首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 886 毫秒
1.
The comparison of masses and sizes of the Neptunian satellites and of Pluto and Charon to the secondaries of the planetary, Jovian, Saturnian and Uranian systems support the hypotheses, first, that an initial Neptune's satellite system may have been disrupted, second, that Triton may have been the system perturber and, third, that Pluto (or a parent body of Pluto and Charon) was initially a giant satellite of Neptune. Based on recent theoretical works on perturbed proto-planetary nebula and noting the similarity of some characteristics of Neptune and Uranus, a theoretical mean distance ratio of primeval gaseous rings around Neptune is tentatively deduced to be about 1.475, close to the value of the Uranian system. An exponential distance relation gives possible ranges of distances at which small satellites and/or ring structures could be found by Voyager 2, close to Neptune.  相似文献   

2.
《Icarus》1987,71(1):115-136
The Jovian and Uranian rings exist within severe energetic particle and plasma environments where magnetosphere-related losses of small ring particles and surface reflectance alteration by sputtering are likely to be important. In contrast, the main Saturnian rings exist within a zone where magnetospheric losses and surface alteration effects are negligible, primarily because of solid-body absorption of inwardly diffusing magnetospheric particles. It is shown here that solid-body absorption of radially diffusing ions is a much more efficient process in the inner Saturnian magnetosphere than in the inner Jovian and Uranian magnetospheres because of the near axial symmetry of the planetary magnetic field with respect to the rotational equatorial plane. This is especially true for continuous rings (as opposed to satellites) for which the approximate time scale against absorption is the particle bounce period in an axially symmetric field, whereas it is the particle drift period in an asymmetric field. Assuming comparable diffusion rates, inward transport of magnetospheric particles is much more strongly inhibited in the inner Saturnian magnetosphere than in the inner magnetospheres of Jupiter and Uranus. This remains true when only rings of comparable widths and optical depths are considered (e.g., the F ring at Saturn and the ϵ ring at Uranus). The most extreme possible consequence of this difference in solid-body absorption efficiency may have been the preferential development of a radially extensive, optically thick ring system at Saturn where magnetospheric losses are minimized in comparison to those at Jupiter and Uranus. A more definite consequence is that the Uranian rings are most probably directly exposed to nearly the same proton fluxes measured at Voyager 2's closest approach. Exposure of ring particle surfaces to radiation belt ion fluxes therefore remains as a viable explanation for the low albedos of the Uranian rings.  相似文献   

3.
Experimental results on the interaction between fast bombarding ions and solid targets simulating satellite surfaces in the Outer Solar System are reviewed. Applications to Jovian, Saturnian, Uranian, Neptunian, and Plutonian systems suggest the important role played by cosmic and magnetospheric ions in eroding material, in redistributing it on the surfaces of some objects, and in producing either thin or thick mantles of dark organics.  相似文献   

4.
Differences in crater morphology between the Jovian and Saturnian-Uranian ice satellites implies a weaker surface strength for Ganymede and Callisto and thus a more concentrated composition of water. This compositional anomaly among the ice satellites is apparently due to a more complete migration of heavy material toward the inner part of the pre-planetary disc of the Jovian system than occurred in the discs of the Saturnian and Uranian systems.  相似文献   

5.
The presence of central peak craters and the absence of central pit craters on Triton implies a surface rigidity similar to the Saturnian and Uranian satellites and stronger than that of the Jupiter satellites Ganymede and Callisto. Tectonically degraded terrain may exist at the antipode of the large impact structure on 1989N1. Dome craters on Triton may represent a form of solid state volcanism.  相似文献   

6.
We study the evolution of several distant satellite orbits. These are the orbits (including the improved ones)of the recently discovered Neptunian satellites S/2002 N1, N2, N3, N4; S/2003 N1 and the orbits of Jovian, Saturnian, and Uranian satellites with librational variations in the argument of the pericenter: S/2001 J10 (Euporie), S/2003 J20; S/2000 S5 (Kiviuq), S/2000 S6 (Ijiraq), and S/2003 U3. The study is performed using mainly an approximate numerical-analytical method. We determine the extreme eccentricities and inclinations as well as the periods of the variations in the arguments of pericenters and longitudes of the ascending nodes on time intervals ~105?106 yr. We compare our results with those obtained by numerically integrating the rigorous equations of satellite motion on time intervals of the order of the circulation periods of the longitudes of the ascending nodes (102?103 yr).  相似文献   

