首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
阿尔泰铁木尔特铅锌矿床的碳质流体组合及其地质意义   总被引:6,自引:4,他引:6  
铁木尔特铅锌矿是阿尔泰克兰盆地内最主要的VMS型矿床。矿床受控于阿巴宫-库尔提断裂,铅锌矿体分布于该断裂NE逆冲盘的下泥盆统康布铁堡组地层绿泥石英片岩、大理岩或层状矽卡岩中。矿体形态多呈透镜状、似层状,并整合产于变质岩系中,发育多含矿化层。金属矿物有方铅矿、闪锌矿、黄铜矿、黄铁矿和磁黄铁矿等。铁木尔特铅锌矿床晚期发育多金属硫化物石英脉,至少可识别出3个流体包裹体组合(FIA)。FIO为高盐度流体包裹体组合,主要为含子矿物的多相包裹体(L-V-S型),部分为气液两相包裹体(L-V型),局限于单个石英颗粒内,包裹体呈无序分布,或呈孤立的单个包裹体分布,包裹体的最终均一温度322—422.5℃。F11为次生的CO2-H2O流体包裹体组合,主要由单相(LCO2)和两相(LCO2-LH2O)的富CO2包裹体组成,呈线性分布,穿透石英颗粒边界,明显属于次生包裹体范畴。FI2为碳质(CO2-CH4)流体包裹体组合,广泛发育,包裹体主要由单相(LCO2、LCO2-CH4或LCO2-N2)、少量两相(LCO2-LH2O)富CO2包裹体组成,大小5μm-20μm,成群定向分布,穿透石英颗粒边界并切断FI1,是晚于FI1的次生包裹体组合,反映晚期较大的构造一流体活动。对FI2的详细研究表明,LCO2型包裹体的TmCO2=-63.3~-57.7℃,ThCO2=-27.5~+29.7℃;LCO2-CH4型或LCO2-N2型包裹体的TmCO2=-80.5~-5.5℃,LhCO2=-56.0~-25.0℃;LCO2-LH2O型包裹体CO2相的ThCO2=-66.9--0.9℃,ThCO2=-13.3~+2.3℃,包裹体的最终均一温度Th,total=243.1—361.1℃。铁木尔特次生碳质流体组合,萨热阔布金矿主成矿阶段、赛都-多拉纳含金剪切带中早期透镜状石英脉碳质流体组合,以及阿舍勒等矿床的次生碳质流体组合,都具有相似的流体性质,均为高密度的CO2-CH4-N2流体,其来源与石炭-二叠造山作用主期的区域动力热流变质作用有关。  相似文献   

2.
新疆阿尔泰铁木尔特铅锌矿床流体包裹体研究及地质意义   总被引:3,自引:3,他引:3  
铁木尔特中型铅锌矿是阿尔泰山南缘克兰盆地内的重要VMS型矿床。矿床赋存于上志留统-下泥盆统康布铁堡组上亚组第二岩性段,容矿岩石为大理岩、绿泥石英片岩、变钙质粉砂岩、夕卡岩。矿体呈似层状和透镜状。矿床的形成经历了喷流沉积期、叠加改造期和表生期。石英、长石、方解石和石榴子石中包裹体类型主要为液体包裹体,在石英中另出现了气体包裹体、纯气体包裹体、含子矿物多相包裹体、含液体CO2的三相包裹体和两相CO2包裹体。喷流沉积期成矿流体均一温度变化于150~330℃,其峰值是165℃和285℃,成矿流体盐度(NaCleq)为4%~16%,流体密度为0.77~0.97g/cm3,流体阳离子主要以Na+为主,次之为K+,阴离子以Cl-为主,其次是SO42-,气相成分主要是H2O和CO2。叠加改造期均一温度范围是150~480℃,峰值为285℃,盐度(NaCleq)为2.2%~17.08%和33.93%~47.2%,流体密度变化于0.61~1.03g/cm3之间,流体阳离子主要以Na+为主,次为K+、Mg2+、Ca2+,阴离子以Cl-为主,其次是SO42-,气相成分主要是H2O和CO2,其次为N2、CH4,含有少量C2H6。  相似文献   

