首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ocean Modelling》2008,20(3):223-239
A turbulence closure for the effect of mesoscale eddies in non-eddy-resolving ocean models is proposed. The closure consists of a prognostic equation for the eddy kinetic energy (EKE) that is integrated as an additional model equation, and a diagnostic relation for an eddy length scale (L), which is given by the minimum of Rhines scale and Rossby radius. Combining EKE and L using a standard mixing length assumption gives a diffusivity (K), corresponding to the thickness diffusivity in the [Gent, P.R., McWilliams, J.C. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155] parameterisation. Assuming downgradient mixing of potential vorticity with identical diffusivity shows how K is related to horizontal and vertical mixing processes in the horizontal momentum equation, and also enables us to parameterise the source of EKE related to eddy momentum fluxes.The mesoscale eddy closure is evaluated using synthetic data from two different eddy-resolving models covering the North Atlantic Ocean and the Southern Ocean, respectively. The diagnosis shows that the mixing length assumption together with the definition of eddy length scales is valid within certain limitations. Furthermore, implementation of the closure in non-eddy-resolving models of the North Atlantic and the Southern Ocean shows consistently that the closure has skill at reproducing the results of the eddy-resolving model versions in terms of EKE and K.  相似文献   

2.
Hydrographic time series from the northern North Atlantic throughout the 20th century show oscillations in temperature and salinity at more or less regular intervals. The Great Salinity Anomalies described during the 1970s [Dickson, R.R., Meincke, J., Malmberg, S.-A., Lee, A.J., 1988. The “Great Salinity Anomaly” in the North Atlantic, 1968-1982. Progress in Oceanography 20, 103-151.], during the 1980s [Belkin, I.M., Levitus, S., Antonov, J., Malmberg, S.-A., 1998. “Great Salinity Anomalies” in the North Atlantic. Progress in Oceanography 41, 1-68.], and during the 1990s [Belkin, I.M., 2004. Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophysical Research Letters 31(8), L08306, doi:10.1029/2003GL019334.] have distinct amplitudes, and all three of them were interpreted as low salinity anomalies propagating downstream through the anti-clockwise circulation system of the northern North Atlantic Ocean. Further inspection of time series from the Northeast Atlantic and the Northwest Atlantic over the past century shows, however, several other distinct negative anomalies of lesser amplitudes. Additionally, a number of high salinity anomalies can be identified. The present paper analyses further the propagation of the negative and positive anomalies and links them together. It is shown that they have varying speeds of propagation, and that the varying speeds are correlated across the North Atlantic. We propose that varying volume fluxes in and out of the Arctic Basin is the causal mechanism behind the anomaly signals, and that the North Atlantic Oscillation (NAO) partly has influence on the flux variations described. Periods of large decadal-scale amplitudes of the NAO coincide with periods of large decadal-scale oscillation in the marine climate.  相似文献   

3.
The Global Drifter Program data set is applied to develop 2° × 2° bin estimates of the lateral eddy diffusivity K in the Indian Ocean (IO) by means of a modification of the Davis approach. The calculations were performed relative to the seasonal change in the mean currents, which is especially important in the case of monsoon-driven circulation in the IO. Estimates of K were found to be below 1 × 104 m2/s almost every-where in the IO. The spatial variations of K were analyzed in relation to the instabilities of the ocean circulation.  相似文献   

4.
The mean available potential energy released by baroclinic instability into the meso-scale eddy field has to be dissipated in some way and Tandon and Garrett [Tandon, A., Garrett, C., 1996. On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr. 26 (3), 406–416] suggested that this dissipation could ultimately involve irreversible mixing of buoyancy by molecular processes at the small-scale end of the turbulence cascade. We revisit this idea and argue that the presence of dissipation within the thermocline automatically requires that a component of the eddy flux associated with meso-scale eddies must be associated with irreversible mixing of buoyancy within the thermocline. We offer a parameterisation of the implied diapycnal diffusivity based on (i) the dissipation rate for eddy kinetic energy given by the meso-scale eddy closure of Eden and Greatbatch [Eden, C., Greatbatch, R.J., 2008. Towards a meso-scale eddy closure. Ocean Modell. 20, 223–239.] and (ii) a fixed mixing efficiency. The implied eddy-induced diapycnal diffusivity (κ) is implemented in a coarse resolution model of the North Atlantic. In contrast to the vertical diffusivity given by a standard vertical mixing scheme, large lateral inhomogeneities can be found for κ in the interior of the ocean. In general, κ is large, i.e. up to o(10) cm2/s, near the western boundaries and almost vanishing in the interior of the ocean.  相似文献   