7.
《Icarus》1987,72(1):69-78
Observations of the Uranian rings were made in several color filters by the Voyager Imaging Science experiment in January 1986 for the purpose of determining the color of the rings. Selected images were taken through the Violet (λ = 0.41 μm), Clear (λ = 0.48 μm), and Green (λ = 0.55 μm) filters of the Voyager 2 narrow angle camera. The results of the analysis are consistent with the α, β, η, γ, δ, and ϵ rings being very dark, with flat spectra throughout the visible, and are comparable to the latest Voyager results showing a lack of color for the Uranian satellites. The general lack of color in the ring/satellite system of Uranus is remarkably different than the case of the distinctly reddish systems of Jupiter and Saturn. The unique combination of low absolute reflectivity and flat spectrum which characterizes the Uranian rings supports the concept that the Uranian ring material is compositionally distinct from either the Si- and S-rich Jovian ring and inner satellites, or the water-ice-rich rings and inner satellites of Saturn. Of all cosmically abundant materials, the candidate which best matches the low brightness and flat spectrum of the Uranian rings is carbon.  相似文献   

8.
Craters with central peaks occur on the Uranian satellites Ariel, Umbriel, Titania, and Oberon; but do not occur on Miranda. The inelastic surface of Miranda is apparently due to the heavy tectonic reworking of its surface. A theory of expansion/contraction is proposed to explain the tectonic history of Miranda. The existence of central peak craters on the four largest satellites of Uranus implies that they have surface strengths similar to those of the Saturnian satellites and silicate bodies of the inner solar system which all have central peak craters. The absence of central peak craters on Miranda implies that it has an inelastic surface similar to those of the Jovian ice satellites Ganymede and Callisto whose surfaces do not contain central peak craters.  相似文献   

9.
We present the results of our systematic study of the long-period orbital evolution of all of the outer Saturnian, Uranian, and Neptunian satellites known to date. The plots of the orbital elements against time give a clear idea of the pattern of the orbital evolution of each satellite. The tabular data allow us to estimate the basic parameters of the evolving orbits, including the ranges of variation in the semimajor axes, eccentricities, and ecliptical inclinations as well as the variation periods and mean motions of the arguments of pericenters and the longitudes of the nodes. We compare the results obtained by numerically integrating the rigorous equations of the perturbed motion of the satellites with the analytical and numerical-analytical results. The satellite orbits with a librational pattern of variation in the arguments of pericenters are set apart.  相似文献   

10.
Several substances besides water ice have been detected on the surface of Europa by spectroscopic sensors, including CO2, SO2, and H2S. These substances might occur as pure crystalline ices, as vitreous mixtures, or as clathrate hydrate phases, depending on the system conditions and the history of the material. Clathrate hydrates are crystalline compounds in which an expanded water ice lattice forms cages that contain gas molecules. The molecular gases that may constitute Europan clathrate hydrates may have two possible ultimate origins: they might be primordial condensates from the interstellar medium, solar nebula, or jovian subnebula, or they might be secondary products generated as a consequence of the geological evolution and complex chemical processing of the satellite. Primordial ices and volatile-bearing compounds would be difficult to preserve in pristine form in Europa without further processing because of its active geological history. But dissociated volatiles derived from differentiation of a chondritic rock or cometary precursor may have produced secondary clathrates that may be present now. We have evaluated the current stability of several types of clathrate hydrates in the crust and the ocean of Europa. The depth at which the clathrates of SO2, CO2, H2S, and CH4 are stable have been obtained using both the temperatures observed in the surface [Spencer, J.R., Tamppari, L.K., Martin, T.Z., Travis, L.D., 1999. Temperatures on Europa from Galileo photopolarimeter-radiometer: Nighttime thermal anomalies. Science 284, 1514-1516] and thermal models for the crust. In addition, their densities have been calculated in order to determine their buoyancy in the ocean, obtaining different results depending upon the salinity of the ocean and type of clathrate. For instance, assuming a eutectic composition of the system MgSO4H2O for the ocean, CO2, H2S, and CH4 clathrates would float but SO2 clathrate would sink to the seafloor; an ocean of much lower salinity would allow all these clathrates to sink, except that CH4 clathrate would still float. Many geological processes may be driven or affected by the formation, presence, and destruction of clathrates in Europa such as explosive cryomagmatic activity [Stevenson, D.J., 1982. Volcanism and igneous processes in small icy satellites. Nature 298, 142-144], partial differentiation of the crust driven by its clathration, or the local retention of heat within or beneath clathrate-rich layers because of the low thermal conductivity of clathrate hydrates [Ross, R.G., Kargel, J.S., 1998. Thermal conductivity of Solar System ices, with special reference to martian polar caps. In: Schmitt, B., De Berg, C., Festou, M. (Eds.), Solar System Ices. Kluwer Academic, Dordrecht, pp. 33-62]. On the surface, destabilization of these minerals and compounds, triggered by fracture decompression or heating could result in formation of chaotic terrain morphologies, a mechanism that also has been proposed for some martian chaotic terrains [Tanaka, K.L., Kargel, J.S., MacKinnon, D.J., Hare, T.M., Hoffman, N., 2002. Catastrophic erosion of Hellas basin rim on Mars induced by magmatic intrusion into volatile-rich rocks. Geophys. Res. Lett. 29 (8); Kargel, J.S., Prieto-Ballesteros, O., Tanaka K.L., 2003. Is clathrate hydrate dissociation responsible for chaotic terrains on Earth, Mars, Europa, and Triton? Geophys. Res. 5. Abstract 14252]. Models of the evolution of the ice shell of Europa might take into account the presence of clathrate hydrates because if gases are vented from the silicate interior to the water ocean, they first would dissolve in the ocean and then, if the gas concentrations are sufficient, may crystallize. If any methane releases occur in Europa by hydrothermal or biological activity, they also might form clathrates. Then, from both geological and astrobiological perspectives, future missions to Europa should carry instrumentation capable of clathrate hydrate detection.  相似文献   