3.
新疆阿尔泰铁木尔特铅锌矿床稳定同位素组成特征   总被引:11,自引:5,他引:6  
新疆阿尔泰山南缘克兰盆地中的铁木尔特中型铅锌矿床赋存于上志留统—下泥盆统康布铁堡组上亚组第二岩性段,容矿岩石为大理岩、绿泥石英片岩、变钙质粉砂岩、矽卡岩。矿床经历了喷流沉积期、叠加改造期和表生期。喷流沉积期硫化物δ34S值集中于-27.8‰~-16.0‰,峰值为-26.0‰,少量1.7‰~3.4‰,表明硫主要来自细菌还原海水硫酸盐及岩浆活动。氢、氧同位素组成表明,叠加改造期石英和方解石的δD变化于-122‰~-61‰,δ18O变化于9.5‰~10.9‰,δ18O水为-5.8‰~4.8‰,表明叠加改造期成矿流体具有多来源特征,是岩浆水、大气降水和变质水的混合产物。铁木尔特铅锌矿床在成因类型上为VMS型,矿床形成后又经历了叠加改造。  相似文献   

4.
<正>阿尔泰克兰火山-沉积盆地的铅锌矿床都分布于下泥盆统康布铁堡组变质岩系中,多呈透镜状、似层状整合产出,发育多个矿化层。产出铅锌矿的层位自下而上有:康布铁堡组下亚组上部(D1k12)塔拉特(阿巴宫)铅锌矿,上亚组第一岩性段(D1k21)下部—大桥磁铁硫化物型铅锌矿化,上亚组第二岩性段中部(D1k22)—铁木尔特铅锌矿、大东沟铅锌矿。层状铅锌矿的成矿时代  相似文献   

5.
阿尔泰克兰盆地VMS矿床的变形变质与碳质流体特征   总被引:6,自引:3,他引:3  
阿尔泰南缘克兰火山-沉积盆地的泥盆纪VMS型矿床经历了石炭纪一二叠纪同造山的区域变质和热液叠加改造作用,同构造石英脉和穿切层状铅锌矿化的脉状铜矿化很发育.矿石中反映压力-重结晶作用的各种结构构造发育,包括碎斑结构、交代结构、斑状变晶结构和碎裂结构,以及塑性流动构造或皱纹构造、压力影等.对铁木尔特、大东沟铅锌(铜)矿床的包裹体研究表明,在矿化构造岩和晚期硫化物石英脉中发育极丰富的碳质(CO2-(CH4-N2)流体.与碳质流体共生的LCO2-LH2O型包裹体均一温度为243.1~412.1℃(铁木尔特)和209~430℃(大东沟),碳质流体的捕获压力估计为180~300 MPa.这些特征与区域变质的温压条件相当,与VMS无关.同步辐射X射线荧光(SRXRF)单个包裹体的重金属微量元素初步对比分析表明,造山型萨热阔布金矿的碳质流体中检出有Au、As,而在VMS矿床中没有检出,说明碳质流体在区域变质过程中对A-u成矿有贡献.  相似文献   

6.
7.
根据阿尔泰造山带南缘阿克提什坎、库马苏、塔斯比格、多拉纳萨依、阿克希克等十多个金矿区流体包裹体研究,含金石英脉中流体包裹体为液相、气相及多相包裹体。一般为5~8μm,形态呈不规则状、椭圆形和滴水状等。主成矿阶段温度变化范围在200~330℃。包裹体气相成分以CO、H2O、CO2、CH4为主,CO含量大于H2O。根据包裹体气相成分,岩金矿分为两类,一为CO2大于CO,集中于弧后盆  相似文献   

