首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
The regulatory requirements for characterization of the Martinsville Alternative Site (MAS) were fulfilled by applying an iterative approach to the groundwater flow modeling of the site and surrounding area. The approach consisted of field data collection and development of an initial conceptual model. The numerical model was then constructed to be consistent with the data and conceptual model. Next, the calibration results were evaluated statistically, and visually by a groundwater modeling review committee, to determine if the model accurately represented groundwater flow at the site. Initial results failed acceptance criteria because the values of numerical model input parameters had to be varied beyond observed data ranges to calibrate the results, and therefore the model was inconsistent with the initial conceptual model. This led to additional field data collection in areas where the numerical model deviated most from field-determined data. The new data provided sufficient information to revise the conceptual model and calibrate the numerical model successfully. Model calibration was followed by validation. Validation of the numerical model provided additional assurance that the model correctly simulated the observed system. No additional data were found to be necessary during validation of the MAS numerical model. The iterative approach proved to be successful for calibrating and validating this groundwater flow model and should be implemented from the onset of characterization planning in other applications.  相似文献   

2.
A discrete element modeling of granular material was carried out using a 3D spherical discrete model with a rolling resistance, in order to take into account the roughness of grains. The numerical model of Labenne sand was generated, and the desired porosity was obtained by a radius expansion method. Using numerical triaxial tests the micro-mechanical properties of the numerical material were calibrated in order to match the macroscopic response of the real material. Numerical simulations were carried out under the same conditions as the physical experiments (porosity, boundary conditions and loading). The pre-peak, peak and post-peak behavior of the numerical material was studied. The calibration procedure revealed that the peak stress of the sand sample does not only depend on local friction parameters but also on the rolling resistance. The larger the value of the applied rolling resistance, the higher the resulting stress peak. Furthermore, the deformational response depends strongly on local friction. The numerical results are quantitatively in agreement with the laboratory test results.  相似文献   

3.
应用光纤传感技术测量模型相似材料内部应变,必须解决光纤与相似材料耦合的问题。传统的研究中普遍存在应变传递理论分析结果无法通过试验检验的问题。设计实现了一种基于光纤-胶体-相似材料3层应变传递结构的光纤Bragg光栅(FBG)相似材料一维传感器。通过对该传感器应变传递特性和标定方法的研究探索解决光纤与相似材料耦合性的问题。该传感器采用无涂覆层的光纤Bragg光栅作为传感元件,将光纤埋入相似材料应变试件内部直接测量轴向中心应变。通过应变传递理论分析、数值模拟以及全新设计的标定试验研究3种方法研究了该相似材料光栅传感器的应变传递特性。平均应变传递率结果显示3种方法所得到的数值非常接近,表明该传感器的光纤、胶体、相似材料具有良好的耦合性以及应变测量的准确性。该方法为解决模型相似材料内部三维应变测量提供了可行方案。  相似文献   

4.
UCODE反演程序的原理及应用   总被引:2,自引:0,他引:2       下载免费PDF全文
夏强  万力  王旭升  E.Poeter 《地学前缘》2010,17(6):147-151
对地下水模型进行反演是模拟过程中的一个必要步骤,使用反演程序自动校正模型可快速确定最佳拟合的参数值,分析参数对模拟结果的敏感性,比人工试算-调整法更为优越。UCODE是一款被广泛应用的地下水模型反演程序,它使用高斯牛顿法进行参数优化,反演结果对参数初值有一定的依赖性。通过建立假想的非稳定流模型,进行6组数值试验,验证了UCODE程序的实用性。尽管参数的初始取值会影响反演的进程,但只要取值适当,UCODE就能实现优化参数的目的。  相似文献   

5.

