首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is emphasized to explore the validity of generalized second law of thermodynamics in the context of non-linear electrodynamics (magnetic effects only) with Brans-Dicke chameleon scalar field as dark energy candidate. For this purpose, we consider FRW universe model with perfect fluid matter contents. We evaluate matter energy density and magnetic field by taking interacting and non-interacting cases of magnetic field and matter as well as the power law ansatz for scalar field. The validity of this law is discussed by using the first law of thermodynamics for four different horizons: Hubble, apparent, particle and event horizons. We conclude that this law may hold for all four horizons with small positive red-shift when chameleon mechanism is taken into account in Brans-Dicke gravity. Finally, we investigate the statefinders in order to check the viability of the model.  相似文献   

2.
In this work, we consider the framework of non-linear electrodynamics in Bianchi type I universe model composed of matter and electromagnetic field. We deal with electric and magnetic universe separately. In this scenario, we calculate the electric and magnetic fields and their corresponding matter densities using two particular types of interaction terms. We also check the validity of generalized second law of thermodynamics in both universe models enclosed by apparent horizon. It turns out that this law holds on the apparent horizon for a particular range depending upon the parameters. Finally, we discuss the deceleration and statefinder parameters to check the viability of these models.  相似文献   

3.
This paper investigates the validity of generalized second law of thermodynamics using both the power law and logarithmic entropy corrected formulas in a general scalar-tensor gravity. For this purpose, we take non-flat FRW universe model filled with magnetized perfect fluid matter bounded by four different horizons namely Hubble, apparent, particle and event horizons. We introduce a non-minimal interaction between scalar and matter fields and take Lagrangian density of non-linear electromagnetic effects. Finally, we extend this study to anisotropic case by taking Bianchi I universe model bounded by apparent horizon only and investigate the role of anisotropy parameter on the validity of GSLT. In this case, we also explore the behavior of some cosmological parameters.  相似文献   

4.
This paper deals with the study of dynamical or phase space analysis of Bianchi I universe in Brans-Dicke gravity with chameleon scalar field. For this purpose, the matter contents are taken to be perfect fluid with magnetic field effects described by the non-linear Maxwell Lagrangian density. By taking some ansatz for the field potential and the interaction function in chameleon cosmology, we discuss three cases: Bianchi I universe with perfect fluid, FRW universe with magnetized perfect fluid and Bianchi I universe with magnetized perfect fluid. In all cases, we calculate fixed or critical points and discuss stability of the respective configuration for radiation as well as matter dominated eras. We also evaluate some cosmological parameters in each case for matter dominated era only and investigate their cosmological implications.  相似文献   

5.
In this letter, we have considered that the universe is filled with normal matter and variable modified Chaplygin gas. Also we have considered the interaction between normal matter and variable modified Chaplygin gas in FRW universe. Then we have considered a correspondence between the holographic dark energy density and interacting variable modified Chaplygin gas energy density. Then we have reconstructed the potential of the scalar field which describes the variable modified Chaplygin cosmology.  相似文献   

6.
Recently, a field theoretic model for a UV complete theory of gravity has been proposed by Hor̃ava. This theory is a non-relativistic renormalizable gravity theory which coincides with Einstein’s general relativity at large distances. Subsequently Lü et al. have formulated the modified Friedmann equations and have presented a solution in vacuum. In the present work, we rewrite the modified FRW equations in the form of usual FRW equations in Einstein gravity and consequences have been analyzed. Also the thermodynamics of the FRW universe has been studied.  相似文献   

7.
In this paper, we study the nonlinear electrodynamics in the framework of f(T) gravity for FRW universe along with dust matter, magnetic and torsion contributions. We evaluate the equation of state and deceleration parameters to explore the accelerated expansion of the universe. The validity of generalized second law of thermodynamics for Hubble and event horizons is also investigated in this scenario. For this purpose, we assume polelike and power-law forms of scale factor and construct f(T) models. The graphical behavior of the cosmological parameters versus smaller values of redshift z represent the accelerated expansion of the universe. It turns out that the generalized second law of thermodynamics holds for all values of z with Hubble and event horizons in polelike scale factor whereas for power-law form, it holds in a specific range of z for both horizons.  相似文献   

8.
The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) has been utilized to solve the field equations. The Berman’s law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe has been discussed in detail.  相似文献   

9.
We study the validity of the generalized second law (GSL) of gravitational thermodynamics in a non-flat FRW universe containing the interacting in f(T) gravity. We consider that the boundary of the universe to be confined by the dynamical apparent horizon in FRW universe. In general, we discuss the effective equation of state, deceleration parameter and GLS in this framewok. Also, we find that the interacting-term Q modifies these quantities and in particular, the evolution of the total entropy, results in an increases on the GLS of thermodynamic, by a factor $4\pi R_{A}^{3} Q/3$ . By using a viable f(T) gravity with an exponential dependence on the torsion, we develop a model where the interaction term is related to the total energy density of matter. Here, we find that a crossing of phantom divide line is possible for the interacting-f(T) model.  相似文献   