8.
塔拉特(阿巴宫)铅锌矿位于阿尔泰克兰火山-沉积盆地南东段,矿床受区域性NW向断裂——克因宫断裂和阿巴宫断裂的控制,Pb-Zn矿体赋存于下泥盆统康布铁堡组下亚组第二岩性段上部(D1k12)的变质岩系中,具明显的层控特征,后期脉状硫化物-石英脉叠加作用明显。根据矿体产出特征可识别出2个明显的成矿期:海相火山沉积喷流成矿期和变质热液叠加成矿期。变质热液期可包括2个阶段,早阶段透镜状石英脉沿含矿层位中绿泥石片岩、浅粒岩等顺层分布,并有浸染状黄铁矿产出;晚阶段含黄铁矿-黄铜矿石英脉穿切绿泥石片岩、浅粒岩或块状铅锌矿石,硫化物稀疏浸染状分布。海相火山沉积喷流成矿期的闪锌矿存在残留的L-V盐水包裹体及后期沿次生裂隙分布的L-V和H2O-CO2包裹体,原生L-V包裹体的均一温度Th,tot=267~334℃,次生H2O-CO2包裹体Tm,CO=-61.2~-60.2℃,T2h,CO=6.5~11.0℃。2变质热液期早阶段石英脉(QI)赋存有大量的H2O-CO2包裹体和较多的碳质流体包裹体(CO2±CH4体系),H2O-CO2包裹体Th,tot=294~368℃,盐度为5.5%~7.4%NaC leqv。碳质流体包裹体的Tm,CO=-60.1~-58.5℃,T.2~20.6℃。2h,CO=-42晚阶段切层含黄铁矿-黄铜矿石英脉中也有大量H2O-CO2包裹体和较多的碳质流体包裹体,H2O-CO2包裹体Th.tot=142~360℃,盐度为2.4%~16.5%NaC leqv。碳质流体包裹体的Tm,CO=-61.5~-57.3℃,T2h,CO0.6℃2有-27.0~-2和27.1~28.7℃两组。次生L-V包裹体的Tm,ice=-9.8~-1.3℃,Th,tot=205~412℃。克兰盆地造山运动过程中形成的区域性富CO2流体,其运移对促进岩(矿)石变形变质以及金属富集产生重要影响。塔拉特铅锌矿床的矿石变形、交代结构及石英脉中富CO2流体的大量出现,说明变质流体参与了叠加改造作用,且具有多阶段的特点。富CO2包裹体形成环境与造山带区域变质晚期或峰期后的P-T演化一致。  相似文献   

9.
李腊梅 《地质与勘探》2009,45(5):502-508
马攸木金矿床是产于西藏雅鲁藏布江缝合带西段重要的独立岩金矿床。本文通过显微测温分析首次发现该矿床的富CO2流体包裹体具有临界均一的特征,成矿流体属于超临界流体。研究结果表明:成矿流体主要为低盐度的CO2-H2O超临界流体。超临界流体可能是从岩浆出溶的,这种流体萃取了围岩中的金等成矿元素。流体经历了相分离-不均一捕获-跨越临界点-大气降水加入的过程,正是由于成矿流体在跨越临界点时析出部分成矿物质,形成早期矿化体;成矿后期流体与大气降水混合最终导致矿质大量沉淀。  相似文献   

10.
加曼特金矿床距尼勒克县城北北西30km,矿区面积11.12km2。区域上位于伊犁亚板块的博罗霍洛古生代岛弧区也列莫顿成矿带,该矿带构造上处于伊犁亚板块北缘的博罗霍洛早古生代岛弧带,其西邻为赋存阿希大型金矿床的吐拉苏成矿带。吐拉苏-也列莫顿成矿(火山岩)带是西天山地区晚古生代重要金矿成矿区,其呈一狭  相似文献   

11.
12.
VMS矿床成矿流体的组成,来源及作用机制   总被引:5,自引:1,他引:5  
VMS矿床是一类非常重要的有色金属矿床,其成因与火山岩及海水密切相关。流体包裹体成分及氢氧同位素特征表明成矿流体主要为加热的海水,可能有岩浆水的参与。渗入火山岩层的海水在深部热源作用下发生对流,并萃取了火山岩中的金属。成矿流体在海底喷溢,与海水混合反应,造成矿石沉淀。整个成矿演化过程经历了复杂的流体—岩石反应和流体—流体反应,这些反应在成矿中起着非常重要的作用。  相似文献   

13.
大坪金矿是哀牢山喜山期造山型金矿带中最重要的金矿之一,其成矿可分为三个成矿阶段:早期成矿阶段(白钨矿石英阶段)、主成矿阶段(团块状多金属硫化物含金石英脉阶段)和晚成矿阶段(碳酸盐石英阶段).  相似文献   