5.
The fidelity of numerical simulations of the general circulation of the North Atlantic Ocean in basin- to global-scale models have improved considerably in the last several years. This improvement appears to represent a regime shift in the dynamics of the simulated flow as the horizontal grid spacing decreases to around 10 km. Nevertheless, some significant biases in the simulated circulation and substantial uncertainties about the robustness of these results with respect to parameterization choices remain. A growing collection of simulations obtained with the POP primitive equation model allow us to investigate the convergence properties and sensitivity of high resolution numerical simulations of the North Atlantic, with particular attention given to Gulf Stream separation and the subsequent path of the North Atlantic Current into the Northwest Corner. Increases in resolution and reductions in dissipation both contribute to the improvements in the circulation seen in recent studies. We find that our highest resolution eddy-resolving simulations retain an appreciable sensitivity to the closure scheme. Our most realistic simulations of the Gulf Stream are not obtained at the lowest levels of dissipation, while the simulation of the North Atlantic Current continues to improve as dissipation is reduced to near the numerical stability limit. In consequence, there is a limited range of parameter space where both aspects of the simulated circulation can be brought into agreement with observations. This experience gained with the comparatively affordable regional North Atlantic model is now being used to configure the next generation of ocean climate models.  相似文献   

6.
Interannual-to-decadal variations in the subtropical countercurrent (STCC) and low potential vorticity (PV) water and their relations in the North Pacific Ocean are investigated on the basis of a 60-year-long hindcast integration of an eddy-resolving ocean general circulation model. Although vertically coherent variations are dominant for STCC interannual variability, a correlation analysis shows that an intensified STCC vertical shear accompanies lower PV than usual to the north on 25.5- to 26.1-σθ isopycnal surfaces, and intensified meridional density gradient in subsurface layers, consistent with Kubokawa’s theory (J Phys Oceanogr 29:1314–1333, 1999). The low-PV signals appear at least 2 years before peaks of STCC, propagating southwestward from the subduction region.  相似文献   

7.
基于该系列文章前文研究中构建的海气耦合气候模式和所揭示的北大西洋热盐环流年代际振荡机制,针对海气要素对该振荡机制的影响问题进行了重点的探讨。为细致准确的研究北大西洋海洋要素同北大西洋热盐环流年代际振荡的关系,有针对性的定义了副极地海区表层密度指数和北大西洋暖流强度指数并对模式结果进行了全面分析。分析结果表明副极地海区表层密度变化领先大西洋径向翻转环流(MOC)变化7 a,北大西洋暖流的变化领先 MOC变化4 a,格陵兰-苏格兰海脊溢流水强度(包括丹麦海峡溢流水和法鲁海峡溢流水,是北大西洋深层水的重要来源)的变化领先 MOC的变化3 a;北大西洋大气要素变化对北大西洋热盐环流年代际振荡有非常重要的调制作用,当副极地流环和北大西洋暖流(NAC)达到最强的2 a之前,高纬度地区大气为气旋式环流异常,中纬度地区大气为反气旋式环流异常,海表热通量在大西洋副极地海区是负异常,这都有利于副极地流环和NAC的加强,更多高盐度的北大西洋水进入格陵兰-冰岛-挪威海(GIN)海域,由此可以导致GIN海域表层密度上升,使水体的层结稳定性减弱,有利于深层对流的发生,同时大气变化通过风应力旋度和海表热通量也直接影响GIN海域深层水的生成,进而导致格陵兰-苏格兰海脊溢流水的强度增加。  相似文献   

8.
基于该系列文章前文研究中构建的海气耦合气候模式和所揭示的北大西洋热盐环流年代际振荡机制,针对海气要素对该振荡机制的影响问题进行了重点的探讨.为细致准确的研究北大西洋海洋要素同北大西洋热盐环流年代际振荡的关系,有针对性的定义了副极地海区表层密度指数和北大西洋暖流强度指数并对模式结果进行了全面分析.分析结果表明副极地海区表...  相似文献   

