首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Spatial and temporal scales of sea surface temperature (SST) variations in the Kuroshio region have been investigated using a satellite-based one-year merged SST product. Targeting short-term variations with temporal scales of less than a year, decorrelation scales, which are defined as the e-folding scale of SST variability, have been derived as functions of regional positions and calendar months. We assumed that the autocorrelation function of SST has anisotropic Gaussian characteristics in the space-time domain. Resultant spatial and temporal decorrelation scales range from 1 to 3° and 2 to 3 days, respectively. They are strongly inhomogeneous, anisotropic and time-dependent. These characteristics are attributed to the oceanic and atmospheric disturbances. Spatial decorrelation scales are determined mainly by strong atmospheric forcing in the study region. In the area with dominant atmospheric forcing, the spatial scales are larger than those in the other regions. Those in the regions with dynamical oceanographic disturbances are as small as 1°. Signal-to-noise ratios are also large where the atmospheric forcing is strong, while they are small where the oceanic signals are active.  相似文献   

2.
In this study, we used the National Centers for Environmental Prediction monthly sea surface temperature (SST) and surface air temperature (SAT) data during 1982–1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982–1989 to investigate the Japan Sea SST temporal and spatial variabilities and their relations to atmospheric forcing. First, we found an asymmetry in the correlation coefficients between SST and wind stress curl, which implies that the SST variability at the scales of the order of one month is largely due to atmospheric forcing. Second, we performed three analyses on the data fields: annual mean, composite analysis to obtain the monthly anomaly relative to the annual mean, and empirical orthogonal function (EOF) analysis on the residue data relative to the summation of the annual mean and the monthly anomaly. The first EOF mode of SST accounts for 59.9% of the variance and represents the Subpolar Front. The temporal variation of the first EOF mode implies that the deep Japan Sea could be cooler in cold seasons (November–April) of 1984–1987. Third, we computed cross-correlation coefficients among various principal components and found that the atmospheric warming/cooling is the key factor causing intra-seasonal and interannual SST variabilities.  相似文献   

3.
High-resolution (1km) satellite data from the NOAA AVHRR (Advanced Very High Resolution Radiometer) and OrbView-2 SeaWiFS (Sea-viewing Wide Field-of-view Sensor) are used to investigate the upper layer dynamics of the southern Benguela ecosystem in more detailed space and time scales than previously undertaken. A consistent time-series of daily sea surface temperature (SST) and chlorophyll a concentration images is generated for the period July 1998–June 2003, and a quantitative analysis undertaken. The variability in SST, upwelling and phytoplankton biomass is explored for selected biogeographic regions, with particular focus on intra-seasonal time scales. The location and emergence of upwelling cells are clearly identified along the length of the southern Benguela, being distinct on the narrow inner and the mid-continental shelves. Most notable is the rapidly pulsating nature of the upwelling, with intense warm/cold events clearly distinguished. The phytoplankton response to this physical forcing is described. Chlorophyll concentration on the inner shelf largely mirrors the pattern of SST variability, similarly dominated by event-scale processes. Over the mid-shelf, higher chlorophyll is observed throughout all seasons, although low biomass occurs during winter. The variability of the offshore extent of SST and chlorophyll is identified at locations of differing shelf width. Cooler upwelled water is confined primarily to the narrow inner-shelf, with event-scale pulses extending considerable distances offshore. Agulhas Current influences are readily observed, even on the Cape Peninsula inner-shelf. Chlorophyll concentrations vary considerably between the locations of differing shelf width. SST, upwelling and phytoplankton indices are derived for selected locations to quantify the intra-seasonal variations. The SST indices show marked temperature changes associated with rapid pulsation on the event scale. No strong seasonal signal is evident. In contrast, the upwelling indices display a strong seasonal signal, with most intense upwelling occurring in spring/summer in the south. The phytoplankton response to the seasonal upwelling index differs between the selected locations. This study concludes that, although low-resolution SST and chlorophyll data may be useful for investigating general patterns over large scales, higher resolution data are necessary to identify finer scale spatial and temporal variability, especially in the inshore coastal zones.  相似文献   

4.
The response of balance estimates for the meridional heat fluxes in the North Atlantic to methods of calculating the boundary condition in the north as well as the effects of spatial-temporal averaging of hydrometeorological information is analysed. It is shown that spatial-temporal averaging of parameters during calculation of the surface heat fluxes can not only affect the characteristics of the meridional heat flux variability, but also significantly alter the average values.Translated by Mikhail M. Trufanov.  相似文献   