14.
云南会泽特富铅锌矿床找矿研究现状及其新进展   总被引:4,自引:0,他引:4  
云南会泽铅锌矿是我国著名的川滇黔铅锌成矿区中超大型富铅锌锗矿床的典型代表 ,它位于扬子准地台西南缘 ,处于小江深断裂带和昭通曲靖隐伏深断裂带间的北东构造带、南北构造带及北西垭都构造带的构造复合部位。该矿开采历史悠久 ,经过 5 0余年的开发 ,两大骨干矿山 (麒麟厂、矿山厂 )出现严重资源危机 ,找矿的难度也愈来愈大。截止到1998年 6月 ,尚保有的铅锌金属储量只能满足 7~ 8年的生产需求。为此 ,不少地质勘查单位、科研院所和高等院校的专家和学者围绕地质找矿工作 ,相继作过大量的地质调查、矿产勘查和科研工作 ,具有代表性的工作…  相似文献   

15.
大坪金矿成矿可分为三个成矿阶段:早期成矿阶段(白钨矿石英脉)、主成矿阶段(团块状多金属硫化物含金石英脉)和晚成矿阶段(碳酸盐石英脉)。本文利用显微测温和拉曼光谱分析了大坪矿脉的流体包裹体特征,结果表明:流体包裹体基本由富液相CO2包裹体和不同CO2/H2O比例的CO2-H2O型包裹体组成,早阶段白钨矿石英脉中同时富含富气相CO2包裹体,主成矿阶段团块状多金属硫化物金矿石中富液相CO2包裹体占明显优势,只有晚成矿阶段碳酸盐石英脉中含有居次要地位的H2O溶液包裹体。流体包裹体中气相组成基本为纯CO2,早阶段者还含少量N2。早阶段CO2-H2O型包裹体的盐度为6.37%-14.64%NaCl,峰值9%-10.5%NaCl,均一温度为299.4-423.7℃,峰值320-380℃,CO2包裹体密度为0.352-0.798g/cm^3,多数在0.64-0.71g/cm^3;主成矿阶段的CO2-H2O型包裹体的盐度在3.70%-14.64%NaCl之间,峰值7.2%-9.0%NaCl,均一温度279.0-406.5℃之间,峰值320-360℃,CO2包裹体密度为0.591-0.843g/cm^3,多数大于0.8g/cm^3;晚成矿阶段CO2-H2O型包裹体的盐度为4.80%-6.54%NaCl,均一温度为287.6-337.1℃。计算表明早阶段成矿压力约为190-440MPa,主阶段成矿压力约为133.5-340.0MPa,相当的成矿深度为5.1-12.9km。这些特征揭示了该矿成矿流体为近临界的高CO2(CO2≥H2O)的中低盐度的CO2-H2O-NaCl体系流体,在成矿过程中基本不存在流体混合,但发生了明显的沸腾和相分离作用。该矿是剪切带控制下的中深中温热液金矿,成矿作用主要是减压沸腾环境下的快速沉淀。结合其它证据,作者认为该矿的成矿流体主体为深源的壳幔混合流体,而不是地壳浅部的大气降水、岩浆水或其混合流体。金在高CO2的成矿流体中可能主要以硫氢络合物形式迁移,矿质沉淀主要与压力速降条件下发生流体的相分离作用相关。  相似文献   

16.
分水坳金矿矿床埋藏深度的流体包裹示踪研究   总被引:1,自引:0,他引:1  
通过对分水坳金矿流体包裹地球化学特征的研究,揭示其变化规律,从而示踪矿床的埋藏深度。  相似文献   