10.
Here we consider our universe as homogeneous spherically symmetric FRW model and analyze the thermodynamics of this model of the universe in scalar-tensor theory. Assuming the first law of thermodynamics validity of the generalized second law of thermodynamics (GSLT) at the event horizon is examined in both the cases when the universe is filled with perfect fluid and the holographic dark energy.  相似文献   

11.
We propose in this paper an interacting holographic dark energy (IHDE) model in chameleon–tachyon cosmology by interaction between the components of the dark sectors. In the formalism, the interaction term emerges from the scalar field coupling matter Lagrangian in the model rather than being inserted into the formalism as an external source for the interaction. The correspondence between the tachyon field and the holographic dark energy (HDE) densities allows to reconstruct the tachyon scalar field and its potential in a flat FRW universe. The model can show the accelerated expansion of the universe and satisfies the observational data.  相似文献   

12.
We investigate the validity of the generalized second law of gravitational thermodynamics in a non-flat FRW universe containing the interacting generalized Chaplygin gas with the baryonic matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for the interacting generalized Chaplygin gas as a unified candidate for dark matter and dark energy, the equation of state parameter can cross the phantom divide. We also present that for the selected model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the equation of state of the interacting generalized Chaplygin gas model.  相似文献   

13.
In this paper, a general FRW cosmological model has been constructed in f(R,T) gravity reconstruction with variable cosmological constant. A number of solutions to the field equations has been generated by utilizing a form for the Hubble parameter that leads to Berman's law of constant deceleration parameter q = m-1. The possible decelerating and accelerating solutions have been investigated. For(q 0) we get a stable flat decelerating radiation-dominated universe at q = 1. For(q 0) we get a stable accelerating solution describing a flat universe with positive energy density and negative cosmological constant. Nonconventional mechanisms that are expected to address the late-time acceleration with negative cosmological constant have been discussed.  相似文献   

14.
The present work deals with irreversible thermodynamics of universe containing interacting dark fluids. Recent observational evidences reveal that the universe is dominated by two dark components-dark matter and dark energy. The interaction between them leads to spontaneous heat flow between the horizon and the fluid system and as a result the system will no longer be in thermal equilibrium. In this paper dark matter is chosen as pressureless dust while modified Chaplygin gas has been considered as dark energy. In two separate cases we have considered the universe to be bounded by apparent horizon and event horizon and the validity of generalized second law of thermodynamics in the context of irreversible thermodynamics has been studied for both the cases.  相似文献   

15.
16.
In this work, we have considered variable G in flat FRW universe filled with the mixture of dark energy, dark matter and radiation. If there is no interaction between the three fluids, the deceleration parameter and statefinder parameters have been calculated in terms of dimensionless density parameters which can be fixed by observational data. Also the interaction between three fluids has been analyzed due to constant G. The statefinder parameters also calculated in two cases: pressure is constant and pressure is variable.  相似文献   

17.
In this work, the charged black hole solution to the Brans-Dicke gravity theory in the presence of the nonlinear electrodynamics has been investigated. To simplify the field equations, a suitable conformal transformation has been used which transforms the Brans-Dicke-Born-Infeld Lagrangian to that of Einstein-dilaton theory with new nonlinear electrodynamics field. A new class of 4-dimensional black hole solution has been constructed out as the exact solution to the Brans-Dicke theory in the presence of the Born-Infeld nonlinear electrodynamics. The physical properties of the solutions have been studied. The black hole charge and temperature have been calculated making use of the Gauss’s law and the concept of surface gravity, respectively. Also, the black hole mass and entropy have been obtained from geometrical methods. Through a Smarr-type mass formula as a function of the black hole charge and entropy the black hole temperature and electric potential, as the intensive parameters conjugate to the black hole entropy and charge, have been calculated.  相似文献   

18.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Robertson-Walker universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The cosmological term tends asymptotically to a genuine cosmological constant and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

19.
We study some holographic dark energy models in chameleonic Brans-Dicke field gravity by taking interaction between the dark energy components in FRW universe. Firstly, we take the holographic dark energy model with Granda-Oliveros cut-off and discuss interacting as well as non-interacting cases. Secondly, we consider the holographic dark energy with both power-law as well as logarithmic corrections using Hubble scale as infrared cut-off in interacting case only. We describe the evolution of some cosmological parameters for these holographic dark energy models. It is concluded that the phantom crossing can be achieved more easily in the presence of chameleonic Brans-Dicke field as compared to simple Brans-Dicke as well as Einstein’s gravity. Also, the deceleration parameter strongly confirms the accelerated expanding behavior of the universe.  相似文献   

20.
Considering power-law for of scale factor in a flat FRW universe we reported a reconstruction scheme for f(G) gravity based on QCD ghost dark energy. We reconstructed the effective equation of state parameter and observed “quintessence” behavior of the equation of state parameter. Furthermore, considering dynamical apparent horizon as the enveloping horizon of the universe we have observed that the generalized second law of thermodynamics is valid for this reconstructed f(G) gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号