共查询到20条相似文献,搜索用时 15 毫秒
1.
Pillow lavas containing an eclogitic mineral assemblage, locally with glaucophane/crossite, are described from the Tsäkkok Lens within the Seve Nappes, north-central Scandinavian Caledonides. Critical primary relationships to the host metasedimentary rocks which are dominated by marble and quartz-garnet-phengite schist are preserved. It is argued that these clastic rocks, and the ongoing igneous activity in the Tsäkkok Lens, are late Precambrian to Cambrian in age and that these rocks were deposited/emplaced along the outermost part of a continental margin related to the continent Baltica.Variations in the whole-rock chemistry of the eclogitic rocks within the Tsäkkok Lens suggest that most elements were mobile during post-extrusive/intrusive evolution. Only Ti, P and Y show significant magmatic trends in element vs Zr plots. Discriminant diagrams employing the elements Ti, P, Zr, Y, Nb and Cr suggest a tholeiitic protolith with a tendency towards enriched mid-ocean ridge basalt (E-MORB) affinity characterized by a relatively low Zr/Nb ratio. A similarity to metabasic rocks occurring in other Seve thrust sheets but lacking evidence for high-P metamorphism is apparent. A common origin for all these rocks is inferred. The Tsäkkok eclogites formed by in situ high-P metamorphism and provide further evidence for subduction of continental crustal material down to mantle depths. This subduction event has been related to collision of Baltica with an outboard are system during the late Cambrian to early Ordovician. 相似文献
2.
Fission track analyses of apatites from sediments, Precambrian gneisses and Caledonian to Tertiary intrusive rocks from the Kangerlussuaq region reveal its post-Caledonian thermotectonic history. Inland the history involves cooling to temperatures within the high temperature part of the apatite annealing interval and slow cooling (or reheating) continued in Cretaceous times through this interval. Apatites from coastal areas between Kangerlussuaq and Tasiilaq reveal only Tertiary cooling. In Tertiary times cooling accelerated after the main intrusive phase in the Tertiary. The evolution is taken as evidence for a general uplift/erosion since Caledonian times probably disturbed by basin formation and sedimentation and reheating due to magmatic activity. Thermal subsidence of the rift shoulders following the opening of the adjacent oceanic basin is not indicated. Annealing patterns inland of the plume centre in the Kangerlussuaq provide no evidence for the earlier movement of the plume from a westerly direction. 相似文献
3.
The oldest rocks exposed in northwestern Queensland are metamorphosed calc-alkaline volcanics (Leichhardt Metamorphics), which are intruded by elongate tonalitic to granitic batholiths (Kalkadoon Granite). These rocks are overlain by a less metamorphosed sequence containing basic lavas (Magna Lynn Metabasalt) overlain by extensive ignimbritic rhyolite and dacite (Argylla Formation). Sequences of basalt and psammite overlie the rhyolite unconformably and are overlain in turn unconformably by psammitic, pelitic, carbonate and possibly evaporitic sediments and minor volcanics. Younger granites intrude these rocks.The mineral assemblages of the Leichhardt Metamorphics, Magna Lynn Metabasalt and Argylla Formation indicate greenschist and lower amphibolite facies of metamorphism. The rocks contain no glass and some are obviously recyrstallized; however, phenocrysts, lithic fragments, spherulites, amygdales and flow-top breccias are still recognizable.Sixty-nine of the least deformed volcanic and sub-volcanic rocks were analysed for major elements and up to twenty trace elements. Element dispersion in these analyses indicated that metasomatism was probably of limited extent. The Magna Lynn Metabasalt is similar to low-potassium tholeiite, as it has less than 0.5% potash, high normative hypersthene, some normative quartz and typical Ti/Zr/Y ratios. The acid volcanics have calc-alkaline affinities although andesite is not common and the alumina content is relatively low. They have high K/Na ratios and their trace elements (especially Ba, Sr, Rb, Zr and Ce) are similar to Andean volcanics. The tholeiitic sequences that overlie the calc-alkaline volcanics in northwestern Queensland resemble the basaltic sequences of western U.S.A. that also overlie calc-alkaline volcanics.The predominantly calc-alkaline volcanics of northwestern Queensland are believed to have formed at a continental margin similar to that in the Andean region. The younger tholeiitic lavas and minor continental acid volcanism possibly accompanied crustal tension. Later regional metamorphism and intrusion of large granite batholiths stabilized the region. 相似文献
4.