9.
Planktic foraminiferal (PF) flux and faunal composition from three sediment trap time series of 2002–2004 in the northeastern Atlantic show pronounced year-to-year variations despite similar sea surface temperature (SST). The averaged fauna of the in 2002/2003 is dominated by the species Globigerinita glutinata, whereas in 2003/2004 the averaged fauna is dominated by Globigerinoides ruber. We show that PF species respond primarily to productivity, triggered by the seasonal dynamics of vertical stratification of the upper water column. Multivariate statistical analysis reveals three distinct species groups, linked to bulk particle flux, to chlorophyll concentrations and to summer/fall oligotrophy with high SST and stratification. We speculate that the distinct nutrition strategies of strictly asymbiontic, facultatively symbiontic, and symbiontic species may play a key role in explaining their abundances and temporal succession. Advection of water masses within the Azores Current and species expatriation result in a highly diverse PF assemblage. The Azores Frontal Zone may have influenced the trap site in 2002, indicated by subsurface water cooling, by highest PF flux and high flux of the deep-dwelling species Globorotalia scitula. Similarity analyses with core top samples from the global ocean including 746 sites from the Atlantic suggest that the trap faunas have only poor analogs in the surface sediments. These differences have to be taken into account when estimating past oceanic properties from sediment PF data in the eastern subtropical North Atlantic.  相似文献   

10.
基于非结构网格半隐式跨尺度海洋模式(semi-implicit cross-scale hydroscience integrated system model,SCHISM),作者采用非结构三角网格,对全球大洋潮波进行数值模拟.通过调和分析,将196个潮位站的实测数据与模拟结果进行比较验证,两者符合良好,M2、K1分...  相似文献   

11.
《Ocean Modelling》2011,36(4):304-313
We implemented an explicit forcing of the complete lunisolar tides into an ocean model which is part of a coupled atmosphere–hydrology–ocean–sea ice model. An ensemble of experiments with this climate model shows that the model is significantly affected by the induced tidal mixing and nonlinear interactions of tides with low frequency motion. The largest changes occur in the North Atlantic where the ocean current system gets changed on large scales. In particular, the pathway of the North Atlantic Current is modified resulting in improved sea surface temperature fields compared to the non-tidal run. These modifications are accompanied by a more realistic simulation of the convection in the Labrador Sea. The modification of sea surface temperature in the North Atlantic region leads to heat flux changes of up to 50 W/m2. The climate simulations indicate that an improvement of the North Atlantic Current has implications for the simulation of the Western European Climate, with amplified temperature trends between 1950 and 2000, which are closer to the observed trends.  相似文献   

12.
Chlorofluorocarbon (CFC) 11 and 12 transports across the transoceanic World Ocean Circulation Experiment (WOCE) A25 section in the subpolar North Atlantic are derived from an inverse model using hydrographic and ADCP data (Lherminier et al., 2007). CFC and anthropogenic carbon (CANT) advective transports contrary to expected are uncoupled: CANT is transported northeastwards (82±39 kmol s?1) mainly within the overturning circulation, while CFC-11 and CFC-12 are transported southwestwards (?24±4 and ?11±2 mol s?1, respectively) as part of the large-scale horizontal circulation. The main reason for this uncoupled behaviour is the complex CFC vs. CANT relation in the ocean, which stems from the contrasting temperature relation for both tracers: more CANT dissolves in warmer waters with a low Revelle factor, while CFC’s solubility is higher in cold waters. These results point to CANT and CFC having different routes of uptake, accumulation and transport within the ocean, and hence: CANT transport would be more sensitive to changes in the overturning circulation strength, while CFC to changes in the East Greenland Current and Labrador Sea Water formation in the Irminger Sea. Additionally, CANT and CFCs would have different sensitivities to circulation and climate changes derived from global warming as the slowdown of the overturning circulation, increase stratification due to warming and changes in wind stress.  相似文献   