Numerical modelling is increasingly used as a tool for improving management strategies in aquifers and to support the design of comprehensive projects considering natural and anthropogenic processes. Overall, numerical simulation in karstic aquifers poses a major scientific challenge due to the non-Darcian groundwater flow dynamics. In specific cases, the equivalent porous medium approach has shown acceptable results, particularly in poorly karstified aquifers with regional/subregional scales such as this case. The Yucatan coastal karstic aquifer (Mexico) has been defined as a complex regional heterogeneous system, partially confined, thus allowing the discussion of multiple conceptual models. In this research, a two-dimensional numerical model of flow and transport was implemented using SEAWAT for the NW Yucatan aquifer. Four likely conceptual models were audited, calibrated and verified using hydrogeological field data, to select the best one, considering their fit and complexity. The numerical model accuracy was evaluated using the root-mean-square error, Nash Sutcliffe efficiency and the Pearson coefficient. The Akaike information criterion and Bayesian information criterion were included for evaluating the complexity of the numerical models. In addition, the signal of tide propagation into the aquifer was assessed as a proxy to improve the numerical calibration process. Results show that the most complex numerical model has a better calibration than the simpler models, but the model accuracy is worse when compared to less complex numerical models in the verification exercise. This research offers enhancement in the knowledge of numerical modelling in heterogeneous coastal aquifers within a conceptual-model uncertainty setting.

  相似文献   

6.
Infrared thermography has increasingly gained importance because of environmental and technological advancements of this method and is applied in a variety of disciplines related to non-isothermal flow. However, it has not been used so far for quantitative thermal analysis in saturated porous media. This article suggests infrared thermographic approach to obtain the entire surface temperature distribution(s) in water-saturated porous media. For this purpose, infrared thermal analysis is applied with in situ calibration for a better understanding of the heat transfer processes in porous media. Calibration is achieved with a combination of invasive sensors which are inserted into the medium and non-invasive thermal sensors in which sensors are not inserted to measure temperatures but it works through the detection of infrared radiation emitted from the surface. Thermocouples of relatively thin diameter are used to minimize the disturbance for flow. Thermocouples give the temperature values at specified positions inside the porous medium, and these values are compared with the values suggested by the infrared thermographic device at the same positions, in the calibration exercise. The calibration process was repeated for different temperatures and flow rates to get the temperature distributions of the whole material inside the system. This technique enables us to measure accurate two-dimensional temperature distributions, which is not possible by using thermocouples only. Continuous point heat sources at different flow rates and temperatures are studied experimentally. Additionally, it offers numerical simulations of the experiments utilizing a finite element-based model. A two-dimensional density and viscosity-dependent flow and transport model accounting for thermal dispersion is utilized to simulate the experimental results. Possible small heat losses from the surface are incorporated in the model according to the properties and thickness of the Plexiglass material used for the construction of the experiment tank. The numerical results agree well with the experimental observations.  相似文献   

7.
The work presented in this paper shows that the probabilistic approach as well as the fractional Brownian motion model are reliable to simulate the dispersion of contaminant in the dual porosity media. Three models were tested on experimental data obtained by tracer tests in chalk characterized by a primary and a secondary porosity: a numerical model (MT3DMS), a probabilistic model based on the Bayesian approach and a fractional Brownian model. By using Einstein’s rule, it is demonstrated that the dispersion coefficient is time dependent and that the dispersion is ballistic which is a particular case of superdiffusion. A test of sensitivity was carried out and shows that the numerical model is slightly suitable to simulate the concentration in time and space for a given discharge starting from the physical parameters obtained by calibration for an other discharge because of the great sensitivity of its parameters according to the hydrodynamic conditions. On the other hand, the variability of the parameters of the two other models does not generate important errors on the values of simulated concentrations when other hydrodynamic conditions are considered.  相似文献   

8.
This paper discusses recommendations based on numerical simulation and numerical analytic solution for interpretation of pumping tests carried out near rivers. Suggestions are made on the network model size and the approach to its calibration for inverse problem solution. The possibility of interpreting pumping tests made near a river with non-stationary data is discussed. Tests were performed to verify the recommendations on the arrangement of a well cluster for pumping tests.  相似文献   

