首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we evaluate quasinormal modes (QNMs) of scalar perturbations around a quantum-corrected Schwarzschild black hole by using the third order Wentzel-Kramers-Brillouin (WKB) approximation method. The results show that due to the quantum fluctuations in the background of the Schwarzschild black hole, the QNMs of the black hole damp more slowly when increasing the quantum correction factor (a), and oscillate more slowly.  相似文献   

2.
We investigate the influence of the cosmological constant, Λ, on the bending of light by a charged black hole in a de Sitter spacetime. Despite vanishing of the cosmological constant in the second order null geodesic equation, considering the method introduced by Rindler and Ishak (2007), we obtain an expression for the deflection angle, consistent with previous results for Schwarzschild, Schwarzschild-de Sitter (SdS), and Reissner-Nordstrom (RN) spacetimes.  相似文献   

3.
We present a number of calculations involving the production and propagation of electromagnetic waves in the Schwarzschild metric. They are based on algorithms developed from the power series solutions of the Schwarzschild radial equation (Regge-Wheeler equation) of Arenstorf, Cohen and Kegeles. These include the scattering of electromagnetic plane waves from a Schwarzschild black hole where we find that previous approximate and numerical work is correct and extend those results to higher frequencies and multipolarities. Exact results for the absorption cross-section are presented. We calculate the power radiated from a radially vibrating neutron star and find that the radiation can be hyperemissive. For example, we find for a surface radius of 1.8 Schwarzschild radii the power radiated is enhanced by as much as factor of 3.7, 4.1, 5.1, for dipole, quadrupole and octupole radiation respectively, making electromagnetic radiation a more effective damping mechanism than in flat space. The Schwarzschild radial functions are extensively treated in the appendices and numerical results are presented for various frequencies and radii. A simple asymptotic expansion for one of the connection constants, appropriate for high frequency, is also given.Supported in part by NSF Grant PHY 77-28356.  相似文献   

4.
In this paper, we study wave properties of isothermal plasma for the Schwarzschild de-Sitter black hole in a Veselago medium. We use ADM 3+1 formalism to formulate general relativistic magnetohydrodynamical (GRMHD) equations for the Schwarzschild de-Sitter spacetime in Rindler coordinates. Further, Fourier analysis of the linearly perturbed GRMHD equations for the rotating (non-magnetized and magnetized) background is taken whose determinant leads to a dispersion relation. We investigate wave properties by using graphical representation of the wave vector, the refractive index, change in refractive index, phase and group velocities. Also, the modes of wave dispersion are explored. The results indicate the existence of the Veselago medium.  相似文献   

5.
In this paper we present an exact solution of Einstein’s field equations describing the Schwarzschild black hole in dark energy background. It is also regarded as an embedded solution that the Schwarzschild black hole is embedded into the dark energy space producing Schwarzschild-dark energy black hole. It is found that the space-time geometry of Schwarzschild-dark energy solution is non-vacuum Petrov type D in the classification of space-times. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor of the Schwarzschild-dark energy solution. We also find that the energy-momentum tensor of the Schwarzschild-dark energy solution violates the strong energy condition due to the negative pressure leading to a repulsive gravitational force of the matter field in the space-time. It is shown that the time-like vector field for an observer in the Schwarzschild-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity and the area of the horizons for the Schwarzschild-dark energy black hole.  相似文献   

6.
In this paper, we investigate analytically the level space of the imaginary part of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter by the Padmanabhan’s method (Padmanabhan in Class. Quantum Gravity 21:L1, 2004). Padmanabhan presented a method to study analytically the imaginary part of quasinormal frequencies for a class of spherically symmetric spacetimes including Schwarzschild-de Sitter black holes which has an evenly spaced structure. The results show that the level space of scalar and gravitational quasinormal frequencies for this kind of black holes only depend on the surface gravity of black-hole horizon in the range of $-1<w<-\frac{1}{3}$ , respectively. We also extend the range of w to w≤?1, the results of which are similar to that in $-1<w<-\frac{1}{3}$ case. Particularly, a black hole with a deficit solid angle in accelerating universe will be a Schwarzschild-de Sitter black hole, fixing w=?1 and ε 2=0. And a black hole with a deficit solid angle in the accelerating universe will be a Schwarzschild black hole,when ρ 0=0 and ε 2=0. In this paper, w is the parameter of state equation, ε 2 is a parameter relating to a deficit solid angle and ρ 0 is the density of static spherically symmetrical quintessence-like matter at r=1.  相似文献   