Multi-channel seismic reflection profiles across the southwest continental margin of India (SWCMI) show presence of westerly
dipping seismic reflectors beneath sedimentary strata along the western flank of the Laccadive Ridge — northernmost part of
the Chagos-Laccadive Ridge system. Velocity structure, seismic character, 2D gravity model and geographic locations of the
dipping reflectors suggest that these reflectors are volcanic in origin, which are interpreted as Seaward Dipping Reflectors
(SDRs). 相似文献
5.
The Neoarchaean Tati granite–greenstone terrane occurs within the southwestern part of the Zimbabwe craton in NE Botswana. It comprises 10 intrusive bodies forming part of three distinct plutonic suites: (1) an earlier TTG suite dominated by tonalites, trondhjemites, Na-granites distributed into high-Al (Group 1) and low-Al (Group 2) TTG sub-suite rocks; (2) a Sanukitoid suite including gabbros and Mg-diorites; and (3) a younger high-K granite suite displaying I-type, calc-alkaline affinities. The Group 1 TTG sub-suite rocks are marked by high Sr/Y values and strongly fractionated chondrite-normalized rare earth element (REE) patterns, with no Eu anomaly. The Group 2 TTG sub-suite displays higher LREE contents, negative Eu anomaly and small to no fractionation of HREE. The primordial mantle-normalized patterns of the Francistown TTGs are marked by negative Nb–Ti anomalies. The geochemical characteristics of the TTG rocks are consistent with features of silicate melts from partial melting of flat subducting slabs for the Group 1 sub-suite and partial melting of arc mafic magmas underplated in the lower crust for the Group 2 sub-suite. The gabbros and high-Mg diorites of the Sanukitoid suite are marked by Mg#>0.5, high Al2O3 (>>16%), low TiO2 (<0.6%) and variable enrichment of HFSE and LILE. Their chondrite-normalized REE patterns are flat in gabbros and mildly to substantially fractionated in high-Mg diorites, with minor negative or positive Eu anomalies. The primordial mantle-normalized diagrams display negative Nb–Ti (and Zr in gabbros) anomalies. Variable but high Sr/Y, Sr/Ce, La/Nb, Th/Ta and Cs/La and low Ce/Pb ratios mark the Sanukitoid suite rocks. These geochemical features are consistent with melting of a sub-arc heterogeneously metasomatised mantle wedge source predominantly enriched by earlier TTG melts and fluids from dehydration of a subducting slab. Melting of the mantle wedge is consistent with a steeper subduction system. The late to post-kinematic high-K granite suite includes I-type calc-alkaline rocks generated through crustal partial melting of earlier TTG material. The Neoarchaean tectonic evolution of the Zimbabwe craton is shown to mark a broad continental magmatic arc (and related accretionary thrusts and sedimentary basins) linked to a subduction zone, which operated within the Limpopo–Shashe belt at 2.8–2.65 Ga. The detachment of the subducting slab led to the uprise of a hotter mantle section as the source of heat inducing crustal partial melting of juvenile TTG material to produce the high-K granite suite. 相似文献
6.