13.
Populations of the copepod species Calanus finmarchicus often dominate the springtime biomass and secondary production of shelf ecosystems throughout the North Atlantic Ocean. Recently, it has been hypothesised that interannual to interdecadal fluctuations observed in such populations are driven primarily by climate-associated changes in ocean circulation. Here, we compare evidence from the North Sea and Gulf of Maine/Western Scotian Shelf (GoM/WSS) linking fluctuations in C. finmarchicus abundance to changes in ocean circulation associated with the North Atlantic Oscillation (NAO). A particularly striking contrast emerges from this Trans-Atlantic comparison: whereas the North Sea C. finmarchicus population exhibits a negative correlation with the NAO index, the GoM/WSS population exhibits a more complex, positive association with the index. The physical processes underlying these contrasting population responses are discussed in the context of regional- to basin-scale circulation changes associated with the NAO.  相似文献   

14.
The mean horizontal flow field of the tropical Atlantic Ocean is described between 20°N and 20°S from observations and literature results for three layers of the upper ocean, Tropical Surface Water, Central Water, and Antarctic Intermediate Water. Compared to the subtropical gyres the tropical circulation shows several zonal current and countercurrent bands of smaller meridional and vertical extent. The wind-driven Ekman layer in the upper tens of meters of the ocean masks at some places the flow structure of the Tropical Surface Water layer as is the case for the Angola Gyre in the eastern tropical South Atlantic. Although there are regions with a strong seasonal cycle of the Tropical Surface Water circulation, such as the North Equatorial Countercurrent, large regions of the tropics do not show a significant seasonal cycle. In the Central Water layer below, the eastward North and South Equatorial undercurrents appear imbedded in the westward-flowing South Equatorial Current. The Antarcic Intermediate Water layer contains several zonal current bands south of 3°N, but only weak flow exists north of 3°N. The sparse available data suggest that the Equatorial Intermediate Current as well as the Southern and Northern Intermediate Countercurrents extend zonally across the entire equatorial basin. Due to the convergence of northern and southern water masses, the western tropical Atlantic north of the equator is an important site for the mixture of water masses, but more work is needed to better understand the role of the various zonal under- and countercurrents in cross-equatorial water mass transfer.  相似文献   

15.
The algorithm for splitting k–ω turbulence equations is used to parameterize viscosity and diffusion coefficients in the ocean general circulation model. The k–ω equations are split into stages describing the transport-diffusion and generation-dissipation of the turbulent kinetic energy and frequency function ω. At the generation-dissipation stage, the equations are solved analytically. Calculations of circulation in the North Atlantic–Arctic Ocean for 1948–2009 have been carried out. The experiments demonstrate an adequate reproduction of hydrophysical characteristics and high efficiency of the algorithm. It is shown that considering the climatic annual mean buoyancy frequency in the turbulence equations at the generation-dissipation stage is an important factor in improving the accuracy of simulated fields.  相似文献   

16.
A global ocean carbon cycle model based on the ocean general circulation model POP and the improved biogeochemical model OCMIP-2 is employed to simulate carbon cycle processes under the historically observed atmospheric CO 2 concentration and different future scenarios (called Rep- resentative Concentration Pathways, or RCPs). The RCPs in this paper follow the design of Inter- governmental Panel on Climate Change (IPCC) for the Fifth Assessment Report (AR5). The model results show that the ocean absorbs CO 2 from atmosphere and the absorbability will continue in the 21st century under the four RCPs. The net air-sea CO 2 flux increased during the historical time and reached 1.87 Pg/a (calculated by carbon) in 2005; however, it would reach peak and then decrease in the 21st century. The ocean absorbs CO 2 mainly in the mid latitude, and releases CO 2 in the equator area. However, in the Antarctic Circumpolar Current (ACC) area the ocean would change from source to sink under the rising CO 2 concentration, including RCP4.5, RCP6.0, and RCP8.5. In 2100, the anthropogenic carbon would be transported to the 40 S in the Atlantic Ocean by the North Atlantic Deep Water (NADW), and also be transported to the north by the Antarctic Bottom Water (AABW) along the Antarctic continent in the Atlantic and Pacific oceans. The ocean pH value is also simulated by the model. The pH decreased by 0.1 after the industrial revolution, and would continue to decrease in the 21st century. For the highest concentration sce- nario of RCP8.5, the global averaged pH would decrease by 0.43 to reach 7.73 due to the absorption of CO 2 from atmosphere.  相似文献   

