首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
       根据大陆下地壳的成分、含水基性岩体系部分熔融的基本原理和实验岩石学资料,本文对大陆下地壳的熔融机制展 开了讨论,并在此基础上对比实验熔体与大别山C 型埃达克岩的成分,进而探讨约束源岩成分、熔融的温压条件和部分熔 融程度。研究结果表明,大陆下地壳总体上是中- 基性(SiO2 50%~60% )和含少量水的,在缺乏流体相条件下伴随含水 矿物脱水的部分熔融是下地壳产生含水长英质熔体和无水残留体的主要机制。角闪岩在中等压力下(1.0~1.2 GPa,相当于 35~40 km)理论上能够产生石榴石含量超过~20% 的熔融残余,从而使得与之平衡的长英质熔体具有低Y,高Sr/Y 和La/Yb 比值等埃达克岩特征。基于水活度模型和变质基性岩p -t 相图的估算显示,含有40%~60% 角闪石的源岩(含水0.8%~1.2%) 在~950 ℃能够得到最大为15%~20% 的熔体,该熔体分数满足熔体分离的要求。大别山C型埃达克岩主要为高钾钙碱性系 列(K2O 3.5%~5%),与实验熔体成分的对比可知,其无法由低钾源岩在合理的部分熔融程度形成。根据钾在角闪岩部分熔 融过程过表现为强不相容元素的原理,利用合理假设的残余体组合得到的分配系数,估算K2O 含量为~1% 的源岩在熔融程 度为15%~20% 的情况下能够得到类似大别山C 型埃达克岩成分的熔体。  相似文献   

2.
根据热力学原理,部分熔融是相变的一种表现形式。当岩石沿p-T轨迹穿过固相线时即可发生熔融。自然界岩石常见的不一致熔融行为可以导致残留相具有不同于源岩的整体成分与矿物组合。残留相与源岩可以属于不同的变质相,岩性也可以不同。"C型埃达克岩"含有含水矿物,它们不是干体系熔融的产物。实验岩石学研究表明,基性成分(SiO_250%)体系较中性、酸性体系在1.0~2.0 GPa压力条件下失水熔融时更易于形成"榴辉岩质"的残留相。源岩除SiO_2以外的其它主要氧化物会影响残留相中各矿物的比例,进而影响熔体的Sr、Y及HREE含量。因此,"C型埃达克岩"高Sr低HREE特征的形成取决于熔融温压条件以及源岩的主量元素、微量元素组成等多重因素。高钾含量(K_2O≈1.0%)的基性、中基性源岩形成的熔体成分与"C型埃达克岩"相比过于富Al或富Na。中等富钾的基性源岩的低程度熔融可以形成高硅的"C型埃达克岩",但无法形成中性的"C型埃达克岩"。  相似文献   

3.
焦永玲等对笔者发表在《高校地质学报》2012年第18 卷第1 期的“含水大陆下地壳的部分熔融:大别山C型埃达克 岩成因探讨”一文提出质疑。针对他们的问题,笔者进行了回复,并提出:(1)大别山C 型埃达克岩的源岩可能是基性的 (SiO2 含量50% 左右),但是比较准确的成分估计还需要进一步研究;(2)变质含水基性岩(角闪岩)在1.0~1.2 GPa 压力下(相当于35~40 km)可以形成含石榴石20% 以上的残余体;(3)中钾的角闪岩(K2O 含量1% 左右)部分熔融可以形成高钾钙碱性长英质熔体(K2O 含量3.5%~5%)。  相似文献   

4.
本文对铜陵地区晚侏罗世-早白垩世高钾钙碱性中酸性侵入岩进行了研究,发现该类岩体具有埃达克岩的地球化学特征,具体表现为:SiO2≥56%,Al2O3含量高(>15%),Na2O/K2O>1,亏损HREE,(La/Yb)N>12,负Eu异常不明显(Eu*/Eu=0.71-0.96),Sr含量高(>750μg/g),Sr/Y比值高(>38)。但是,由于岩石的K2O含量较高、εNd(t)较低和ISr值较高,又不同于典型的与板块俯冲有关的埃达克岩,而与中国东部中生代的C型埃达克岩比较类似,暗示铜陵地区的高钾钙碱性岩可能是加厚的下地壳底部基性岩部分熔融的产物。本文主要依据铜陵埃达克质岩的HREE特征,将其分为三类:第一类岩体为HREE平坦型,Yb含量较高(>1.8μg/g);第二类为HREE平坦型,Yb<1.8μg/g,(Ho/Yb)N≈1;第三类岩体HREE亏损,Yb<1.8μg/g,(Ho/Yb)N<1.2。上述三类岩石地球化学性质上的差异不太可能是分离结晶作用或地壳混染的 结果,而可能是由于幔源岩浆与下地壳物质混合的程度不同引起源区成分不同形成的。铜陵地区及中国东部埃达克质岩石可能代表了中国东部中生代时的地壳增生和加厚过程。铜陵埃达克岩主要是古老下地壳和底侵玄武岩不同比例混合部分熔融形成的,在岩浆演化过程中可能还不同程度地叠加了分离结晶作用和岩浆混合作用的影响。铜陵埃达克岩具岛弧特征,但并不表明其  相似文献   