胶东东部地区的基底片麻岩以牟平-海阳断裂为界,两侧在岩性组合和地球化学性质上完全不同,本文认为该断裂应代表苏鲁造山带的西北边界(北段)。断裂西侧岩性包括花岗闪长质、奥长花岗质和花岗质,地球化学上表现为低硅(SiO2:64.16~71.76%)、高铝(Al2O3=15.60-18.51%)、显著的Ba和Sr正异常、强烈的稀土元素分馏程度(LaN/YbN=15.77~68.19)和贫重稀土元素(YbN=2.9-4.4)、Eu异常不明显(δEu=0.86~1.02),具典型的太古代高铝TTG岩石组合的特征。而东侧新元古代的基底片麻岩从地球化学上可分为高钾的Ⅰ型花岗质片麻岩和富钠的A型花岗质片麻岩。前者总体表现为富钾(K2O/Na2O比接近或大于1)和亚铝质,强烈亏损Sr、Nb和Ta,轻稀土元素之间的分馏程度强(LaN/SmN=4.21~5.37),而重稀土元素之间几乎无分馏(GdN/YbN:0.78~1.54),负Eu异常较强(δEu=0.47~0.61),岩石地球化学特征显示它们的原岩类似于活动大陆边缘的Ⅰ型花岗岩类。而后者则以偏碱和富钠(Na2O/K2O=1.06~1.77),高Y(20.4~52.9μg/g)、Zr(218~39μg/g)、Ga(18.8~22.9μg/g)及稀土元素丰度为特征,稀土元素分馏程度强(LaN/YbN=11.30~19.09),弱到中等程度的负Eu异常(δEu=0.94~0.65),强烈亏损Sr为显著特征,Nb和Ta相对于La也强烈亏损,而Ba则表现出明显的正异常。推测Ⅰ型花岗岩是在与俯冲有关的构造环境下,压力0.8~1.0Gpa条件下,由受俯冲板片脱水交代的镁铁质下地壳(26~33km)部分熔融形成的。而A型花岗岩则是在Ⅰ型花岗质岩浆形成后,由脱水的紫苏辉石质残留下地壳在温度大于900℃的条件下再一次部分熔融形成的。相对于Ⅰ型花岗岩,A型花岗岩中可能有更多的大洋岩石圈的组份被卷入。 相似文献
7.
ABSTRACT Albian–Cenomanian successions (Kazhdumi and Sarvak formations) represent remarkable variations in thickness, facies, fauna, and environments throughout the Zagros area. In the Coastal Fars (Charmu section), sedimentological and paleontological data evidence an intrashelf, with depths of 10s–100s m, surrounded by a shallow carbonate platform. Due to its depth, deposition of sequences in this setting has been controlled by eustatic sea-level changes rather than eurybathic changes, and several condensation episodes occurred related to marine transgressions. These observations are different from those in the adjacent sections in the Coastal Fars which recorded subaerial exposures instead. Combined with previous studies, this study denotes several intrashelf basins enclosed by a shallow carbonate platform on the southeastern margin of the Neo-Tethys during the Albian–Cenomanian. Development of intrashelf basins corresponds to basement faults in the Fars Salient. Likely, an extensional tectonic regime associated with a rifting event created horst–graben architecture by exerting extension along the basement faults and reactivating salt structures. Deposition on these troughs and highs led to the facies and thickness variations of the concomitant sequences. Development of several intrashelf basins on the southeastern margin of the Neo-Tethys indicates that syn-depositional continental rifting event could occur during the Albian–Cenomanian, prior to the tectonic inversion around the earliest Turonian. 相似文献
9.