17.
克因布拉克铜锌矿床位于新疆阿尔泰山南缘冲乎尔盆地。矿体主要赋存于早二叠世花岗岩外接触带的下泥盆统康布铁堡组上亚组内。克因布拉克矿床经历了两个成矿期:海相火山喷流沉积成矿期和变质热液叠加成矿期。变质热液叠加成矿期可包括2个阶段:早阶段顺层透镜状石英脉(Q1)和晚阶段切层含黄铁矿?黄铜矿石英脉(Q2)。石英脉中流体包裹体以富CO_2-N_2为特征,流体包裹体组合(FIA)发育。流体包裹体类型包括CO_2-N_2包裹体、H_2O-CO_2(±N_2)包裹体和水溶液包裹体(L-V型)。显微测温结果显示,Q1中CO_2-N_2包裹体三相点温度(T_(m,CO_2))范围在-61.2~-59.1℃,部分均一温度(T_(h,CO2))的范围是-42.3~-36.0℃。Q2中CO_2-N_2流体包裹体的T_(m,CO_2)为-61.6~-58.1℃,T_(h,CO_2)范围是-30.0~10.4℃;Q2中H_2O-CO_2(±N_2)包裹体的T_(m,CO_2)为-61.4~-58.1℃,T_(h,CO_2)为-11.9~5.3℃,CO_2笼合物融化温度(T_(m,clath))范围是2.9~13.1℃,完全均一温度(T_(h,total))为312℃,伴生的L-V包裹体T_(h,total)为201~389℃,求得CO_2相密度为0.91~0.97 g/cm~3,盐度为1.62%~12.02%NaCl_(eqv)。计算得到流体包裹体的最低捕获压力范围为250~320 MPa,具有极富CO_2-N_2、低盐度的特点,属于变质流体。变质热液期早阶段石英脉δD值为-90.5‰,δ~(18)O_(H_2O)值为7.8‰;晚阶段石英脉δD值为-82.1‰~-80.4‰,δ~(18)O_(H_2O)为6.2‰~8.6‰。海相火山沉积期硫化物的δ~(34)S为0.9‰~2.1‰,硫来自火山岩浆活动;变质热液叠加期硫化物的δ~(34)S为0.1‰~1.1‰,显示了与造山变质深源流体有关的来源。克因布拉克铜锌矿床矿石变形变质结构特征以及石英脉中富CO_2-N_2流体的大量出现,说明变质流体对矿床具有一定的叠加改造,矿床具有多阶段的特点。  相似文献   

18.
阿尔泰大东沟铅锌矿的碳质流体及其成因   总被引:5,自引:0,他引:5  
大东沟铅锌矿是阿尔泰南缘泥盆纪克朗火山-沉积盆地的块状硫化物矿床之一,在石炭—二叠纪同造山的区域变质过程中,受到热液叠加改造作用,层状铅锌矿体发育脉状石英和矿化。本文对阿勒泰大东沟铅锌矿区石英脉中的包裹体进行了详细的岩相学和显微测温研究,估算出包裹体形成时的物理化学条件,并采用激光拉曼、同步辐射X射线荧光(SRXRF)对流体包裹体进行了成分测试。结果显示,石英脉中的包裹体主要为碳质流体包裹体,多以面状、带状分布,最低捕获温度在209~459℃之间,密度为0.75~1.15g/cm3,最低捕获压力在110~540MPa之间。初步研究表明碳质流体的来源与同造山的变质作用有关,而与海底喷流沉积无关。激光拉曼测试结果表明包裹体气液主要成分为CO2和N2。SRXRF测试碳质包裹体中金属微量元素显示低Cu、Zn、Pb,而富集Au。  相似文献   