7.
《New Astronomy》2007,12(2):117-123
Both V701 Sco and BH Cen are two early-type short-period overcontact systems (P = 0.d762 and P = 0.d792, respectively). V701 Sco is a member of the young galactic cluster NGC 6383, while BH Cen is a component of a younger galactic cluster IC 2944 where star formation is in process. They provide good opportunity to understand the formation and evolution of binary stars. In the present paper, orbital period changes of the two binaries are investigated. It is discovered that the orbital period of BH Cen shows a long-term increase with a rate of dP/dt = +1.70(±0.39) × 10−7 days/year while it undergoes a cyclic oscillation with a period of 44.6 years and an amplitude of A3 = 0.d0216. For V701 Sco, its O-C curve reveals a periodic change with a period of 41.2 years and amplitude of A3 = 0.d0158. The mass ratio of BH Cen is 0.84, but V701 Sco contains twin B1-1.5V type stars with a mass ratio of unit. The continuous period increase of BH Cen is caused by the mass transfer from the less massive component to the more massive one at a rate of dM2/dt = 3.5 × 10−6 days/year.The cyclic period changes of both systems can be plausibly explained as the results of light-travel time effects suggesting that they are triple systems. The astrophysical parameters of the unseen tertiary components in the two systems have been determined. We think that the invisible tertiary components in both binaries played an important role in the formations and evolutions of the overcontact configurations by bringing angular momentum out from the central systems. For BH Cen, this process created the initial short period and will support its evolution into an overcontact configuration via a Case A mass transfer within the life time of the extremely young cluster IC 2944. For V701 Sco, two identical zero-age main-sequence components in an overcontact configuration suggest that it may have been formed by fission, possibly by the fission of the third body. The fact that no long-term continuous period variations were found for V701 Sco may suggest that an overcontact binary with the mass ratio of unity can be in an equilibrium revealing that the original configuration of the binary was overcontact as is its present state. It has been reported that faint stars in the two extremely young clusters are relatively scare. From the present study, it is shown that faint stars in young clusters are usually formed as companions of OB stars (including binaries). It is very difficult to detect them because of their low luminosity when compared with the more luminous OB stars.  相似文献   

8.
Ibohal, Ishwarchandra and Singh (Ibohal et al., Astrophys. Space Sci. 335, 581, 2011) proposed a class of exact, non-vacuum and conformally flat solutions of Einstein’s equations whose stress tensor T ab has negative pressure. We show that T ab corresponds to an anisotropic fluid and the equation of state parameter seems not to be ω=?1/2. We consider the authors’ constant cannot be the mass of a test particle but is related to a Rindler acceleration of a spherical distribution of uniformly accelerating observers.  相似文献   

9.
A stability criterion is given for the equilibrium form of an ideal rotating fluid in the post-Newtonian approximation. This generalizes the known Lyapunov criterion in classical dynamics. The sphere stability is also investigated and it is shown that it is stable only whenR>22.2R g (R is the relativistic sphere radius,R g the Schwarzschild radius).  相似文献   