11.
This review presents the recent works devoted to the construction or the improvement of the theories of motion of all natural planetary, satellites (except the Moon). The knowledge of the long-term evolution of these motions is strongly dependent on the accuracy of current theories. With the increasing precision of the ground-based observations, and with the past and future space missions, most of the theories have been or have to be revisited, taking into account more and more disturbing effects and specially tidal dissipation. These studies are often made difficult by the resonant behaviour of the system. We emphasize here tidal evolution in resonance. In the Jovian and Saturnian systems, tidal actions might explain the observed resonant state, as well as the heating of the satellites up to the softening and the resurfacing of some of them. However in the case of the Uranian satellites., no true resonance appears in spite of an observational evidence of tidal effects in resurfacing Ariel and Miranda, and new works try to expalin these differences.  相似文献   

12.
We have developed a new dynamical model of the main Uranian satellites, based on numerical integration and fitted to astrometric observations. Old observations, as well as modern and Voyager observations have been included. This model has provided ephemerides that have already been used for predicting the mutual events during the PHE-URA campaign. It is updated here to improve the prediction of these events. We also tried to assess the real accuracy of our ephemerides by checking the distance differences of the Uranian satellites, using simultaneously our former and new model. It appears that both solutions are very close to each other (within few tens of kilometers), and most probably accurate at the level of few hundred of kilometers. Using new available meridian observations of the Uranian satellites, we have checked the Uranian ephemeris accuracy using DE406. An error of more than 0.1 arcsec on the Uranian position is observed.  相似文献   

13.
Using Voyager results, we have made crude estimates of the rate at which Io loses volatiles by a variety of processes to the surrounding magnetosphere for both the current SO2-dominated atmosphere as well as hypothetical paleoatmospheres in which other gases, such as N2, may have been the dominant constituent. Loss rates are strongly influenced by the surface pressure on the night side, the relationship between the exobase and the Jovian magnetospheric boundary, the exospheric temperature, and the peak altitudes reached by volcanic plumes. Several mechanisms make significant contributions to the prodigious rate at which Io is currently losing volatiles. These include: interaction of the magnetospheric plasma with volcanic plume particles and the background atmosphere; sputtering of ices on the surface, if the nightside atmospheric pressure is low enough; and Jeans' escape of O, a dissociation product of SO2 gas. For paleoatmospheres, only the first two of these mechanisms would have been effective. However, they are capable of eliminating large amounts of N2 and other volatiles from Io over the satellite's lifetime. Io could have also lost large amounts of water over its lifetime due to the extensive recycling of water between its upper and lower crust, with the partial dissociation of water vapor in silicate magma chambers initiating this loss process. Significant amounts of water may also have been lost as a result of the interaction of the magnetospheric plasma with water ice particles in volcanic plumes. Once an SO2-dominated atmosphere becomes established, much water may have also been lost through the sputtering of surface water ice.  相似文献   

14.
We found a new empirical fonmula for the distance of the n-th satellite in the Jovian, Saturnian and Uranian systems, an = B1 × Bn, with just two constants b1 and B for each system. The difference between the observed distances and the values calculated according to this formula is generally less than 10%. We take the view that the satellites were formed from the accretion of planetesimals in the gas-planetesimal disk surrounding the planet, that the main component of the disk was gas so that the effect of gas drag would be very important in the above process. Our theoretical analysis shows that one type of radial perturbation in the disk will lead to instability and hence the formation of gaseous rings with enhanced density. Within these rings, the planetesimals stick together to form the satellites, and it is the form of the distribution of the rings that leads to the distance law.  相似文献   