17.
Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the major conclusions:
1.
Excess freshwater in high latitudes must be transported to the evaporative lower latitudes, as is well known. The calculations here show that the northern hemisphere transports most of its high latitude freshwater equatorward through North Atlantic Deep Water (NADW) formation (as in [Rahmstorf, S., 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12, 799-811]), in which saline subtropical surface waters absorb the freshened Arctic and subpolar North Atlantic surface waters (0.45 ± 0.15 Sv for a 15 Sv overturn), plus a small contribution from the high latitude North Pacific through Bering Strait (0.06 ± 0.02 Sv). In the North Pacific, formation of 2.4 Sv of North Pacific Intermediate Water (NPIW) transports 0.07 ± 0.02 Sv of freshwater equatorward.In complete contrast, almost all of the 0.61 ± 0.13 Sv of freshwater gained in the Southern Ocean is transported equatorward in the upper ocean, in roughly equal magnitudes of about 0.2 Sv each in the three subtropical gyres, with a smaller contribution of <0.1 Sv from the Indonesian Throughflow loop through the Southern Ocean. The large Southern Ocean deep water formation (27 Sv) exports almost no freshwater (0.01 ± 0.03 Sv) or actually imports freshwater if deep overturns in each ocean are considered separately (−0.06 ± 0.04 Sv).This northern-southern hemisphere asymmetry is likely a consequence of the “Drake Passage” effect, which limits the southward transport of warm, saline surface waters into the Antarctic [Toggweiler, J.R., Samuels, B., 1995a. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research I 42(4), 477-500]. The salinity contrast between the deep Atlantic, Pacific and Indian source waters and the denser new Antarctic waters is limited by their small temperature contrast, resulting in small freshwater transports. No such constraint applies to NADW formation, which draws on warm, saline subtropical surface waters .
2.
The Atlantic/Arctic and Indian Oceans are net evaporative basins, hence import freshwater via ocean circulation. For the Atlantic/Arctic north of 32°S, freshwater import (0.28 ± 0.04 Sv) comes from the Pacific through Bering Strait (0.06 ± 0.02 Sv), from the Southern Ocean via the shallow gyre circulation (0.20 ± 0.02 Sv), and from three nearly canceling conversions to the NADW layer (0.02 ± 0.02 Sv): from saline Benguela Current surface water (−0.05 ± 0.01 Sv), fresh AAIW (0.06 ± 0.01 Sv) and fresh AABW/LCDW (0.01 ± 0.01 Sv). Thus, the NADW freshwater balance is nearly closed within the Atlantic/Arctic Ocean and the freshwater transport associated with export of NADW to the Southern Ocean is only a small component of the Atlantic freshwater budget.For the Indian Ocean north of 32°S, import of the required 0.37 ± 0.10 Sv of freshwater comes from the Pacific through the Indonesian Throughflow (0.23 ± 0.05 Sv) and the Southern Ocean via the shallow gyre circulation (0.18 ± 0.02 Sv), with a small export southward due to freshening of bottom waters as they upwell into deep and intermediate waters (−0.04 ± 0.03 Sv).The Pacific north of 28°S is essentially neutral with respect to freshwater, −0.04 ± 0.09 Sv. This is the nearly balancing sum of export to the Atlantic through Bering Strait (−0.07 ± 0.02 Sv), export to the Indian through the Indonesian Throughflow (−0.17 ± 0.05 Sv), a negligible export due to freshening of upwelled bottom waters (−0.03 ± 0.03 Sv), and import of 0.23 ± 0.04 Sv from the Southern Ocean via the shallow gyre circulation.
3.
Bering Strait’ssmall freshwater transport of <0.1 Sv helps maintains the Atlantic-Pacific salinity difference. However, proportionally large variations in the small Bering Strait transport would only marginally impact NADW salinity, whose freshening relative to saline surface water is mainly due to air-sea/runoff fluxes in the subpolar North Atlantic and Arctic. In contrast, in the Pacific, because the total overturning rate is much smaller than in the Atlantic, Bering Strait freshwater export has proportionally much greater impact on North Pacific salinity balances, including NPIW salinity.
  相似文献   