Trace-element and preliminary Sr- and O-isotopic data are reported for a transitional alkaline-sub-alkaline lava series (MVS) from Patmos, Greece. The lava types belonging to this series are ne-trachybasalt, hy-trachybasalt, hy-trachyandesite and Q-trachyte. Rb, Sr and Ba contents, as well as K/Rb ratios, of the ne-trachybasalts differ from those of alkali basalts of oceanic islands and those of K-rich alkaline lavas of continental regions and are consistent with the occurrence of these volcanics in a destructive plate margin environment. Qualitatively, the variations shown by many trace elements throughout the MVS are explicable in terms of magma evolution via fractional crystallization involving removal of the observed phenocryst phases. Cross-cutting REE patterns can be explained by removal of small amounts of apatite. However, certain features of the data cannot be reconciled with the operation of fractional crystallization alone. These are: a) the compatible behavior of Ba throughout the MVS; b) the moderately (as opposed to highly) incompatible behavior of Zr, Rb and Nb relative to Th; and c) the significant decrease of K/Th, Rb/Th, Zr/Th, Zr/Nb, Nb/Th, Yb/Th, Ta/Th, U/Th and Zr/Ta ratios especially (but not exclusively) in the mafic part of the series. Quantitative modeling indicates that the hy-trachybasalts are anomalously enriched in both highly incompatible and highly compatible elements and these lavas are shown to be hybrids formed by mixing of ne-trachybasalt and hy-trachyandesite. Mixing proportions of the end members calculated from incompatible element abundances (19% ne-trachybasalt) differ from those calculated from compatible element abundances (62% ne-trachybasalt) and are inconsistent with proportions calculated from published mineral chemical data. In addition, mixing cannot account for the observed variations in incompatible element ratios and this is taken as evidence for the simultaneous operation of assimilation. Isotopic variations ( 87Sr/ 86Sr from 0.7049 to 0.7076 and 18O/ 16O from 4.7 to 8.6) and the positive correlation of isotope ratios with SiO 2 and Th contents provide conclusive proof that assimilation occurred. Calculations show that the isotopic characteristics and the concentrations of many trace elements in the Q-trachytes can be explained by fractional crystallization of ne-trachybasalt combined with assimilation of average continental crust ( 87Sr/ 86Sr-0.710), and that large amounts of assimilation are not necessary (Ma/Mc=0.55). REE data are not well explained by this model and suggest a crustal end-member enriched in LREE relative to the average crust. Zr and Hf data are also not well explained and indicate that the assimilant was depleted in HFSE relative to average crust or that HFSE are held back in relatively insoluble phases such as zircon in the restite during assimilation. Nevertheless, the results of the modeling demonstrate that Ba concentrations may decrease during AFC processes and that high Sr contents (1500 ppm in the MVS ne-trachybasalts) do not render mafic, parental magmas immune to the effects of assimilation in terms of their 87Sr/ 86Sr ratios. The results of this study confirm conclusions based upon major-oxide and mineral chemical data for the MVS lavas but, more importantly, show that careful analysis of trace element data allows the various processes involved in magma evolution to be identified and quantified, even in the absence of major oxide and isotopic data. Finally, it is reiterated that magma mixing and assimilation may be coupled processes in the magma chambers beneath many volcanic centers, and recognition of this fact has profound implications for studies of magmas erupted at continental margins and through continental crust. 相似文献
11.
Upper mantle plagioclase+spinel- and spinel-peridotite xenoliths occur in basanitic and tephritic lavas of the 2.7 my to Recent Mt. Melbourne Volcanic Field (Antarctica). This field belongs to the Cenozoic McMurdo volcanic group which is located between the deep western trough of the Ross Sea rift system and the uplifted rift shoulder of the Transantarctic Mountains. Our samples cover the transition zone between rift and shoulder. We examined texture and composition of plagioclase+spinel and normal spinel peridotites and determined temperatures and pressures of formation using the internally consistent Ca-ol/cpx and 2px-thermobarometer of Köhler and Brey (1990) and Brey and Köhler (1990). Distinct calcium distribution patterns in olivines correspond to three different petrographic textures: type ELZ have equigranular textures, and low calcium concentrations of 60 ppm in the olivine cores which are strongly zoned to 200 ppm in their rims. Type PLH are protogranular to porphyroclastic and have low and homogeneous calcium contents in the range of 120 to 200 ppm. Type EHH peridotites are equigranular and have olivines with high and homogeneous calcium values of 467–485 ppm. The application of the 2 px-thermometer give rim temperatures of 800 to 860 °C for Type ELZ, 900 to 1080 °C for type PLH and 1030 to 1050 °C for type EHH. Pressures of 13 to 17 kb calculated with the Ca-ol/epx-barometer for EHH peridotites are consistent with the Ross Rift geotherm. For the other two types, this barometer yields unreasonable high pressures exceeding 30 kb for both, plagioclase-bearing and normal spinel-peridotites. This indicates disequilibrium and continued calcium-loss from the olivines during cooling below the closure temperature for the 2 px-thermometer. Inversion of the Ca-in-olivine-barometer into a thermometer and application to core compositions of ELZ olivines (60 ppm) suggests that cooling occurred to temperatures of ca. 580 °C. Based on petrographical and geothermobarometric results and diffusion arguments, a four stage model is developed for the evolution of the upper mantle beneath the margin of the Ross Rift: (1) adiabatic uplift into the plagioclase/spinel-peridotile field; (2) subsequent cooling below the blocking temperature (800 °C) of the 2 px-thermometer to about 600 °C as indicated by low Ca in olivine cores; followed by (3) reheating to 760 °C as suggested by zonation to high calcium concentrations of up to 200 ppm in olivine rims. Calcium concentrations of up to 800 ppm were measured in one ELZ-olivine in the outermost rim (10 m) reflecting (4) a last heating event during transport and ascent in the basanitic host magma. Timing for the latter two stages has been roughly calculated from Ca-diffusivities in olivine. A minimum duration of 1200 to a few million years is indicated for stage 3 and 90 h to 22–23 days for stage 4, respectively. This timing of events correlates to increased mantle temperatures for the duration of magmatic activity of the Mt. Melbourne Volcanic Field and the short-term transport in host magmas. Our results also indicate that anomalous shallow mantle exists at the transition from the Ross Rift into the uplifted Transantarctic Mountains. 相似文献
12.
