首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper investigates Robe’s circular restricted three-body problem for two cases: with a Roche ellipsoid-triaxial system and with a Roche ellipsoid-oblate system. Without ignoring any component in both problems, a full treatment is given of the buoyancy force. The relevant equations of motion are established, and the special case where the density of the fluid and that of the infinitesimal mass are equal (D=0) is discussed. The location of the libration point and its stability when the infinitesimal mass is denser than the medium (D>0) are studied and it is found that the point (0,0,0) is the only libration point and this point is stable.  相似文献   

3.
We consider two classical celestial-mechanical systems: the planar restricted circular three-body problem and its simplification, the Hill’s problem. Numerical and analytical analyses of the covering of a Hill’s region by solutions starting with zero velocity at its boundary are presented. We show that, in all considered cases, there always exists an area inside a Hill’s region that is uncovered by the solutions.  相似文献   

4.
5.
This paper examines the existence and linear stability of equilibrium points in the perturbed Robe’s circular restricted three-body problem under the assumption that the hydrostatic equilibrium figure of the first primary is an oblate spheroid, and the shape of the second primary is also an oblate spheroid. The problem is perturbed in the sense that small perturbations given to the Coriolis and centrifugal forces are being considered. Results of the analysis found two axial equilibrium points on the line joining the centre of both primaries. It is further observed that under certain conditions, points on the circle within the first primary are also equilibrium points. The linear stability of this configuration is examined; it is observed that the first axial point is unstable while the second one is conditionally stable and the circular points are unstable.  相似文献   

6.
This paper examines the existence and linear stability of equilibrium points in the perturbed Robe’s circular restricted three-body problem under the assumption that the hydrostatic equilibrium figure of the first primary is an oblate spheroid. The problem is perturbed in the sense that small perturbations are given to the Coriolis and centrifugal forces are being considered. Results of the analysis found two axial equilibrium points on the line joining the centre of both primaries. It is further observed that under certain conditions, points on the circle within the first primary are also equilibrium points. And a special case where the density of the fluid and that of the infinitesimal mass are equal (D = 0) is discussed. The linear stability of this configuration is examined; it is observed that the first axial point is unstable while the second one is conditionally stable and the circular points are unstable.  相似文献   

7.
This study investigates the nonlinear stability of the triangular equilibrium points when the bigger primary is an oblate spheroid and the infinitesimal body varies (decreases) it’s mass in accordance with Jeans’ law. It is found that these points are stable for all mass ratios in the range of linear stability except for three mass ratios depending upon oblateness coefficient A and β, a constant due to the variation in mass governed by Jeans’ law.  相似文献   

8.
This paper investigates the periodic orbits around the triangular equilibrium points for 0<μ<μ c , where μ c is the critical mass value, under the combined influence of small perturbations in the Coriolis and the centrifugal forces respectively, together with the effects of oblateness and radiation pressures of the primaries. It is found that the perturbing forces affect the period, orientation and the eccentricities of the long and short periodic orbits.  相似文献   

9.
Poincaré surface of section technique is used to study the evolution of a family ‘f’ of simply symmetric retrograde periodic orbits around the smaller primary in the framework of restricted three-body problem for a number of systems, actual and hypothetical, with mass ratio varying from 10−7 to 0.015. It is found that as the mass ratio decreases the region of phase space containing the two separatrices shrinks in size and moves closer to the smaller primary. Also the corresponding value of Jacobi constant tends towards 3.  相似文献   

10.
We consider asymmetric periodic solutions of the double-averaged Hill problem by taking into account oblateness of the central planet. They are generated by steady-state solutions, which are stable in the linear approximation and correspond to satellite orbits orthogonal to the line of intersection of the planet’s equatorial plane with the orbital plane of a disturbing point. For two model systems [(Sun+Moon)-Earth-satellite] and [Sun-Uranus-satellite], these periodic solutions are numerically continued from a small vicinity of the equilibrium position. The results are illustrated by projecting the solutions onto the (pericenter argument-eccentricity) and (longitude-inclination) planes.  相似文献   

11.
Linearization of the Hamiltonian is being performed in the generalized photogravitational Chermnykh’s problem. The normal form of the second order part of the Hamiltonian have been found. The effect of radiation pressure, gravitational potential from the belt have been examined analytically and numerically  相似文献   