18.
关键海区潜沉率对全球变暖停滞的可能影响   总被引:1,自引:0,他引:1  
本文从潜沉率入手,探究了潜沉率在全球变暖停滞过程中可能发挥的作用。本文利用SODA资料首先分析了全球潜沉率的时空分布特征,然后基于EOF分解明确了北大西洋翻转流区域和南极绕极流区域是潜沉率变率较大的两个海区,在此基础上选出了4个关键海区研究了局地潜沉率变化与全球海表温度异常之间的相关关系,最后对关键区潜沉率变化的原因进行了初步探索。结果表明,北大西洋翻转流和南极绕极流范围内的关键区域与全球变暖停滞之间存在超前10年的相关关系,潜沉过程可能是北大西洋翻转流和南极绕极流对全球变暖停滞产生作用的一种机制。平流项在这些关键区域的潜沉率变化中起主导作用。在南极绕极流地区,海面风应力的大小与该区域的潜沉变化密切相关。  相似文献   

19.
Physical regularities of water exchange between the North Atlantic (NA) and Arctic Ocean (AO) in 1958–2009 are analyzed on the basis of numerical experiments with an eddy-permitting model of ocean circulation. Variations in the heat and salt fluxes in the Greenland Sea near the Fram Strait caused by atmospheric forcing generate baroclinic modes of ocean currents in the 0–300 m layer, which stabilize the response of the ocean to atmospheric forcing. This facilitates the conservation of water exchange between the NA and AO at a specific climatic level. A quick response of dense water outflow into the deep layers of the NA through the Denmark Strait to the variations in the North Atlantic Oscillation (NAO) index was revealed on the monthly scale. A response on a time scale of 39 months was also revealed. The quick response on the NAO index variation was interrupted in 1969–1978, which was related to the Great Salinity Anomaly. It was shown that transverse oscillations of the Norwegian Atlantic Current significantly influence the formation of intermediate dense waters in the Greenland and Norwegian seas (GNS). The dense water outflow by bottom current (BC) to the deep layers of the NA through the Faroe Channels with a time lag of 1 year correlates with the transversal oscillations of the Norwegian Current front. The mass transport of the BC outflow from the Faroe Channels to the NA can serve as an integral indicator of the formation and sink of new portions of dense waters formed as a result of mixing of warm saline Atlantic waters and cold freshened Arctic waters in the GNS.  相似文献   

20.
ENSO循环相联系的北太平洋低纬度异常西边界流   总被引:1,自引:1,他引:0  
用SODA海洋同化和NCEP大气再分析资料,分析了热带太平洋次表层海温异常主要模态与北太平洋低纬度西边界流海域上层海洋环流和亚洲-北太平洋地区大气垂直和水平流场变化之间的关系,得到以下结果:(1) 在热带太平洋海洋次表层ENSO事件具有两种模态,二者组合构成ENSO循环。第一模态为ENSO成熟期,主要出现在冬季,第二模态为ENSO过渡期,主要出现夏季。(2) ENSO循环对北太平洋低纬度西边界流区上层海洋环流有重要影响。在El Niño发展期或La Niña 衰退期,该区出现气旋性异常环流,北赤道流(NEC)加强,NEC分叉位置北移,棉兰老海流(MC)加大,菲律宾以东黑潮(KC)减小,北赤道逆流(NECC)最强。在El Niño(La Niña)成熟期,该区气旋性(反气旋性)异常环流达最强,NEC最强(最弱),NEC分叉位置最北(最南),MC最大(最小),KC最小(最大),NECC减弱(加强)。在El Niño衰退期或La Niña发展期与El Niño发展期相反,该区出现反气旋性异常环流,由此导致相应流系异常发生反位相变化。(3) ENSO循环对北太平洋低纬度西边界流海域上层海洋环流的影响是通过ENSO事件期间热带太平洋热力状况异常改变上空大气环流来实现的。ENSO事件首先造成热带太平洋海洋热力状况异常,导致其上空对流活动异常,后者直接或间接通过“大气桥”能量传输引起相关地区大气环流场的变化,致使海面风应力场异常,进而强迫上层海洋环流场的相应变化。文章最后还分析了ENSO事件期间菲律宾附近异常反气旋或异常气旋性风场的产生和持续原因,讨论了北太平洋低纬度西边界流海域海气相互作用在ENSO循环中的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号