首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that brines in an Ordovician paleokarst reservoir of the Lunnan oilfield in the Tarim Basin, China, are the product of mixing of paleo-evaporated seawater in the east with paleometeoric waters in the west. In order to put time constraints on the brine and related hydrocarbons in this field, 10 brine samples were collected, for which the iodine concentrations and 129I/I ratios were measured and discussed. The iodine concentration (3.70–31.2 mg/L) and the 129I/I ratio (189–897 × 10−15) show that the iodine in the paleoseawater and meteoric water (MW) had different origins and 129I characteristics. The paleoseawater has a high iodine content (∼31 mg/L), indicating that iodine was introduced into the reservoir along with thermally generated hydrocarbons, possibly in the Cretaceous, from the Caohu Sag in the eastern area. Based on consideration of all possible origins of iodine and 129I in the brines, it is suggested that the meteoric water maintained its initial iodine content (0.01 mg/L) and 129I/I ratio (1500 × 10−15), whereas the iodine-enriched paloseawater (IPSW) exhibited a secular 129I equilibrium (Nsq = 39 atom/μL) as a result of fissiogenic 129I input in the reservoir over a long period of time. The model of brine evolution developed on that basis confirmed that meteoric water entered the reservoir in the Miocene at about 10 Ma, and partially mixed with the iodine-enriched paleoseawater. The movement of meteoric water was facilitated by faults created during the Himalayan orogeny, then became more dense after dissolving Paleogene halite and infiltrated into the reservoir at high pressure. The iodine and 129I concentration in the brine contains information about the path and history of the fluid in the reservoir. This may be useful in oil exploration, since the movement of water was, to some extent, related to hydrocarbon migration.  相似文献   

2.
Iodine enrichment in the Atacama Desert of northern Chile is widespread and varies significantly between reservoirs, including nitrate-rich “caliche” soils, supergene Cu deposits and marine sedimentary rocks. Recent studies have suggested that groundwater has played a key role in the remobilization, transport and deposition of iodine in Atacama over scales of millions-of-years. However, and considering that natural waters are also anomalously enriched in iodine in the region, the relative source contributions of iodine in the waters and its extent of mixing remain unconstrained. In this study we provide new halogen data and isotopic ratios of iodine (129I/I) in shallow seawater, rivers, salt lakes, cold and thermal spring water, rainwater and groundwater that help to constrain the relative influence of meteoric, marine and crustal sources in the Atacama waters. Iodine concentrations in surface and ground waters range between 0.35 μM and 26 μM in the Tarapacá region and between 0.25 μM and 48 μM in the Antofagasta region, and show strong enrichment when compared with seawater concentrations (I = ∼0.4 μM). In contrast, no bromine enrichment is detected (1.3–45.7 μM for Tarapacá and 1.7–87.4 μM for Antofagasta) relative to seawater (Br = ∼600 μM). These data, coupled to the high I/Cl and low Br/Cl ratios are indicative of an organic-rich sedimentary source (related with an “initial” fluid) that interacted with meteoric water to produce a mixed fluid, and preclude an exclusively seawater origin for iodine in Atacama natural waters. Iodine isotopic ratios (129I/I) are consistent with halogen chemistry and confirm that most of the iodine present in natural waters derives from a deep initial fluid source (i.e., groundwater which has interacted with Jurassic marine basement), with variable influence of at least one atmospheric or meteoric source. Samples with the lowest isotopic ratios (129I/I from ∼215 to ∼1000 × 10−15) strongly suggest mixing between the groundwater and iodine storage in organic-rich rocks (with variable influence of volcanic fluids) and pre-anthropogenic meteoric water, while samples with higher values (∼2000–93,700 × 10−15) indicate the input of anthropogenic meteoric fluid. Taking into account the geological, hydrologic and climatic features of the Atacama region, we propose that the mean contribution of anthropogenic 129I is associated with 129I releases during nuclear weapon tests carried out in the central Pacific Ocean until the mid 1990's (129I/I = ∼12,000 × 10−15). This source reflects rapid redistribution of this radioisotope on a global scale. Our results support the notion of a long-lived continental iodine cycle in the hyperarid margin of western South America, which is driven by local hydrological and climate conditions, and confirm that groundwater was a key agent for iodine remobilization and formation of the extensive iodine-rich soils of Atacama.  相似文献   