9.
Ongoing developments in geological and hydrogeological investigation techniques, especially direct-push methods, have led to an increase in the quality, density and spatial resolution of data available from such investigations. This has created new challenges in the development of numerical models in terms of accurately and efficiently translating detailed and complex conceptual models into effective numerical models. Suitable geometrical and numerical modelling tools are essential in order to meet these challenges. This paper describes the development of a three-dimensional hydrogeological flow model for a contaminated site near Berlin, Germany, based on high-resolution geological data obtained principally using direct-push methods. The available data were first interpreted to construct a detailed GIS-based geological model, which formed the basis of the conceptual site model. The conceptual model was then translated into a geometrical model, which was used to create a finite element numerical model. An innovative geometry object-based approach enabled the complex structural details of the conceptual model to be accurately reproduced in the numerical model domain. The resulting three-dimensional steady-state unconfined flow model was successfully calibrated using external automated calibration software, whereby parameter values for groundwater recharge and hydraulic conductivity were determined.  相似文献   

10.
采用数值仿真试验方法,对类岩材料模型的微观力学参数与宏观力学参数间的对应关系进行了研究。在大量三维颗粒流数值试验结果的基础上,提出适用于类岩材料的PFC3D数值模型微观力学参数的快速校准方法,根据微观参数与宏观力学参数的拟合关系确定材料的微观力学参数参考值。根据确定的微观力学参数构建类岩试件的圆柱体数值模型,模拟圆柱试件的常规三轴试验,其结果与室内模型试验结果具有良好的一致性,验证了微观参数校准方法及结果的可靠性。  相似文献   

11.
The longevity of ore pass systems is an important consideration in underground mines. This is controlled to a degree by the structural stability of an ore pass which can be compromised by changes in the stress regime and the degree of fracturing of the rock mass. A failure mechanism specific to ore pass systems is damage on the ore pass wall by impact load or wear by material flow. Structural, stress and material flow-induced failure mechanisms interact with severe repercussions, although in most cases one mechanism is more dominant. This paper aims to provide a better understanding of the interaction of ore pass failure mechanisms in an operating mine. This can provide an aid in the design of ore pass systems. A two-stage numerical approach was used for the back analysis of an ore pass at Brunswick mine in Canada. The first stage in the analysis relied on a 3D boundary element analysis to define the stress regime in the vicinity of the ore pass. The second stage used a synthetic rock mass (SRM) model, constructed from a discrete fracture network, generated from quantitative rock mass field data. The fracture network geometry was introduced into a bonded particle model, in a particle flow code (PFC). Subsequently, the ore pass was excavated within the SRM model. A stability analysis quantified the extent of rock mass failure around the ore pass due to the interaction of pre-existing fractures and the failure of the intact rock bridges between these fractures. The resulting asymmetric failure patterns along the length of the ore pass were controlled to a large degree by the in situ fractures. The influence of particle flow impact was integrated into the model by projecting a discrete rock fragment against the ore pass walls represented by the SRM model. The numerical results illustrated that material impact on ore pass walls resulted in localised damage and accelerated the stress-induced failure.  相似文献   

12.
Sand production is a complex physical process that depends on the external stress and flow rate conditions as well as on the state of the material. Models developed for the prediction of sand production are usually solved numerically because of the complexity of the governing equations. Testing of new sand production models can very well be performed through calibration with laboratory experiments, which by construction possess geometric symmetry facilitating explicit mathematical analysis. We introduce an erosion model that is built upon the physics (poro‐mechanical coupling of the fluid‐solid system) usually incorporated in erosion models for the prediction of sand production. Around this model, we set up a mathematical framework in which sand production models because of erosion can be tested and calibrated without having to resort to complex numerical work or specialised software. The model is validated by data of volumetric sand production from a hollow cylinder test on synthetic sandstone. Generalisations of the model, which are naturally incorporated in the same framework and have useful phenomenological features, are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
柱体受内波作用力的数值模拟大多针对圆柱展开,方柱在内波环境下受力特性研究较少。借助三维数值波浪水槽,采用大涡模拟(LES)技术研究了内孤立波的产生、传播及其对不同形状柱体的受力特性。对比分析了内孤立波波幅对圆柱和方柱受力的影响规律。研究表明,在分层流环境下,随着内孤立波波幅的增大,圆柱和方柱所受的水平作用力均增大;相同波幅情况下,无论在上层或下层水体,方柱表面的压力分布更不均匀,迎流面与背流面的压差更大,从而导致方柱相较于圆柱会受到更大的水平作用力。  相似文献   