12.
This paper examines the existence and stability of the out-of-plane equilibrium points of a third body of infinitesimal mass when the equations of motion are written in the three dimensional form under the set up of the Robe’s circular restricted three-body problem, in which the hydrostatic equilibrium figure of the first primary is an oblate spheroid and the second one is a triaxial rigid body under the full buoyancy force of the fluid. The existence of the out of orbital plane equilibrium points lying on the xz-plane is noticed. These points are however unstable in the linear sense.  相似文献   

13.
The equilibrium points and their linear stability has been discussed in the generalized photogravitational Chermnykh’s problem. The bigger primary is being considered as a source of radiation and small primary as an oblate spheroid. The effect of radiation pressure has been discussed numerically. The collinear points are linearly unstable and triangular points are stable in the sense of Lyapunov stability provided μ<μ Routh =0.0385201. The effect of gravitational potential from the belt is also examined. The mathematical properties of this system are different from the classical restricted three body problem.  相似文献   

14.
We locate and examine the stability of the ‘out of plane’ equilibrium points, L 6,7 of an infinitesimal body in the field of stellar-oblate binary systems moving in elliptic orbits around their common center of mass. Their positions and stability depend on the oblateness as well as radiation coefficients of the primaries and the eccentricity of their orbits. A numerical application of this problem for the systems: Gamma Leporis and Altair are given.  相似文献   

15.
The regularization of a new problem, namely the three-body problem, using ‘similar’ coordinate system is proposed. For this purpose we use the relation of ‘similarity’, which has been introduced as an equivalence relation in a previous paper (see Roman in Astrophys. Space Sci. doi:, 2011). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The ‘similar’ polar angle’s definition is introduced, in order to analyze the regularization’s geometrical transformation. The effect of Levi-Civita’s transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.  相似文献   

16.
The Sitnikov configuration is a special case of the restricted three-body problem where the two primaries are of equal masses and the third body of a negligible mass moves along a straight line perpendicular to the orbital plane of the primaries and passes through their center of mass. It may serve as a toy model in dynamical astronomy, and can be used to study the three-dimensional orbits in more applicable cases of the classical three-body problem. The present paper concerns the straight-line oscillations of the Sitnikov family of the photogravitational circular restricted three-body problem as well as the associated families of three-dimensional periodic orbits. From the stability analysis of the Sitnikov family and by using appropriate correctors we have computed accurately 49 critical orbits at which families of 3D periodic orbits of the same period bifurcate. All these families have been computed in both cases of equal and non-equal primaries, and consist entirely of unstable orbits. They all terminate with coplanar periodic orbits. We have also found 35 critical orbits at which period doubling bifurcations occur. Several families of 3D periodic orbits bifurcating at these critical Sitnikov orbits have also been given. These families contain stable parts and close upon themselves containing no coplanar orbits.  相似文献   

17.
The regions of stability for the out of plane equilibrium points of the photogravitational restricted three-body problem are given. Second order expansions of periodic solutions around these points are constructed and the corresponding families are computed. It is found that two such families exist. One of them originates and terminates on the same equilibrium point while the other terminates by flattening on the orbital plane.  相似文献   

18.
This paper investigates the nonlinear stability of the triangular equilibrium points under the influence of small perturbations in the Coriolis and centrifugal forces together with the effect of oblateness and radiation pressures of the primaries. It is found that the triangular points are stable for all mass ratios in the range of linear stability except for three mass ratios depending upon above perturbations, oblateness coefficients and mass reduction factors.  相似文献   

19.
We study the equilibrium points and the zero-velocity curves of Chermnykh’s problem when the angular velocity ω varies continuously and the value of the mass parameter is fixed. The planar symmetric simple-periodic orbits are determined numerically and they are presented for three values of the parameter ω. The stability of the periodic orbits of all the families is computed. Particularly, we explore the network of the families when the angular velocity has the critical value ω = 2√2 at which the triangular equilibria disappear by coalescing with the collinear equilibrium point L1. The analytic determination of the initial conditions of the family which emanate from the Lagrangian libration point L1 in this case, is given. Non-periodic orbits, as points on a surface of section, providing an outlook of the stability regions, chaotic and escape motions as well as multiple-periodic orbits, are also computed. Non-linear stability zones of the triangular Lagrangian points are computed numerically for the Earth–Moon and Sun–Jupiter mass distribution when the angular velocity varies.  相似文献   

20.
We discuss the existence, location, and stability of the collinear equilibrium points of a generalized Hill problem with radiation of the primary (the Sun) and oblateness of the secondary (the planet), and present some remarkable fractals created as basins of attraction of Newton’s method applied for their computation in several cases of the parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号