3.
The largest reservoir of crustal iodine is found in marine sediments, where it is closely associated with organic material. This presence, together with the existence of a long-lived, cosmogenic radioisotope 129I (t1/2 = 15.7 Ma), make this isotopic system well suited for the study of sediment recycling in subduction zones. Reported here are the results of 129I/I ratios in volcanic fluids, collected during a comprehensive study of fluids and gases in the Central American Volcanic Arc. 129I/I ratios, together with I, Br, and Cl concentrations, were determined in 79 samples from four geothermal centers and a number of crater lakes, fumaroles, hot springs, and surface waters in Costa Rica, Nicaragua, and El Salvador. Geothermal and volcanic fluids were found to have iodine concentrations substantially higher than values in seawater or meteoric waters. 129I/I ratios in most of the geothermal fluids are below the preanthropogenic input ratio of 1500 × 10−15, demonstrating that recent anthropogenic additions are largely absent from the volcanic systems. The majority of the 129I/I ratios are between 500 and 800 × 10−15. These ratios indicate minimum iodine ages between 25 and 15 Ma, in good agreement with the age of subducted sediments in this region. In all four geothermal systems, however, a few samples were found with iodine ages older than 40 Ma—that is, considerably below the expected age range for subducted sediments from the Cocos Plate. These samples probably reflect the presence of iodine derived from sediments in older accreted oceanic terraines. The iodine ages indicate that the magmatic end member for the volcanic fluids originates in the deeper parts of the subducted sediment column, with small additions from older iodine mobilized from the overlying crust. The high concentrations of iodine in geothermal fluids, combined with the observed iodine ages, demonstrate that remobilization in the main volcanic zone (and probably also in the forearc area) is an important part in the overall marine cycle of iodine and similar elements.  相似文献   

4.
《Applied Geochemistry》1991,6(4):447-464
Analytical data are presented for Cl, Br and I on a regional scale for the Milk River aquifer. The three halides show strikingly similar spatial distributions and are highly correlated. Concentrations are low in the freshwater portions of the aquifer but increase by as much as two orders of magnitude along the margins. However, halide ratios reach nearly constant values moving down-gradient, suggesting the dominance of a common subsurface source for these ions. Ratios of Cl/I and Cl/Br are less than those of seawater and fit an origin derived from the diagenesis of organic matter in the sediments. Halide ratios rule out leakage and/or diffusion from the underlying Colorado Group as a major influence on the chemistry; the favored hypothesis is altered connate seawater diffusing from low-permeability units within the Milk River Formation as the primary source of salts. This hypothesis of an internal source has important implications for solute sources in other aquifers affected by saline waters because it does not require the importation of a distant fluid.The129I/I ratio has a meteoric value in groundwater collected near the recharge area, but ratios for downflow waters are only 8–70% of this value. Due to the 16 Ma half-life of129I, these data indicate that most of the increase in dissolved I cannot derive from concentration of a meteoric source by ion filtration, but must have a subsurface origin. Concentrations of129I producedin situ by spontaneous fission of238U attain measurable levels only in the oldest waters sampled (ages≥ 105a), in which it may account for nearly 90% of the total dissolved129I concentration.Water ages based upon36Cl/Cl data range up to 2 Ma if uncorrected for any dilution by subsurface sources of dead Cl. If one assumes that the subsurface contributions of Cl contribute at least 90% of total Cl in the distal portion, then the36Cl-based ages are reduced to ∼ 1Ma, somewhat greater than those estimated by hydrodynamic modeling.  相似文献   