Buntsandstein deposits generated in a slowly subsiding basin on the western margin of the Iberian Chain are represented by a stratigraphic succession of fluvial deposits less than 100 m thick (conglomerates, sandstones, and shales). Diagenetic processes in sandstones can be grouped as eodiagenetic, mesodiagenetic, and telodiagenetic. Eodiagenesis can be associated with Muschelkalk, Keuper, and probably early Jurassic times. Mesodiagenesis is probably related to Jurassic times. Diagenetic chemical reactions suggest a maximum burial less than 1.5 km and low temperatures (<120°C). Patterns of porosity reduction by compaction and cementation suggest four diagenetic stages: (1) Loss of primary porosity by early mechanical compaction; (2) early cementation (K-feldspar and dolomite); (3) dissolution of cements; and (4) framework collapse by re-compaction. These stages are manifested by the presence of two types of sandstone. Type I sandstones present high intergranular volume (mean, 30%). Type II sandstones are characterized by high compactional porosity loss and exhibit low values of intergranular volume (mean, 16.9%). Type II sandstones are associated with the dissolution of cement and later re-compaction of type I sandstones. An intermediate telodiagenetic phase is deduced and related to the sharp unconformity between Lower Cretaceous sediments and the underlying sediments. This suggests that a mechanically unstable framework collapsed during the Cretaceous, generating type II sandstones. The analyzed diagenetic paths have a wide applicability on similar marginal areas of rift basins. 相似文献
13.
Fluoride analyses display downward decreasing pore water gradients in Peru shelf phosphatic muds that require diffusion from the overlying seawater into the sediment column and removal by reaction within the upper few tens of centimeters, presumably by incorporation into carbonate fluorapatite. The profiles can be modeled as first-order F-removal with rate constants of ~3 yr ?1 and asymptotic F-concentrations deep in the cores of 35–45 μM, almost one-half the seawater value. The integrated flux of fluoride from seawater into organic-rich shelf sediments in coastal-upwelling zones (phosphatic muds) yields a contemporaneous global F-burial of 0.54 × 10 10 mol-F yr ?1, about one-fifth the burial in other sinks (mostly carbonates and opal). The associated burial flux of phosphorus in shelf phosphorites is about 1.6 × 10 10 mol-P yr ?1, comparable to P-burial in the deep sea with organic matter (~1.4 × 10 10 mol yr ?1) and biogenic carbonates (~1.4 × 10 10 mol yr ?1). Thus phosphorite formation on the Peru shelf is a significant contemporaneous process. 相似文献
14.