14.
In the current research, the ground-penetrating radar (GPR) method has been employed to identify physical and geometrical parameters of buried cylindrical structures using the pattern recognition approach. To achieve this goal, the well-established mathematical relationships between geometrical parameters of cylindrical target (radius, burial depth, and horizontal location) and the associated GPR hyperbolic response characteristics are employed using the template matching method. In order to validate the applicability of the template matching method in providing estimates of such parameters, the method is first examined on GPR responses of synthetic models with known geometrical parameters followed by applying on real data using two different similarity criteria including 2-D spatial convolution and normalized cross correlation in the wave number domain. In the first step, the GPR responses of 71 synthetic models encompassing one, two, and three horizontal cylinders were produced using the improved 2-D finite difference in frequency domain. Then, appropriate preprocessing sequences to reduce random noise caused by forward modeling were applied on synthetic data. The proposed algorithm applied on several synthetic model responses could estimate the known geometrical parameters of the buried cylinders with acceptable accuracy (maximum error of 15%). The template matching algorithm was also used to extract geometrical parameters of water and wastewater pipes buried in Imam Hossein Square, Isfahan city, as real GPR data. Depending on environmental conditions and subsurface host formation, the real GPR data normally contain a variety of noises; therefore, a series of appropriate objective preprocessing and processing stages were designed in order to apply on real GPR images before deploying template matching algorithm. The applicability of the template matching algorithm on real data and validity of the estimated parameters were proved based on assessing the accuracy of the estimated geometrical parameters of respective pipes through GPR response versus the measured parameters. The proposed algorithm was designed in such a way that all steps of estimating geometrical parameters of buried cylindrical targets are automatically carried out.  相似文献   

15.
This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.  相似文献   

16.
This applied research deals with the numerical modelling and transient simulation of the joint surfacewater/groundwater flows that characterize the freshwater/saltwater hydrology of the coastal alluvial valley of the Low Guadalhorce River, Malaga, Spain. The MELEF model used was mainly adapted and calibrated for a simulation period of two hydrological years 1989/1990–1990/1991, before the current channelling of the river, where floods and low precipitations have been recorded. The model calibration process was performed with the aid of phreatic levels measured in numerous wells and piezometers, as well as recharges from precipitation and irrigation on the alluvial surface, which was also assessed by the hydrologic model SSMA-2. The present numerical approach can predict the forthcoming hydrology of the coastal alluvial of the Guadalhorce River after its final channelling.  相似文献   

17.
Groundwater is a dynamic and replenishable natural resource. The numerical modeling techniques serve as a tool to assess the effect of artificial recharge from the water conservation structures and its response with the aquifers under different recharge conditions. The objective of the present study is to identify the suitable sites for artificial recharge structures to augment groundwater resources and assess its performance through the integrated approach of Geographic Information System (GIS) and numerical groundwater modeling techniques using MODFLOW software for the watershed located in the Kodaganar river basin, Dindigul district, Tamil Nadu. Thematic layers such as geology, geomorphology, soil, runoff, land use and slope were integrated to prepare the groundwater prospect and recharge site map. These potential zones were categorized as good (23%), moderate (54%), and poor (23%) zones with respect to the assigned weightage of different thematic layers. The major artificial recharge structures like percolation ponds and check dams were recommended based on the drainage morphology in the watershed. Finally, a threelayer groundwater flow model was developed. The model was calibrated in two stages, which involved steady and transient state condition. The transient calibration was carried out for the time period from January 1989 to December 2008. The groundwater model was validated after model calibration. The prediction scenario was carried out after the transient calibration for the time period of year up to 2013. The results show that there is 15 to 38% increase in groundwater quantity due to artificial recharge. The present study is useful to assess the effect of artificial recharge from the proposed artificial structures by integrating GIS and groundwater model together to arrive at reasonable results.  相似文献   