5.
Fifty-three samples, including brines associated with oil and natural gas reservoirs and groundwater samples from deep boreholes, were collected from the Pacific and Japan Sea coastal regions in Japan. The 129I/127I and 36Cl/Cl ratios, and stable isotopes (δD and δ18O) are compared to investigate differences related to the geotectonic settings of the two regions. The δD and δ18O data indicate that brine and groundwater from the Pacific coastal region reflect mixing of meteoric water with connate seawater in the pores of sedimentary rocks. On the other hand, brine and groundwater from the Japan Sea coastal region have been hydrothermally altered. In particular, brines associated with petroleum accumulations at Niigata and Akita showed the same isotopic characteristics as fluids found in the Kuroko deposits of the Green Tuff region in northeastern Japan. There is little difference in the 36Cl/Cl ratios in brine and groundwater from the Pacific and Japan Sea coasts. Most brine and some deep groundwater, except those from the Pleistocene Kazusa Group, have already reached the average secular equilibrium ratio of 9.9 ± 2.7 × 10−15 for their mudstone and sandstone reservoirs. There was no correlation between the 36Cl/Cl ratios and differences in geotectonic setting between the Pacific and the Japan Sea coast. The molar I/Br ratio suggests that the I in all of water samples was of biogenic origin. The average 129I/127I ratio was 290 ± 130 × 10−15 to 294 ± 105 × 10−15 in both regions, showing no relationship to the different geotectonic settings. The uncontaminated brine and groundwater samples are likely to have retained the original 129I/127I ratios of marine I released from the old organic matter stored in sedimentary rock.  相似文献   

6.
This work constitutes the first survey of I isotope ratios for Scottish sea water including the first data for the west of Scotland. These data are of importance because of the proximity to the world’s second largest emission source of 129I to the sea, the Sellafield nuclear reprocessing plant, because of the increasing importance of the sea to land transfer of 129I and also as input data for dose estimates based on this pathway of 129I. 129I/127I ratios in SW Scotland reached 3 × 10−6 in 2004. No strong variation of I isotope ratios was found from 2003 to 2005 in Scottish sea waters. Iodine isotope ratios increased by about a factor of 6 from 1992 to 2003 in NE Scotland, in agreement with the increase of liquid 129I emissions from Sellafield over that time period. It is demonstrated that 129I/127I ratios agree better than 129I concentrations for samples from similar locations taken in very close temporal proximity, indicating that this ratio is more appropriate to interpret than the radionuclide concentration.  相似文献   

7.
Coal beds of the Upper Cretaceous Fruitland Formation in the San Juan Basin of northwestern New Mexico and southwestern Colorado have significant liquid hydrocarbon generation potential as indicated by typical Rock-Eval Hydrogen Indexes in the range of 200–400 mg hydrocarbon/g organic carbon (type II and III organic matter). Small, non-commercial quantities of oil have been produced from the coal beds at several locations. The oils are characterized by high pristane/phytane (ca 4) and pristane/n-C17 ratios (ca 1.2), abundant C21+ alkanes in the C10+ fraction with a slight predominance of odd carbon-numbered n-alkanes, abundant branched-chain alkanes in the C15+ region, and a predominance of methylcyclohexane in the C4----C10 fraction. The oils are indigenous to the Fruitland Formation coals and probably migrated at thermal maturities corresponding to vitrinite reflectance values in the range 0.7–0.8%. Although the oils found to date are not present in commercial amounts, these findings illustrate the potential of some coals to generate and expel oil under conditions of moderate thermal heating.  相似文献   

8.
Bottled waters are an increasingly significant product in the human diet. In this work, we present a dataset of stable isotope ratios for bottled waters sampled in Greece. A total of 25 domestic brands of bottled still waters, collected on the Greek market in 2009, were analysed for δ18O and δ2H. The measured stable isotope ratios range from − 9.9‰ to − 6.9‰ for δ18O and from − 67.50‰ to − 46.5‰ for δ2H. Comparison of bottled water isotope ratios with natural spring water isotope ratios demonstrates that on average the isotopic composition of bottled water tends to be similar to the composition of naturally available local water sources, showing that bottled water isotope ratios preserve information about the water sources from which they were derived and suggesting that in many cases bottled water should not be considered as an isotopically distinct component of the human diet. This investigation also helped to determine the natural origin of bottled water, and to indicate differences between the natural and production processes. The production process may influence the isotopic composition of waters. No such modification was observed for sampled waters in this study. The isotopic methods applied can be used for the authentication of bottled waters and for use in the regulatory monitoring of water products.  相似文献   