Resurgent tectonic phases superimposed their structural imprints on the continental margin of the southeastern Mediterranean. This margin underwent a complete cycle, from a margin of a marine basin in the Paleozoic, to the margin of the incipient Neo-Tethys ocean in the early Jurassic, through the margin of the mature ocean in the late Jurassic, Cretaceous, and Paleogene. It became the margin of a desiccated marine basin in the late Miocene, and finally became the margin of a rejuvenated marine basin after the Pliocene. The margin was affected by folding, faulting and intermittent volcanism during the early Liassic, early Neocomian, late Cretaceous, Oligocene and early Miocene. The younger tectonic phases were superimposed on the older ones, reactivating them in some places and masking them in others. The geological characteristics and this complex tectonic history are masked effectively by the thick Messinian evaporitic sequence. This smoothing effect was further enhanced by the huge pile of sediments that has been deposited by the River Nile since the early Pliocene. 相似文献
15.
Microstructures and crystallographic preferred orientations in a fine-grained banded quartz-feldspar mylonite were studied by optical microscopy, SEM, and TEM. Mylonite formation occurred in retrograde amphibolite facies metamorphism. Interpretation of the microstructures in terms of deformation mechanisms provides evidence for millimetre scale partitioning of crystal plasticity and superplasticity. Strain incompatibilities during grain sliding in the superplastic quartz-feldspar bands are mainly accommodated by boundary diffusion of potassic feldspar, the rate of which probably controls the rate of superplastic deformation. There is evidence for equal flow stress levels in the superplastic and crystal-plastic domains. In this case mechanism partitioning results in strain-rate partitioning. Fast deformation in the superplastic bands therefore dominates flow, and deformation is probably best modelled by a superplastic law. If this deformational behaviour is typical, shearing in mylonite zones of the lower continental crust may proceed at exceptionally high rates for a given differential stress, or at low differential stresses in case of fixed strain rates. 相似文献
17.
Continuous exposure in the Pindos mountain chain (Greece) and the detailed stratigraphic measurements in the area enable us to construct eight balanced cross sections across the Pindos Fold-and-thrust belt (PFTB) and to approach quantitatively some parameters which controlled foreland evolution. The 160-km-wide passive continental margin of the Apulian continent in Greece was progressively shortened from east to west at rates of 6 mm/year between the Early Oligocene and Late Eocene. From the rear to the frontal part of the wedge, fault-bend folds, duplexes and imbricates were formed, while strain was partitioned into faulting (~34%), layer parallel shortening (~23%) and buckling (~9%). Foreland subsidence and internal deformation of the orogenic wedge are strongly affected by two parameters of equal importance: the thrust load of the overthrusted microcontinents and the rigidity of the underthrusted Apulian passive margin. Changes in the thickness of the pre-orogenic sediments and reactivated transform faults induced salients. During the Lower Miocene, the orogenic wedge in the Peloponnese suffered additional uplift and westward gravitational gliding induced by the intracontinental subduction of the Palaeozoic rift zone of the Phyllite-Quartzite Series, which was reactivated and returned to the earths surface during the Hellenic orogeny. 相似文献
18.
Variations in sediment input and distribution to the Laptev Sea continental margin during the Holocene and Termination I could be identified based on radiocarbon dated magnetic susceptibility logs and sediment thickness in high-resolution seismic profiles. Magnetic susceptibility of surface samples reveals an increased input of magnetic grains to the Laptev Sea deriving from the Anabar and Khatanga river catchments. Exposed magnetite schists and volcanic rocks of the Anabar shield and Putoran Plateau, respectively, function as major source of magnetic material. The distribution of magnetic susceptibility in association with the thickness of the Holocene sediments indicates bottom-current induced sediment transport guided by major submarine valleys on the Laptev Sea shelf. The sites of filled paleoriver channels identified in the seismic profiles suggest that during the Late Weichselian sea-level lowstand river runoff continued through four of the major valleys on the exposed Laptev Sea shelf. The sediments at the top of the lowstand deposits in front of the Anabar-Khatanga valley, represented in the seismic profiles by prograding deltas, are characterized by outstandingly high magnetic susceptibility values. Radiocarbon datings approximate the deposition of these high magnetic sediments between 10 and 13.4 ka. It is suggested that this increased input of magnetic material is related to the deglaciation of the Anabar shield and the Putoran Plateau and thus support their glaciation during marine isotope stage (MIS) 2. 相似文献
19.