5.
Based on the data on the sea-surface temperature (SST), the heat content of the upper 200-m layer, and the sea-level pressure, we analyze the low-frequency variability of the SST and heat content in the North Atlantic in 1950–1992 and the index of North-Atlantic Oscillation (NAO) in 1940–1995. It is confirmed that the role of the ocean and various mechanisms controlling the variability of SST changes for processes corresponding to different time scales (interannual, decadal, and interdecadal). It is shown that the interaction of tropical and subtropical latitudes is of principal importance on the interannual scale, the processes regulating the variability of subtropical gyre are important on the decadal scale, and the variations of the NAO with lower frequencies are controlled by the oceanic variability at high latitudes. We discuss possible feedbacks in the ocean–atmosphere system maintaining the NAO.  相似文献   

6.
The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main results obtained are SST in the China offshore changes most actively at the seasonal scale with the intensity diminishing from north to south,as the temperature differences between summer and winter reaching 17 and 4 C in the northern and southern areas,respectively. Moreover,seasonal variation near the coastal regions seems relatively stronger than that far from the coastline;significant interannual variations are detected,with the largest positive anomaly occurring in 1998 in the overall area. But as far as different domains are concerned,there exists great diversity,and the difference is also found between winter and summer. Differed from the seasonal variations,where the strongest interannual variability takes place,resides to the south of that of the seasonal ones in the northern section,nevertheless in the South China Sea,the most significant interannual variability is found in the deep basin;interdecadal changes of summer,winter and annual mean SST in different domains likewise present various features. In addition,a common dominant warming in recent 20 a are found in the overall China offshore with the strongest center located in the vicinity of the Changjiang Estuary in the East China Sea,which intensifies as high as 1.3 C during the past 130 a.  相似文献   

7.
基于遥感数据,采用功率谱和相关性分析等方法,研究了长江口邻近海域海表温度(SST)的时空变化特征以及影响因素。结果表明:1982—2017年长江口邻近海域的SST 整体表现为每10 a升温约0.48 °C的趋势,且具有10.0,3.6,2.4和1.0 a的振荡周期。长期以来,冬、春、夏、秋四季的长江口邻近海域SST总体呈现升温趋势,其中春季的升温趋势最显著,而秋季变化趋势最不明显。研究海区的SST呈现明显西北—东南向温度递增的分布特征。此外,长江口径流量的变化对邻近海域的SST具有一定影响,从多年变化来看,径流量增大(减小),长江口邻近海域SST随之升高(降低),从月变化来看,3月、4月和9月的长江径流对SST有影响。气温对SST具有一定的强迫作用,大气温度的总体趋势是升高的,通过海气相互作用进行热传输,从而造成长江口邻近海域SST升温。  相似文献   

8.
On the basis of the many-year-average seasonal data array of temperature and salinity presented on a scale of one-degree averaging, by using a special quantitative criterion, we reveal a climatic frontal zone and determine both its physical and hydrological characteristics (such as the length width, and thickness of the frontal layer and the temperature, salinity, and density gradients) and its geographic coordinates. The many-year average seasonal variability of these characteristics is analyzed. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

9.
Total sea surface temperature (SST) in a coupled GCM is diagnosed by separating the variability into signal variance and noise variance. The signal and the noise is calculated from multi-decadal simulations from the COLA anomaly coupled GCM and the interactive ensemble model by assuming both simulations have a similar signal variance. The interactive ensemble model is a new coupling strategy that is designed to increase signal to noise ratio by using an ensemble of atmospheric realizations coupled to a single ocean model. The procedure for separating the signal and the noise variability presented here does not rely on any ad hoc temporal or spatial filter. Based on these simulations, we find that the signal versus the noise of SST variability in the North Pacific is significantly different from that in the equatorial Pacific. The noise SST variability explains the majority of the total variability in the North Pacific, whereas the signal dominates in the deep tropics. It is also found that the spatial characteristics of the signal and the noise are also distinct in the North Pacific and equatorial Pacific.  相似文献   