9.
The Kangan Permo-Triassic brine aquifer and the overlying gas reservoir in the southern Iran are located in Kangan and Dalan Formations, consisting dominantly of limestone, dolomite, and to a lesser extent, shale and anhydrite. The gasfield, 2,900 m in depth and is exploited by 36 wells, some of which produce high salinity water. The produced water gradually changed from fresh to saline, causing severe corrosion in the pipelines and well head facilities. The present research aims to identify the origin of this saline water (brine), as a vital step to manage saline water issues. The major and minor ions, as well as δ2H, δ18O and δ37Cl isotopes were measured in the Kangan aquifer water and/or the saline produced waters. The potential processes causing salinity can be halite dissolution, membrane filtration, and evaporation of water. The potential sources of water may be meteoric, present or paleo-seawater. The Na/Cl and I/Cl ratios versus Cl? concentration preclude halite dissolution. Concentrations of Cl, Na, and total dissolved solid were compared with Br concentration, indicating that the evaporated ancient seawater trapped in the structure is the cause of salinization. δ18O isotope enrichment in the Kangan aquifer water is due to both seawater evaporation and interaction with carbonate rocks. The δ37Cl isotope content also supports the idea of evaporated ancient seawater as the origin of salinity. Membrane filtration is rejected as a possible source of salinity based on the hydrochemistry data, the δ18O value, and incapability of this process to dramatically enhance salinity up to the observed value of 330,000 mg/L. The overlaying impermeable formations, high pressure in the gas reservoir, and the presence of a cap rock above the Kangan gasfield, all prevent the downward flow of meteoric and Persian Gulf waters into the Kangan aquifer. The evaporated ancient seawater is autochthonous, because the Kangan brine aquifer was formed by entrapment of brine seawater during the deposition of carbonates, gypsum, and minor clastic rocks in a lagoon and sabkha environment. The reliability of determining the source of salinity in a deep complicated inaccessible high-pressure aquifer can be improved by combining various methods of hydrochemistry, isotope, hydrodynamics, hydrogeology and geological settings.  相似文献   

10.
Iodine concentration and radioisotopic composition (129I/I) were measured in the pore waters from the gas hydrate occurrence in the forearc basin offshore Shimokita Peninsula, north-eastern Japan, to determine the source formation of I and accompanying hydrocarbons. Iodine concentrations correlate well with the alkalinity and SO4 patterns, reflecting degradation stages of I-rich buried organic matter, rapidly increasing in the sulfate reduction interval, and becoming constant below 250 meters below the seafloor with an upwelling flux of 1.5 × 10−11 µmol cm−2 year−1. The 129I/I ratios of 300 × 10−15–400 × 10−15 in deep pore waters suggest ages for iodine and hydrocarbon sources as old as 40 Ma. These ages correlate well with the coaly source formations of the Eocene age thought to be responsible for the conventional natural gas deposits underlying the gas hydrate stability zone. Similar profiles are observed in 129I/I ratios of pore waters in the gas hydrate stability zone from the forearc basin in the eastern Nankai Trough, offshore central Japan, where pore waters are enriched in I and reach ages as old as ∼50 Ma through the sediment column. At the outer ridge site along the trough, on the other hand, relatively younger I are more frequently delivered probably through thrusts/faults associated with subduction. The nature of source formations of I and hydrocarbons in the offshore Shimokita Peninsula has a more terrestrial contribution compared with those in the Nankai Trough, but these formations are also considerably older than the host sediments, suggesting long-term transport of I and hydrocarbons for the accumulation of gas hydrates in both locations.  相似文献   

11.
Thermal water samples and related young and fossil mineralization from a geothermal system at the northern margin of the Upper Rhine Graben have been investigated by combining hydrochemistry with stable and Sr isotope geochemistry. Actively discharging thermal springs and mineralization are present in a structural zone that extends over at least 60 km along strike, with two of the main centers of hydrothermal activity being Wiesbaden and Bad Nauheim. This setting provides the rare opportunity to link the chemistry and isotopic signatures of modern thermal waters directly with fossil mineralization dating back to at least 500–800 ka. The fossil thermal spring mineralization can be classified into two major types: barite-(pyrite) fracture filling associated with laterally-extensive silicification; and barite, goethite and silica impregnation mineralization in Tertiary sediments. Additionally, carbonatic sinters occur around active springs. Strontium isotope and trace element data suggest that mixing of a hot (>100 °C), deep-sourced thermal water with cooler groundwater from shallow aquifers is responsible for present-day thermal spring discharge and fossil mineralization. The correlation between both Sr and S isotope ratios and the elevation of the barite mineralization relative to the present-day water table in Wiesbaden is explained by mixing of deep-sourced thermal water having high 87Sr/86Sr and low δ34S with shallow groundwater of lower 87Sr/86Sr and higher δ34S. The Sr isotope data demonstrate that the hot thermal waters originate from an aquifer in the Variscan crystalline basement at depths of 3–5 km. The S isotope data show that impregnation-type mineralization is strongly influenced by mixing with SO4 that has high δ34S values. The fracture style mineralization formed by cooling of the thermal waters, whereas impregnation-type mineralization precipitated by mixing with SO4-rich groundwater percolating through the sediments.  相似文献   