15.
The ground-based observations of the recently discovered Saturnian satellites, obtained during the 1980 apparition, have been collected from the IAU Circulars and identified with and fit to four orbital groups: (1) the inner pair of coorbital librating satellites, (2) the satellite known as “Dione B” near the L4 point of Dione-Saturn, (3) the satellites associated with the L4 and L5 points of Tethys-Saturn or, alternatively, one satellite unconfortably near the orbit of Tethys, and (4) the F-ring satellites observed by Voyager I.  相似文献   

16.
The rings and satellites discovered by Voyager 2 in the Uranian system confirm the existence of small satellites and rings foreseen before their discoveries and close to the locations suggested by an exponential distance relation found by the method of comparison of magnitude order of successive distances ratios of the large Uranian satellites. A new exponential distance relation is deduced, fitting the distances of the large satellites and groups of rings and new small satellites with a spacing ratio of 1.456. Some characteristics of an hypothetical parent body for the new inner satellites are also deduced.  相似文献   

17.
《Planetary and Space Science》1999,47(10-11):1371-1376
Implantation of reactive ions into targets of planetary interest is a relevant subject to be studied in the laboratory. It could in fact produce new molecular species that are not native to those surfaces. Presented here are new laboratory results obtained by nitrogen implantation (15–30 keV N+) on frozen mixtures of H2O:CH4 (2:1). These species have been chosen in view of their possible presence on the surface of Jovian and Saturnian satellites and rings. In fact these surfaces are exposed to intense irradiation by magnetospheric and/or solar energetic particles. The laboratory investigation utilizes IR spectroscopy. The main objectives of the present study are to identify newly produced species and to verify if these (or at least if the profile of their IR bands) are different from those produced by unreactive ions impinging on targets in which nitrogen is already present, occurring in the form of frozen NH3 (Strazzulla and Palumbo, 1998) or N2 (Palumbo et al., 1999). I find that CN-bearing group is in fact formed and its IR feature has a profile (peak position and band profile) that differs from that obtained after irradiation or frozen gases containing nitrogen. The relevance the results might have to elucidate the origin of some species observed on Jovian icy moons or predicted to be observed on Saturnian satellites are outlined.  相似文献   

18.
A.D. Fortes 《Icarus》2007,191(2):743-748
The composition and abundance of volatile gases observed in the jets emanating from fissures near the south pole of Saturn's moon Enceladus are strongly indicative of outgassing from clathrate hydrates which formed as a result of hydrothermal activity rather than nebula condensation. I suggest that fluids must be able to permeate the ice shell, extensively metasomatising the mantle by emplacement of clathrates along fractures and grain boundaries, which subsequently are entrained in rising cryomagmas as xenoliths. These are carried upwards to the point where they dissociate, releasing their gas load into the magma and promoting the vigorous ice fountaining observed—a direct analogue of terrestrial basaltic fire fountains caused by volatile exsolution. This clathrate xenolith model can explain the measured volatile abundances, eruption velocities, the ice to vapour ratio in the plumes, and the vent temperatures.  相似文献   

19.
现代天王星卫星运动定量理论的研究和发展   总被引:1,自引:0,他引:1  
1986年“旅行者2号”飞越天于星期间,由空间无线电和光学观测获得的卫星资料首次给出天王星5颗主要卫星质量的可靠估计,从而推动了现代天王星卫星运动定量理论的建立。Laskar于1986年建立了第一个相对完整的天王星主要卫星的(半)分析理论——GUST86,其高精度已被许多学者的实算证实。之后,对理论的改进作出贡献的学者有:Malhotra等人(1989)、Lazzaro等人(1987,1991)分析研究了天王星卫星系统中近共振项对长期摄动解的影响;Taylor(1998)采用数值积分拟合观测资料,以更精确地测定卫星质量;Christou和Murray(1997)则将一个2阶Laplace—Lagrange理论应用于天王星卫星系统。对这些学者的工作作一概述。  相似文献   

20.
W.M. Grundy  L.A. Young 《Icarus》2004,172(2):455-465
We present eight new 0.8 to 2.4 μm spectral observations of Neptune's satellite Triton, obtained at IRTF/SpeX during 2002 July 15-22 UT. Our objective was to determine how Triton's near-infrared spectrum varies as Triton rotates, and to establish an accurate baseline for comparison with past and future observations. The most striking spectral change detected was in Triton's nitrogen ice absorption band at 2.15 μm; its strength varies by about a factor of two as Triton rotates. Maximum N2 absorption approximately coincides with Triton's Neptune-facing hemisphere, which is also the longitude where the polar cap extends nearest Triton's equator. More subtle rotational variations are reported for Triton's CH4 and H2O ice absorption bands. Unlike the other ices, Triton's CO2 ice absorption bands remain nearly constant as Triton rotates. Triton's H2O ice is shown to be crystalline, rather than amorphous. Triton's N2 ice is confirmed to be the warmer, hexagonal, β N2 phase, and its CH4 is confirmed to be highly diluted in N2 ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号