19.
阿尔泰南缘克兰盆地的脉状金-铜矿化及其流体演化   总被引:2,自引:1,他引:2  
阿尔泰山南缘泥盆纪克兰火山-沉积盆地蕴藏有丰富的VMS锌铅铜多金属矿床。自晚泥盆世至早二叠世末, 阿尔泰山南缘为NE-SW向强烈挤压的构造环境, VMS矿石受到变形变质改造,脉状金铜矿化发育。金(铜)石英脉主要有2种产状:(1)白色-灰白色(硫化物)顺层石英脉(QI), 产于韧脆性剪切带发育地段,呈细脉状或透镜状产于绿泥片岩、黑云片岩中;(2)斜切黄铁矿化蚀变岩、层状铅锌矿和变质岩产状的黄铜矿-黄铁矿石英脉(QII),与晚期的脆性构造有关。金(铜)石英脉的流体包裹体发育,按室温下相态特征有3类。第I类为含子矿物的高盐度包裹体(L-V-S型),子晶为NaCl, 有时为KCl,包裹体呈孤立或无序分布,代表变质早期流体特征。一般NaCl子晶先消失(210~357℃),包裹体的最终均一温度369~512℃,其捕获温度与变质相的相平衡计算温度相当,反映了变质早期中高温热液活动的特征。第II类是富CO2 包裹体,包括单相的碳质流体包裹体(L CO2、L CO2-CH4或L CO2-N2)和两相富CO2包裹体(L CO2-L H2O)2个亚类。碳质流体包裹体是常见类型,有时与L CO2-LH2O型伴生,在较晚期的黄铜矿-黄铁矿石英脉中表现为原生特征,而在较早的石英脉中常表现为次生特征。萨热阔布的碳质流体可分为纯CO2包裹体和CO2-CH4体系包裹体,纯CO2包裹体的固体CO2熔化温度(Tm,CO2)为 -60~-56.5℃,CO2部分均一温度(Th,CO2) 变化于-23~+31℃;密度一般为0.85~0.89g·m-3。CO2-CH4包裹体的Tm,CO2<-57℃,可低达-78.1℃,Th,CO2低达-33.7~-17.7℃, 其密度高达1.01~1.07g·m-3。VMS矿床中晚期叠加的黄铜矿石英脉中碳质流体包裹体可分为贫CH4-N2和富CH4-N2的CO2-CH4-N2包裹体,贫CH4-N2的碳质包裹体Tm,CO2=-63.3~-57℃,Th,CO2=-27.5~+29.7℃;富CH4-N2的CO2-CH4-N2包裹体Tm,CO2=-83.4~-65.5℃,Th,CO2=-56.0~+16.9℃。铜金石英脉中与碳质流体共生的LCO2-LH2O型包裹体均一温度Th,total=205~370℃,略低于第I类高盐度包裹体的Th,total=369~512℃。据CO2流体高温高压相图估算包裹体的捕获压力至少为110~300MPa。金(铜)石英脉的主体在相当于445~566℃的高温条件下形成的,而金铜矿化则是在高于205~370℃、110~330MPa的中高温中深条件下发生的。流体包裹体的δ18O为7.54‰~11.84‰ (QI)和3.82‰~7.82‰ (QII), δD为-84.7‰~-98.2‰(QI)和-75.8‰~-108.8‰ (QII)。结合地质特征和流体研究,说明成矿热液来源与区域变质及相关的岩浆活动有关。  相似文献   

20.
CO2流体与金矿化:流体包裹体的证据   总被引:12,自引:1,他引:12  
在世界的各种类型的金矿包括石英脉型、网脉型以及蚀变岩型金矿床中均见到H2O.CO2:和富含CO2的包裹体.在金矿的围岩蚀变中见到碳酸盐化、黄铁矿化、绢云母化和硅化,说明Au的成矿流体中有C2O和硫等这些组分.金矿床中的C2O流体包裹体有以下特点:(1)在金矿床中常见四类包裹体即水溶液包裹体、H2O-CO2包裹体、富CO2包裹体和含NaC1子矿物包裹体,但以前三者为主,这四类包裹体可以在一起分布,常见水溶液包裹体和CO2包裹体分别分开分布,常单独成行分布,显示出成矿流体的相分离.(2)CO2包裹体与自然金的关系,可以见到自然金与富CO2包裹体分布在同一行上,或者CO2流体与自然金产在一起,或者自然金分布于CO2包裹体中,说明Au是与CO2同时搬运和沉淀的.(3)对金矿中的流体包裹体成分分析表明,除Au、H2O和CO2是流体的主要成分外,还有少量的CH4、H2S和N2等.H2S和H2CO3的相图研究表明,Au的络合物可能是AuHS或AuH2S,这种Au的络合物只有在CO2作为缓冲剂的热液中其溶解度最大,这样的热液就是Au的成矿流体.这种流体在上升过程中与围岩发生交代作用形成蚀变,并且流体发生了相分离,分出相对富含H2O的流体和相对富含CO2的流体,Au在这种相分离的过程中与CO2一起沉淀下来,形成金矿.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号