12.
The long-lived halogen radioisotopes 129I and 36Cl provide valuable information regarding the source of fluids in hydrocarbon systems and in localized areas where infiltration of younger meteoric water has occurred. Despite the utility of these two isotopes in providing time-signatures for fluid end-members, considerable uncertainty remains regarding the interpretation of “intermediate-age” waters in hydrologic systems. These waters are likely the result of the combination of two or more halogen sources at some time in the past, each with its own characteristic concentration and isotopic composition. In order to unravel the evolution of these “intermediate-age” waters, the effect that infiltration of meteoric water has on the isotopic composition of older formation waters is modeled. Also evaluated is the effect that the timing of dilution has on 129I and 36Cl signatures observed in the present, specifically, the hypothesis that halogen isotopic signatures imparted by the mixing of brine and meteoric waters early in the development of a sedimentary basin are quantitatively different from those imparted by the mixing of old brines with recent meteoric waters.  相似文献   

13.
《Precambrian Research》2007,152(3-4):170-206
The Cauê Formation of the Paleoproterozoic Minas Supergroup hosts banded iron formations (BIFs), locally called itabirites, deposited in shallow marine passive margin settings. Two major compositional types of itabirite, dolomitic and quartz itabirites, are found in the northwestern part of QF. The former consists of alternating dolomite-rich and hematite-rich bands, whereas the latter is formed with alternating quartz-rich and hematite-rich bands. Accessory minerals are chlorite, sericite, and apatite in both types.Dolomitic and quartz itabirites have a very simple chemical composition. In the dolomitic itabirite, Fe2O3 plus CaO, MgO, and LOI range from 95.8 to 97.8%, while in the quartz itabirite, Fe2O3 plus SiO2 range from 94.4 to 99.6%. Both itabirites are highly oxidized and present Fe3+/(Fe2+ + Fe3+) ratios higher than 0.98, by far superior than the average ratios of Paleoproterozoic BIFs. Trace element concentrations in itabirites are very low, ranging from <10 to 55 ppm. Dolomite shows negative δ13C values varying from −2.5 to −0.8‰ versus PDB, while the oxygen isotope data display δ18O values varying from −12.4 to −8.5‰ versus PDB. The δ13C values of the dolomitic itabirite are in the same range of those of the overlying stromatolitic dolomites of the Gandarela Formation. C and O isotopes, REE signatures, and Y/Ho ratios suggest a marine origin for the sediments of the Cauê Formation. The HREE enrichment pattern exhibited by the itabirites shows a modern seawater REE signature overprinted by a hydrothermal pattern marked by positive Eu anomalies. Very low contents of Al2O3 and TiO2 and a strong positive correlation between them indicate a minor terrigenous component in the chemically-precipitated marine sediments of the Cauê Formation. Differences in the HREE signatures of itabirites suggest that dolomitic itabirite precipitated in shallower waters receiving sediments from the continent, while quartz itabirite precipitated in deeper waters. Sea-level fluctuations caused by marine transgression–regressions possibly contributed to changes in the composition and varied input of the terrigenous sediments. These changes are expressed by the co-existence of dolomitic, quartz, and amphibolitic itabirites in the Cauê Formation, which represent lateral and vertical facies transitions of dolomitic, cherty, and shaly BIFs, respectively.  相似文献   