5.
关于C型埃达克岩成因的再探讨   总被引:5,自引:0,他引:5  
文中回顾了对C型埃达克岩认识的过程,归纳了C型埃达克岩的产出特征、存在问题、研究意义及今后研究的方向,指出中国东部C型埃达克岩是高钾钙碱性的,可能是变质的中钾和高钾的中基性岩在高压条件下部分熔融形成的。不同于O型埃达克岩,它的成因、源区特征、熔融机制,是今后研究的重点,需要大量实验研究的支持。钾质的C型埃达克岩是新的大陆构造学研究的切入点,比钠质的O型埃达克岩具有更重要的意义。  相似文献   

6.
以产出于大别新店高压变质杂岩带的含角闪石多硅白云母榴辉岩(XD963)为实验源岩,使用YJ-3000t紧装式六面顶压机装置,在2.0GPa,850~1070℃条件下,进行了脱水部分熔融实验研究。结果显示,在850~950℃下,多硅白云母通过不一致脱水熔融反应产生了≤12%的过铝质(铝饱和指数ASI>1.2)的高K钙碱性(K2O/Na2O=1.2~1.4)花岗质熔体,与其共存的残留相为石榴子石+绿辉石+石英+多硅白云母+角闪石+Fe-Ti氧化物+蓝晶石±金红石。1000~1070℃时,熔体比例陡然增大(>35%),成分变为准铝质的钙碱性花岗闪长质,残留相组合以石榴子石+绿辉石+普通辉石为主。实验熔体与早白垩世富K埃达克岩的主微量元素对比结果表明:除ASI以及Eu/Eu*值特征外,低温熔体(900~950℃)与富K埃达克岩具有很好的相似性。此外,本次实验源岩在相对低温(900和950℃)条件下形成的熔体具备富K埃达克岩的两个主要特征—高K钙碱性和花岗质。因此可认为形成高K钙碱性的花岗质岩浆不需要过高的压力以及高度富K的源岩。  相似文献   

7.
云南马厂箐富碱斑岩埃达克岩性质的厘定及其成矿意义   总被引:9,自引:0,他引:9  
马厂箐复式岩体SiO2含量变化于61.56%~71.63%,平均67.30%(≥56%);Al2O3含量变化于13.38%~17.18%,平均15.44%(≥15%);K2O含量变化于3.36%~8.92%,平均5.35%;K2O+Na2O变化于7.75%~11.55%,平均9.08%;K2O/Na2O变化于0.65~4.00,平均1.49,明显具有高钾钙碱性或钾玄岩系列特征;MgO含量变化于0.40%~4.59%,平均1.11%,在R1-R2图解中处于造山晚期和同碰撞期岩浆岩的范围内.地球化学特征显示高场强元素HFSE(Nb、Ta、Ti)相对亏损,Sr含量高(337×10-6~718×10-6),Y主要集中在6.2×10-6~15.8×10-6之间(≤18×10-6),Yb含量变化于0.20×10-6~1.63×10-6之间(≤1.9×10-6),轻重稀土元素强烈分异,且具有明显的轻稀土元素富集的特点,LREE/HREE变化于8.02~24.01,Sr/Y变化于40.5~57.4之间,平均48.2(>40),La/Yb变化于17.5~105.8之间,平均43.4(>20),Sc含量变化于2.5×10-6~7.9×10-6之间(<10×10-6);δEu 变化于0.81~1.38之间,显示出埃达克岩的地球化学特征.马厂箐岩体属于C型埃达克岩中的钾质埃达克岩.马厂箐岩体埃达克岩性质的厘定及其与同一成矿带上的玉龙斑岩体具有相似地球化学特征和形成环境的认识,对于该区地质找矿具有一定的意义.  相似文献   

8.
“C型埃达克岩”:一个基于误解的概念?   总被引:2,自引:0,他引:2  
原始定义的埃达克岩是钠质火成岩,其全岩化学成分相当于英云闪长岩、奥长花岗岩和(富斜长石的)花岗闪长岩(TTG);而富钾的"C型埃达克岩"全岩化学成分相当于(狭义)花岗岩、石英二长岩和(富碱性长石的)花岗闪长岩。现有的失水部分熔融实验岩石学表明,中等富钾程度的贫硅(高Mg#值)玄武质源岩的低比例部分熔融条件下可以形成酸性"C型埃达克岩";玄武质源岩部分熔融不会形成那些SiO2含量中等而又不具备高度富碱特征的"C型埃达克岩"。高Sr低Y特征并非判别"C型埃达克岩"高压(p≥1.5 GPa)熔融成因的决定性标志,仅仅基于高Sr低Y特征而认为"C型埃达克岩"形成于高压熔融的成岩机制是值得商榷的。  相似文献   