10.
Even when we consider Newtonian stars, that is, stars with surface gravitational redshift   z ≪ 1  , it is well known that, theoretically, it is possible to have stars supported against self-gravity almost entirely by radiation pressure. However, such Newtonian stars must necessarily be supermassive. We point out that this requirement for excessively large M in the Newtonian case is a consequence of the occurrence of low   z ≪ 1  . However, if we remove such restrictions, and allow for the possible occurrence of a highly general relativistic regime,   z ≫ 1  , we show that it is possible to have radiation pressure supported stars (RPSSs) at an arbitrary value of M . Since RPSSs necessarily radiate at the Eddington limit, in Einstein gravity, they are never in strict hydrodynamical equilibrium. Further, it is believed that sufficiently massive or dense objects undergo continued gravitational collapse to the black hole (BH) stage characterized by   z =∞  . Thus, late stages of BH formation, by definition, would have   z ≫ 1  , and hence would be examples of quasi-stable general relativistic RPSSs. It is shown that the observed duration of such Eddington limited radiation pressure dominated states is   t ≈ 5 × 108 (1 + z ) yr  . Thus,   t →∞  as BH formation  ( z →∞)  takes place. Consequently, such radiation pressure dominated extreme general relativistic stars become eternally collapsing objects (ECOs) and the BH state is preceded by such an ECO phase. This result is also supported by our previous finding that trapped surfaces are not formed in gravitational collapse and the value of the integration constant in the vacuum Schwarzschild solution is zero. Hence the supposed observed BHs are actually ECOs.  相似文献   

11.
12.
We study isofrequency pairing of the circular non-geodesic orbits in the vicinity of the Schwarzschild black hole immersed in external asymptotically uniform magnetic field. The dependence of the isofrequency pairing of non-geodesic orbits from the special quantities, such as radius of the innermost stable circular orbits (ISCO), radius of the circular orbits (r b ) at the limit e(eccentricity)→0, and from the value of the small quantity ξ=(r b ?r ISCO) of the particles moving around the Schwarzschild black hole in the presence of the magnetic field has been found. It is shown that presence of the magnetic field gives rise to the r ISCO and r b of the particles to be slightly shifted from black hole and the contribution of the quantity ξ decreases the amount of isofrequency pairing of non-geodesic orbits due to the reduction of the surface of the region between the separatrix and circular-orbit duals (COD). We study the dependence of surface of region where particles can move and isofrequency pairing of non-geodesic orbits occur around the Schwarzschild black hole from the magnetic field. We find a decrease of nearly (7–10) % for the maximal values of the magnetic field B~106–107 Gauss in the surface of region where isofrequency pairing occurs around central object with compare to the one around Schwarzschild black hole without magnetic field. This result implies that it makes easier to identify signals through the astrophysical observations of compact objects in the presence of magnetic field.  相似文献   

13.
The problem of finding nonsingular charged analogue of Schwarzschild’s interior solutions has been reduced to that of finding a monotonically decreasing function f. The models are discussed in generality by imposing reality condition on f. It is shown that the physical solutions are possible only for surface density to central density ratio greater than or equal to 2/3 i.e. $\frac{\rho_{a}}{\rho_{0}}\ge2/3$ . The unphysical nature of solutions with linear equation state has been proved. A generalization procedure has been utilized to generalize solutions by Guilfoyle (1999). Recently found solutions by Gupta and Kumar (2005a, 2005b, 2005c) are generalized by taking particular form of f and seen to have higher mass and more stable. The maximum mass is found to be 1.59482 M Θ . The models have been found to be stable once the physical requirements are established due to mass to radius less than 4/9, total charge to total mass ratio less than 1 and redshift quite low.  相似文献   

14.
According to the data of optical observations of the Tuorla Observatory in Finland, using the power spectrum method, DCF (Discrete Correlation Function) method, and Jurkevich method, respectively, we analyzed the periodicity of the long-term light variation of the BL Lac object 1ES 1959+650, and obtained its light period to be P =1.4±0.3 yr. Assuming that the origin of the periodicity is concerned with the accretion disk, we obtained the region where the instability of this source occurs being R =9.65 Rg, here Rg represents the Schwarzschild radius.  相似文献   