The Bilelyeri Group comprises complexly deformed Mesozoic sedimentary rocks of continental-margin affinities (Kumluca Zone). These are structurally intercalated between a coeval carbonate platform to the west (Bey Daǧlari Zone) and late Triassic ophiolitic rocks and sediments, interpreted as emplaced marginal oceanic crust, to the east (Gödene Zone). Four formations erected in the Bilelyeri Group record the later stages of continental rifting and the progressive development of part of a Mesozoic passive continental margin. The two late Triassic formations, the Telekta? Tepe and the Hatipalani Formations, are dominated by terrigenous clastic and calcareous clastic sediments, including large detached blocks of reef limestone. These rocks were laid down by mostly mass-flow and turbidity-flow into steep-sided rift depressions. Organic reefs were constructed in bordering shallow seas while terrigenous clastic sediment was shed from exposed basement horsts. Thick sequences of mafic lavas were extruded (Norian) in axial parts of the rift zones, followed by a regional change to deposition of pelagic Halobia-bearing limestone. This culminated in a major hiatus involving large-scale sliding of shallow-water limestones into deeper water. The Jurassic to early Cretaceous Dereköy Formation mostly consists of siltstones, radiolarian cherts and mudstones, intercalated with redeposited limestones and black shales. During this time parts of the margin were bordered by major offshore carbonate complexes constructed partly on basement fragments previously rifted off the parent continental areas. Black shales and reduced hemipelagic sediments were deposited in an elongate trough between the main platform and an offshore complex to the east. Some degree of margin reactivation in the early Cretaceous is indicated by renewed deposition of turbiditic sandstone and chloritic clays in some distal sequences. Strong relative enrichment of manganese in some horizons is attributed to offshore volcanic exhalations. Subsequent regional subsidence in the mid-to late Cretaceous is suggested by a switch to predominantly calcareous, pelagic sedimentation on the adjacent platform and the offshore massifs as well as on the Bilelyeri margin. Tectonic disruption of the platform edge during the late Cretaceous is implied by major redeposition of shallow-water shelf limestones in proximal Bilelyeri sequences. The Bilelyeri margin and the adjacent Gödene Zone were tectonically deformed in latest Cretaceous to early Tertiary time and were thrust over the adjacent Bey Daǧlari platform in the early Miocene. Viewed in an East Mediterranean perspective, the Bilelyeri sequences were part of a locally north-south trending segment of a regionally east-west margin to a substantial oceanic area further south. This segment apparently suffered significant strike-slip deformation both during its construction and its later emplacement. Instructive comparisons can be made with other areas of the East Mediterranean, especially south-west Cyprus. 相似文献
20.
Here, we present the slope configuration of the submarine gullies, ridges and the adjacent slump zone off Goa, along the western continental margin of India utilizing multibeam bathymetric and single-channel seismic data. The fluid flow migration signature in the form of pockmark seepages, traces of mud volcanoes and enhanced reflectors is observed in the area. Altogether thirty-three depth profiles from the gully, ridge and slump areas depict downslope progression in gully incision and varying gradients in the gullies (1.19–4.07°) and ridges (2.13–3.70°), whereas the profiles of the slump zone are comparatively steady (2.25–2.51°). The scatter plot of the three slope characteristics, viz., gradient, mean depth and root mean square relief, characterizes the profiles of the gullies, ridges and slump zone into three distinct clusters. Principal component analysis as well corroborates the categorization. Furthermore, a stochastic multifractal technique has been employed to understand the nature of the fine-scale seafloor processes active in the slope region. The three estimated parameters of the depth profiles, i.e., the degree of multifractality ( α), sparseness ( C 1) and the degree of smoothness ( H), substantiate a very high degree of multifractality for all the thirty-three bathymetric profiles. Except for the five adjacent profiles (four from the slump zone and one from the ridge), the remaining twenty-eight depth profiles of the gully, ridges and slump zones show negligible difference. Based on the multifractal study, we conclude that the observed discrimination might be due to the significant interaction between the bottom currents off Goa and the varied seafloor morphological aspects with seepages and faults. 相似文献
|