14.
Analyses of halogen concentration and stable chlorine isotope composition of fluid inclusions from hydrothermal quartz and carbonate veins spatially and temporally associated with giant unconformity-related uranium deposits from the Paleoproterozoic Athabasca Basin (Canada) were performed in order to determine the origin of chloride in the ore-forming brines. Microthermometric analyses show that samples contain variable amounts of a NaCl-rich brine (Cl concentration between 120,000 and 180,000 ppm) and a CaCl2-rich brine (Cl concentration between 160,000 and 220,000 ppm). Molar Cl/Br ratios of fluid inclusion leachates range from ∼100 to ∼900, with most values between 150 and 350. Cl/Br ratios below 650 (seawater value) indicate that the high salinities were acquired by evaporation of seawater. Most δ37Cl values are between −0.6‰ and 0‰ (seawater value) which is also compatible with a common evaporated seawater origin for both NaCl- and CaCl2-rich brines.Slight discrepancies between the Cl concentration, Cl/Br, δ37Cl data and seawater evaporation trends, indicate that the evaporated seawater underwent secondary minor modification of its composition by: (i) mixing with a minor amount of halite-dissolution brine or re-equilibration with halite during burial; (ii) dilution in a maximum of 30% of connate and/or formation waters during its migration towards the base of the Athabasca sandstones; (iii) leaching of chloride from biotites within basement rocks and (iv) water loss by hydration reactions in alteration haloes linked to uranium deposition.The chloride in uranium ore-forming brines of the Athabasca Basin has an unambiguous dominantly marine origin and has required large-scale seawater evaporation and evaporite deposition. Although the direct evidence for evaporative environments in the Athabasca Basin are lacking due to the erosion of ∼80% of the sedimentary pile, Cl/Br ratios and δ37Cl values of brines have behaved conservatively at the basin scale and throughout basin history.  相似文献   

15.
In the arid sub-Saharan of southern Morocco, groundwater salinization poses a direct threat for agricultural production in six oases’ basins that are irrigated by water imported from the High Atlas Mountains. Here the geospatial distribution of salinity is evaluated in shallow groundwater, springs and surface waters in the Drâa Basin, integrating major and trace element geochemistry and isotopic tracers (O, H, Sr and B). The data show that water discharge from the High Atlas Mountains to the Upper section of the Drâa Basin is characterized by both low and high salinity, a distinctive low δ18O and δ2H composition (as low as −9‰ and −66‰, respectively), typical for meteoric water from high elevation, a 87Sr/86Sr range of 0.7078–0.7094, and δ11B of 12–17‰. The Ca–Mg–HCO3, Na–Cl–SO4, and Ca–SO4 compositions as well as the Br/Cl, 87Sr/86Sr, and δ11B values of the saline water suggest dissolution of Lower Jurassic carbonates and evaporite rocks in the High Atlas Mountain catchment. Storage and evaporation of the imported water in a man-made open reservoir causes an enrichment of the stable isotope ratios with a δ18O/δ2H slope of <8 but no change in the Sr and B isotope fingerprints. Downstream from the reservoir, large salinity variations were documented in the shallow groundwater from the six Drâa oases, with systematically higher salinity in the three southern oases, up to 12,000 mg/L. The increase of the salinity is systematically associated with a decrease of the Br/Cl ratio, indicating that the main mechanism of groundwater salinization in the shallow aquifers in the Drâa oases is via salt dissolution (gypsum, halite) in the unsaturated zone. Investigation of shallow groundwater that flows to the northern Drâa oases revealed lower salinity (TDS of 500–4225) water that is characterized by depleted 18O and 2H (as low as −9‰ and −66‰, respectively) and higher 87Sr/86Sr ratios (∼0.7107–0.7115) relative to irrigation water and groundwater flow from the Upper Drâa Basin. This newly-discovered low-saline groundwater with a different isotopic imprint flows from the northeastern Anti-Atlas Jabel Saghro Mountains to the northern oases of the Lower Drâa Basin. This adjacent subsurface flow results in a wide range of Sr isotope ratios in the shallow oases groundwater (0.7084–0.7131) and appears to mitigate salinization in the three northern Drâa oases. In contrast, in the southern oases, the higher salinity suggests that this mitigation is not as affective and increasing salinization through cycles of water irrigation and salt dissolution appears inevitable.  相似文献   