15.
Nonlinear properties of ion-acoustic (IA) shock are studied by incorporating the effects of electron nonextensivity in a warm electronegative plasma, whose constituents are the inertial positive/negative ions and q-distributed electrons. For this purpose, the evolution equations are solved to obtain Kadomtsev-Petviashvili (KP) Burgers equation by using the reductive perturbation technique and its solution by the tanh method. Furthermore, the conditions for the existence of oscillatory and monotonic shocks are discussed. Numerically, it is found that IA shock propagation characteristics are significantly modified by the variation of plasma parameters, such as, the effects of electron nonextensivity, the positive and negative ion-to-electron temperature ratios (θ i ,θ n ), respectively. The former also affect the dispersion, dissipation and nonlinearity coefficients of the KPB equation involving the IA shocks. The present analyses could be useful for understanding the nonlinear shock wave excitations in space and laboratory plasmas, where two distinct groups of ions are present.  相似文献   

16.
The size of the stable region around the Lagrangian point L 4 in the elliptic restricted three-body problem is determined by numerical integration as a function of the mass parameter and eccentricity of the primaries. The size distribution of the stable regions in the mass parameter-eccentricity plane shows minima at certain places that are identified with resonances between the librational frequencies of motions around L 4. These are computed from an approximate analytical equation of Rabe relating the frequency, mass parameter and eccentricity. Solutions of this equation are determined numerically and the global behaviour of the frequencies depending on the mass parameter and eccentricity is shown and discussed. The minimum sizes of the stable regions around L 4 change along the resonances and the relative strength of the resonances is analysed. Applications to possible Trojan exoplanets are indicated. Escape from L 4 is also investigated.  相似文献   

17.
In this paper we compare the minimum masses of Schwarzschild black hole obtained from the generalized uncertainty principle and the Heisenberg uncertainty principle. Three minimum masses are obtained. The first two are the order of Planck mass which can be normally accepted. The last one based on Scardigli’s hypothesis and consideration is about M c ?1015 g~1020 M pl which may be problematic. Whether right or wrong, it needs the astronomical observations.  相似文献   

18.
We considered three modes of black hole formation: (I) a black hole kernel first forms at the centre of a collapsing star and as the outer matter falls, the kernel grows until the whole star becomes a black hole; (II) all the layers of a collapsing simultaneously satisfy the Schwarzschild condition; (III) the outermost layer first satisfies the Schwarzschild condition. For each mode, we calculated the entropy carried by the collapsing matter, Sm, and the entropy of the black hole so formed, SBH. We found SBH to be 1019 times Sm and the lower limit of the mass capable of becoming a black hole to be the Planck mass, Mp = 10?5g. A discussion on the nature of SBH led us to think that SBH possibly contains things other than the ordinary thermodynamical entropy.  相似文献   

19.
The Hori-Lie transformation for a non-conservative system is applied to the Lindstedt's equation with constant coefficients. A second-order solution when the right hand is a quartic polynomial is derived explicity. We made two applications of our solution. We obtained a new form of the trajectorv of a test particle moving in a Schwarzschild field. The radius of the particle is a periodic funciton of the polar angle with a period slightly different from 2π. The deviation is the relativistic precession. We also considered the solution of the coordinates ρ and η in Vinti's problem containing J3. They are expressed as periodic functions of O'Mathuna's regularization argument.  相似文献   

20.
The two-dimensional structure of a thin accretion disk in the vicinity of a Schwarzschild black hole after passing a marginally stable orbit (r< 3r g is discussed in terms of the Grad-Shafranov hydrodynamic equation. The accretion disk is shown to be sharply compressed as the sonic surface is approached, so the mass flow here is no longer radial. As a result, the dynamic forces ρ[(v ?)v] θ , which are equal in magnitude to the pressure gradient ? θ P on the sonic surface, become significant in vertical balance. Therefore, the disk thickness in the supersonic region (and, in particular, near the black-hole horizon) may be assumed to be determined not by the pressure gradient but by the shape of ballistic trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号