10.
Sea surface temperature fields in the East Sea are composed of various spatial structures such as eddies, fronts, filaments, turbulent-like features and other mesoscale variations associated with the oceanic circulations of the East Sea. These complex SST structures have many spatial scales and evole with time. Semi-monthly averaged SST distributions based on extensive satellite observations of SSTs from 1990 through 1995 were constructed to examine the characteristics of their spatial and temporal scale variations by using statistical methods of multi-dimensional autocorrelation functions and spectral analysis. Two-dimensional autocorrelation functions in the central part of the East Sea revealed that most of the spatial SST structures are anisotropic in the shape of ellipsoids with minor axes of about 90–290 km and major axes of 100–400 km. Two dimensional spatial scale analysis demonstrated a consistent pattern of seasonal variation that the scales appear small in winter and spring, increase gradually to summer, and then decrease again until the spring of the next year. These structures also show great spatial inhomogeneity and rapid temporal change on time scales as short as a semi-month in some cases. The slopes in spectral energy density spectra of SSTs show characteristics quite similar to horizontal and geostrophic turbulence. Temporal spectra at each latitude are demonstrated by predominant peaks of one and two cycles per year in all regions of the East Sea, implying that SSTs present very strong annual and semi-annual variations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The results of investigations into the spatial variability of the Atlantic Ocean surface temperature field on interannual scales are presented. The analysis is based on monthly mean satellite data of the AVHRR Pathfinder Data JPL NOAA/NASA over 1985–2001. Specific features of the structure of the sea surface temperature (SST) fields averaged over 17 years, as well as fields of the gradient and variance of the SST time series, are described for each node of the data grid. It is shown with the use of the rhythmodynamic approach that spatial heat waves exist in the interannual variability of the SST field in two directions: zonal and meridional.  相似文献   

12.
The relationship between sea surface temperature (SST) and net heat flux (NHF) in the North Pacific over weekly to annual period bands was investigated using gridded datasets of SST obtained by the Advanced Microwave Scanning Radiometer for the Earth Observing System, and flux data produced by the Modern-era Retrospective-analysis for Research and Applications Reanalysis. This study focused on the phase difference between the SST and NHF, which can suggest the driving force between two co-varying parameters. The SST delay behind the NHF, with phase differences from π/4 to π/2, which suggests that the SST change would be controlled by the NHF, was commonly found over all periods. In the intra-annual (100- to 200-day periods) band, part of the coherent variations showed negative phase differences (around ?π to ?π/3), which were found in the western North Pacific and along ~30°N in the central North Pacific. The spatial scales of SST variability in the shorter band (weekly to intraseasonal: less than 100-day periods) are dominantly over 200?km. In contrast, the scales in the intra-annual band were in the range 50–150?km, where the negative phase differences were frequently found.  相似文献   

13.
On the basis of the data array of many-year average seasonal values of temperature and salinity represented for a one-degree scale of averaging, by using a quantitative criterion, we select the climatic discharge frontal zone of the Amazon, determine its physical and hydrological characteristics: length, width, thickness of the frontal layer, temperature, salinity, and density gradients, and specify its geographical coordinates. We also describe the many-year average interseasonal variability of these characteristics. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

14.
海温是海洋环境影响因子之一,对于海洋生态环境、海水养殖业等尤为重要。本文以Argo数据提取的南海海洋温度场数据为例,结合GIS(GeographicInformationSystem)技术,研究南海海温点过程、面过程可视化表达的方法。利用GIS作为可视化框架提供南海海温场的可视化显示,包括放大、缩小和拖动等基本功能,绘制多种形式的数值图像并进行空间分析,包括海温数据曲线绘制、海温值查询、空间插值、等值线等。基于Argo数据可视化表达的结果,从南海海温年变化、随纬度的变化、垂向变化、季节分布特征四方面对南海的海温时空特征进行了分析,结果表明:(1)南海海表温度高温的持续时间比较长,升温过程比降温过程相对要短一些;(2)随着纬度的降低,温度整体升高,温度的年变化幅度越来越小。夏秋两季随着纬度的变化,温度变化不大,春冬两季的温度变化较大;(3)在0~30 m温度变化很小,在深度为30m处温度开始逐渐下降,到达500m以下,海温一年四季都比较接近;(4)冬季海温总体最低,夏季海温总体最高。冬季和秋季,在南海西南方向等值线呈现西北—东南向,等值线比较密集。海温的时空变化研究可以对海洋温跃层、海洋温度锋,海水不同层次的结构的研究提供一定参考。  相似文献   

15.
热带太平洋是影响全球气候系统的重要区域,热带太平洋海表温度(SST)的长期变化趋势模拟是国际研究领域关注的热点.基于12个参加第六期国际耦合模式比较计划(CMIP6)的模式结果,本研究对1950年至1999年间多模式模拟得到的热带太平洋SST增暖现象进行了初步评估.结果表明,不同模式对热带太平洋SST增暖的模拟能力差别...  相似文献   