16.
《Applied Geochemistry》2003,18(1):117-125
This paper describes the results of a study that was conducted to determine the relationship between hydrogeochemical composition and 87Sr/86Sr isotope ratios of the Mt. Vulture spring waters. Forty samples of spring waters were collected from local outcrops of Quaternary volcanites. Physico-chemical parameters were measured in the field and analyses completed for major and minor elements and 87Sr/86Sr isotopic ratios. A range of water types was distinguished varying from alkaline-earth bicarbonate waters, reflecting less intense water–rock interaction processes to alkali bicarbonate waters, probably representing interaction with volcanic rocks of Mt. Vulture and marine evaporites. The average 87Sr/86Sr isotope ratios suggest at least 3 different sources. However, some samples have average Sr isotope ratios (0.70704–0.70778) well above those of the volcanites. These ratios imply interaction with other rocks having higher 87Sr/86Sr ratios, probably Triassic evaporites, which is substantiated by their higher content of Na, SO4 and Cl. The Sr isotope ratios for some samples (e.g. Toka and Traficante) are intermediate between the value for the Vulture volcanites and that for the local Mesozoic rocks. The salt content of these samples also lies between the value for waters interacting solely with the volcanites and the value measured in the more saline samples. These waters are thus assumed to result from the mixing of waters circulating in volcanic rocks with waters presumably interacting with the sedimentary bedrock (marine evaporites).  相似文献   

17.
《Applied Geochemistry》2001,16(1):35-55
Formation waters within Upper Carboniferous sandstones in the sub-sea Prince and Phalen coal mines, Nova Scotia, originated as residual evaporative fluids, probably during the precipitation of Windsor Group (Lower Carboniferous) salts which underlie the coal measures. Salinity varies from 7800 to 176,000 mg/l, and the waters are Na–Ca–Cl brines enriched in Ca, Sr and Br and depleted in Na, K, Mg and SO4 relative to the seawater evaporation curve. Br:Cl and Na:Cl ratios suggest that the brine composition corresponds to an evaporation ratio of as much as 30. The brines lie close to the meteoric line on H/O isotopic plots but with a compositional range of δ18O from −4.18 to −6.99 and of δD from −42.4 to −23.5, distant from modern meteoric or ocean water. Mine water composition contrasts with that of nearby salt-spring brines, which are inferred to have originated through dissolution of Windsor Group evaporites by modern meteoric waters. However, a contribution to the mine waters from halite dissolution and from Br in organic matter cannot be ruled out. Present concentrations of several elements in the brines can be explained by water–rock interaction. The original Windsor brines probably moved up into the overlying coal-measure sandstones along faults, prior to the Late Triassic. The high salinity and irregular salinity distribution in the Phalen sandstones suggests that the brines have undergone only modest dilution and are virtually immobile. In contrast, Prince waters show a progressive increase in salinity with depth and are inferred to have mixed with surface waters. Basinal brines from which these modern formation fluids were derived may have been important agents in base-metal and Ba mineralisation from the mid-Carboniferous onwards, as saline fluid inclusions are common in Zn–Pb sulphide deposits in the region.  相似文献   

