ga are assigned to represent the cooling stages. All rocks in the Wutai–Hengshan area share similar clockwise P–T morphologies. They may represent metamorphic products at different crustal depths in one orogenic event, which included a main thickening stage at c. 1.95 Ga followed by a prolonged uplift and cooling after 1.92 Ga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号