18.
以长江中下游防洪系统为对象,概述了在大型复杂防洪系统水沙运动数值模拟基础上,成功地将面向长江中下游防洪规划论证需求的水沙数学模型转化为面向长江防洪系统防汛方案评估需求的长江中下游实时洪水预报数学模型.为适应实时预报调度快速、准确评估的要求,提出了基于水动力学的循环滚动计算模式和实时校正模式.实现了水文学实时校正方法与水动力学数学模型的耦合,建立了基于水动力学的实时校正模式和分洪溃口洪水预报模式.通过长江中下游防汛期间的试运行,较好地解决了洪水预报误差校正和分洪溃口后洪水预报等关键难题,为防汛方案的制定和实时洪水调度方案优化提供了技术支撑,主要成果已应用于长江中下游防汛调度方案中.  相似文献   

19.
The aim of this study was to improve the quality of laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) determination of phosphorus in crystalline quartz. Over the last decade, the Geological Survey of Norway has routinely performed trace element determinations on quartz from both operating and potential quartz deposits by LA‐ICP‐MS. The determined phosphorus concentrations were, with but few exceptions, consistently within the range of 10 to 30 μg g?1, results that seemed to be both too high and too consistent. The multi‐material calibration curve obtained from a suite of reference materials (NIST SRM 610, 612, 614, 1830, BAM No. 1 amorphous SiO2 glass) did not define a precise regression line. Published phosphorus concentrations for the reference materials are poorly constrained and the observed dispersions along the multi‐material calibration curve suggest that some of the reference values may be inaccurate. Furthermore, the calibration curve did not pass through the origin of the [(cps 31P/cps 30Si) · cone. Si] vs. P concentration diagram; thus, in addition to the uncertainties of the literature values of phosphorus, it is difficult to define the calibration curve. Three reference materials (NIST SRM 614, 1830, synthetic quartz KORTH) were sent for phosphorus accelerator implantation, providing an independent and accurate (± 3%) approach for determining phosphorus concentrations in crystalline quartz. The intrinsic phosphorus concentrations of the three implanted samples plus those for NIST SRM 610 and 612 were determined by secondary ion mass spectrometry (SIMS), yielding new phosphorus values for NIST SRM 610, 612, 614 and 1830. Using these new values resulted in a better defined LA‐ICP‐MS calibration curve. However, the source of the ICP‐MS related background could not be defined, such that it must still be empirically corrected for.  相似文献   

20.
Due to the diverse and complex structure of soil and the variety of foam-modifier materials that are used, it is difficult to provide a model to predict the laboratory behavior of modified soils. For example, several studies have shown independently that the amount of the foam-modified soil depends on several factors, such as the internal friction angle and normal stiffness. Of late, modeling by numerical methods has become popular in engineering sciences and the modeling of complex material behavior is possible with the help of numerical methods. In this research, the performance and efficiency of the numerical method in the modeling of laboratory tests such as the slump test and the uniaxial compressive strength test were investigated and it was found that numerical modeling performs very well in predicting the results of these tests for foam-modified sand samples. In order to achieve this goal, the slump test and the uniaxial compressive strength test were performed in the laboratory on several modified sand samples in order to obtain the laboratory results for these samples. Then, numerical simulation of these experiments was carried out using PFC3D software. The results of numerical modeling were compared with the experimental results, and good agreement was observed. Finally, after calibration of the numerical model using the experimental results, the effect of changes in the internal friction angle and the normal stiffness of the modified sand in the amount of the slump was investigated. According to the results of this sensitivity analysis, it was determined that by increasing both effective parameters the amount of the slump of foam-modified sand decreases and that the parameters are the most important factors in controlling the slump value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号