18.
129I is one of the three major radiation risk contributors to the public as a consequence of past nuclear processing activities at Department of Energy (DOE) facilities. Elevated levels of 129I are present in the surface soils of F-Area of Savannah River Site, which used to be an isotope separation facility for the production of nuclear weapons components. The 129I in soils is thought to be bound predominantly to soil organic matter (SOM). Measurements of stable 127I and radioactive 129I in humic acids (HAs) and fulvic acids (FAs) obtained by five successive alkaline, two glycerol and one citric acid-alkaline extraction, demonstrated that these extractable humic substances (HS) together account for 54-56% and 46% of the total 127I and 129I in the soil, respectively. The remainder was likely bound to residual SOM. The iodine content (μg-I/g-C) generally decreased with each subsequent extract, while 129I/127I increased concurrently. The coincident variations in chemical compositions, aromaticity (estimated by UV spectroscopy), functional groups (e.g., aliphatic), degree of humification, relative migration in the hydrophobic interaction column, and molecular weight indicated that: (1) iodine in different HAs was bound to a small-size aromatic subunit (∼10 kDa); (2) the large-size subunit (∼90 kDa), which likely linked the small-size unit through some weak chemical forces (hydrogen bonds, hydrophobic or electrostatic interactions), determined the relative mobility of iodine bound to organic matter; (3) from the strong correlation between iodine content and aromaticity in the HAs, we suggested that iodine incorporation into the SOM via covalent aromatic C-I bond is the key mechanism controlling iodine behavior in this system. However, this relationship is not universal for all fractions of organic matter as evidenced from the different slopes of this relationship at the two sampling sites, as well as from the different relationships for HAs and FAs, respectively. These differences in iodination are due to different SOM molecular sizes, compositions, and availability of preferred iodination sites. 129I in the soil downstream from the contaminated site and near a wetland abruptly dropped below our detection limit (0.5 pCi-129I/g-soil), which suggests that the high SOM in the plume soil around the 129I-contaminated F-Area might be a natural barrier to scavenge radioiodine released from the nuclear waste repository by forming organo-iodine compounds. Soil resuspension experiments showed that mobile 129I was mostly associated with a low average molecular weight amphiphilic organic carrier (13.5-15 kDa). SOM clearly behaves as a sink for iodine at the Savannah River Site F-Area. However, this work demonstrates that a small fraction of the SOM can also behave as a source, namely that a small fraction that may be readily dispersible under some environmental conditions and presumably release iodine in the organic-colloidal form. This radioiodinated organo-colloid likely can get into the groundwater through infiltration or surface runoff where it might migrate further into the wetlands. Results from this study provide the geochemical basis for future 129I migration controls, remediation, and/or land-groundwater management strategies.  相似文献   

19.
Monitoring and sampling of main plants,soil CO2,soil water,bedrock,spring water,drip water and its corresponding speleothem were performed at four cave systems of Guizhou,Southwest China,from April 2003 to May 2004,in order to understand stable carbon isotope ratios variations of dissolved inorganic Carbon(DIC) in cave percolation waters(δ13CDIC) and their implications for paleoclimate.Stable carbon isotopic compositions and ions(Ca,Mg,Sr,SO4,Cl etc.) were measured for all samples.The results indicate that there are significant differences among the δ13CDIC values from inter-cave,even inter-drip of intra-cave in the four caves.The δ13CDIC values from the Liangfeng Cave(LFC) is lightest among the four caves,where vegetation type overlying the cave is primary forest dominated by tall trees with lighter average δ13C value(–29.9‰).And there are remarkable differences in δ13CDIC values of different drip waters in the Qixing Cave(QXC) and Jiangjun Cave(JJC),up to 6.9‰ and 7.8‰,respectively.Further analyses show that the δ13CDIC values in cave drip waters are not only controlled by vegetation biomass overlying the cave,but also hydro-geochemical processes.Therefore,accurate interpreting of δ13C recorded in speleothems cannot be guaranteed if these effects of the above mentioned factors are not taken into consideration.  相似文献   

20.
《Chemical Geology》2007,236(3-4):350-366
A gas hydrate field with highly active venting of methane was recently found near Sado Island in the eastern Japan Sea. Piston cores were collected from active venting sites and nearby locations in the Umitaka Spur–Joetsu Knoll area during two cruises in 2004 (UT04) and 2005 (KY05-08). We report here halogen concentrations and 129I/I ratios in pore waters associated with gas hydrates from these expeditions. The strongly biophilic behavior of I and, to a lesser degree, of Br together with the presence of the long-lived iodine radioisotope (129I) allow evaluation of potential source materials for methane in gas hydrate systems. Depth profiles of all three halogens, particularly the very rapid downward increases of Br and I concentrations, strongly suggest input of deep fluids enriched in Br and I, but the profiles also display the effects of gas hydrate formation and dissociation. Although the 129I/I ratios are modified by 129I from seawater and sediments at shallow depth, likely ratios of the deep fluids are estimated to be between 400 × 10 15 and 600 × 10 15, equivalent to a Late Oligocene to Early Miocene age. Ages in the active methane venting sites typically are closer to the old end of this range than those in the reference sites. This age range suggests that the methane associated with venting and gas hydrate formation in this area is derived from organic materials accumulated during the initial opening of the Japan Sea. The Umitaka Spur–Joetsu Knoll gas hydrate field demonstrates the movement of deep fluids associated with the release of significant amounts of methane from the seafloor, processes which might be important components of mass transfer and carbon cycle in the shallow geosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号