16.
The influence of the winter atmospheric forcing on the interannual variability of the Black Sea’s active layer’s thermohaline structure during 1982–2008 is investigated. The results are based on the combined analysis of the hydrological measurements from a ship, satellite measurements of the sea’s surface temperature (SST), and the NCEP/NCAR reanalysis data for the surface air temperature (SAT). A high correlation between the variability of the winter mean SST/SAT and the thermohaline characteristics of the active layer during the following warm season was found. It is shown that the winter atmospheric forcing significantly affects the variability of the temperature, salinity, and density down to the 150–200 m depth, and this has to be considered in the analysis of the interannual and long-term variability of the Black Sea’s active layer.  相似文献   

17.
The oceanic carbon cycle in the tropical-subtropical Pacific is strongly affected by various physical processes with different temporal and spatial scales, yet the mechanisms that regulate air-sea CO2 flux are not fully understood due to the paucity of both measurement and modeling. Using a 3-D physical-biogeochemical model, we simulate the partial pressure of CO2 in surface water (pCO2sea) and air-sea CO2 flux in the tropical and subtropical regions from 1990 to 2004. The model reproduces well the observed spatial differences in physical and biogeochemical processes, such as: (1) relatively higher sea surface temperature (SST), and lower dissolved inorganic carbon (DIC) and pCO2sea in the western than in the central tropical-subtropical Pacific, and (2) predominantly seasonal and interannual variations in the subtropical and tropical Pacific, respectively. Our model results suggest a non-negligible contribution of the wind variability to that of the air-sea CO2 flux in the central tropical Pacific, but the modeled contribution of 7% is much less than that from a previous modeling study (30%; McKinley et al., 2004). While DIC increases in the entire region SST increases in the subtropical and western tropical Pacific but decreases in the central tropical Pacific from 1990 to 2004. As a result, the interannual pCO2sea variability is different in different regions. The pCO2sea temporal variation is found to be primarily controlled by SST and DIC, although the role of salinity and total alkalinity, both of which also control pCO2sea, need to be elucidated by long-term observations and eddy-permitting models for better estimation of the interannual variability of air-sea CO2 flux.  相似文献   

18.
南海南部海域海面温度异常的时空分布特征   总被引:1,自引:0,他引:1  
基于1982年1月—2006年12月NOAA Optimum Interpolation Sea Surface Temperature(OISST)的逐月平均海面温度(SST)资料,采用经验正交函数分解(EOF)方法分析了南海南部海面温度异常场典型的空间分布形态及其时间变化特征。结果表明,南海南部海域海面温度异常场空间上主要表现为三种典型的分布结构,即以研究区域北部为中心的海盆尺度的单涡结构、东西反相的经向偶极子分布结构和南北反相的纬向偶极子分布结构,这三种分布结构都以2—4年的年际变化周期为主,反映了研究海域海面温度异常与ENSO现象高度相关。此外,研究海域还存在显著的半年和季节内周期变化,这种变化周期主要以南北反相的纬向偶极子分布结构(第三模态)存在,反映了大气动力强迫和热力强迫共同影响的结果。  相似文献   

19.
Improved understanding of the East Australian Current (EAC) and sea-temperature patterns within the Solitary Islands region of northern New South Wales, an area where tropical and temperate faunas overlap, is an essential step in explaining cross-shelf gradients in biotic patterns. Sea temperature at ∼10 m was logged using thermistors at seven stations every 30 minutes between January 2001 and December 2008. Stations were replicated in three distance-from-shore categories (<1.5; 1.5 to 6; and >6 km from the coast), corresponding with predominant assemblage patterns of reef fish. Daily, monthly, seasonal and yearly sea-temperature patterns were compared between and within stations and distance-from-shore categories. SST images were examined to determine the role of the EAC in producing short-period (2 to 4 days) temperature anomalies. Sea temperatures ranged between 16.6-27.5 °C and were highest offshore and lowest inshore. Offshore sites experienced average temperatures ∼1 °C higher than nearshore sites over the 8-year study. There was considerable variation in sea temperature between years, with 2002 and 2006 being the warmest and 2007 the coolest. These patterns correspond with strong inter-annual variability of the EAC at the scale of the Solitary Islands region. The EAC influenced shelf waters most strongly during late spring/summer when temperatures were also most variable over the smallest temporal scales (hours, days). Short-period anomalies between and within stations could largely be explained by variable encroachment of the EAC across the shelf and/or colder intrusions of water forming adjacent to the coastline. Previous assumptions that the EAC strongly influences gradients in the distribution of tropical species in this nearshore region are strongly supported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号