9.
九顶山复式岩体沿北西向金沙江–红河断裂与南北向程海断裂交汇处发育,处于南北地洼区与滇西地洼区接触带,是滇西地洼期斑岩成矿带中段的代表性富碱斑岩体之一。该岩体由呈岩株、岩脉、岩墙或岩床等产出的斑状花岗岩、正长斑岩、(二长)花岗斑岩、碱长花岗斑岩和煌斑岩等组成。本文着重对正长斑岩的形成年代、岩石地球化学和成因特征开展研究,结果表明:正长斑岩的LA-ICP-MS锆石U-Pb年龄为34.6±0.7 Ma,即岩浆侵位于始新世(E2),属滇西地洼激烈期及新生代富碱岩浆活动高峰期(45~30 Ma)的产物;岩石具高硅(Si O256%)、高钾(K2O=3.38%~8.92%,K2O/Na2O1)、富碱(ALK=8.15%~11.15%)和低Mg O(3%)的特征,属钾玄岩系列–高钾钙碱性系列过铝质(A/CNK=0.71~1.22)花岗岩;在微量元素组成上,岩石高Sr(400×10-6)、低Y(18×10-6)和Yb(1.9×10-6),与陆内造山环境形成的"C型"钾质埃达克岩地球化学特征类似;全岩的Sr-Nd-Hf同位素组成特征显示岩浆源区是壳幔物质混合的"EMII型"富集地幔源。正长斑岩的形成应与印度–欧亚板块碰撞俯冲背景下,金沙江–红河断裂大规模左行走滑引起的热扰动和局部引张作用有关,在这种区域热–动力学条件下,地幔部分熔融与地壳物质发生混合作用,形成活化型壳幔混合源高钾富碱岩浆。  相似文献   

10.
埃达克岩的多样性   总被引:43,自引:2,他引:41  
埃达克岩具有多样性,大体可分为下列几种:①典型的埃达克岩(adaldte),源于贫K的拉斑玄武岩,大多是由俯冲板片熔融形成的;②高镁埃达克岩(high Mg adakite,HMA),以富Mg^#和Cr、Ni为特征;③TTG岩套,不同于典型的adakite,太古宙的TTG更富Si和贫Mg;④高钾钙碱性埃达克岩(high-K calc-alkaline adakite,HKCAA),以富K和贫Mg、Cr、Ni为特征;⑤高钾和镁的埃达克岩(high K and Mg adakite,HKMA);⑥钾质埃达克岩(Super K adakite。SKA)。研究表明,只要达到形成埃达克岩所需要的高压条件,有足够的热源使源区物质发生部分熔融,所形成的熔体即具有埃达克岩的特征。而埃达克岩的多样性则是由于构造环境的差异(消减带或下地壳)、源岩性质的差异(基性岩或酸性岩)、压力的差异(地壳厚度的大小)以及围岩的差异(与地幔或地壳发生混合作用)造成的。  相似文献   

11.
埃达克岩的多样性   总被引:5,自引:0,他引:5  
埃达克岩具有多样性,大体可分为下列几种:①典型的埃达克岩(adakite),源于贫K的拉斑玄武岩,大多是由俯冲板片熔融形成的;②高镁埃达克岩(high Mg adakite,HMA),以富Mg#和Cr、Ni为特征;③TTG岩套,不同于典型的adakite,太古宙的TTG更富Si和贫Mg;④高钾钙碱性埃达克岩(high-K calc-alkaline adakite,HKCAA),以富K和贫Mg、Cr、Ni为特征;⑤高钾和镁的埃达克岩(high K and Mg adakite,HKMA);⑥钾质埃达克岩(Super Kadakite,SKA).研究表明,只要达到形成埃达克岩所需要的高压条件,有足够的热源使源区物质发生部分熔融,所形成的熔体即具有埃达克岩的特征.而埃达克岩的多样性则是由于构造环境的差异(消减带或下地壳)、源岩性质的差异(基性岩或酸性岩)、压力的差异(地壳厚度的大小)以及围岩的差异(与地幔或地壳发生混合作用)造成的.  相似文献   

12.
埃达克岩的Na亏损及其对地幔Na交代的指示意义   总被引:1,自引:3,他引:1  
埃达克岩是玄武质洋壳部分熔融的产物。然而,与实验室玄武岩部分熔融产生的埃达克质熔体相比,天然埃达克岩明显地高Mg、Cr和Ni,这表明埃达克岩浆在上升过程中有地幔成分的加入。本文的观察结果表明,全球新生代埃达克岩的Na2O含量低于5.8%,大约95%的新生代埃达克岩样品Na2O含量小于5.0%。然而,在埃达克岩产生的压力范围(1.5~3.0GPa),实验的玄武岩部分熔体大多数Na2O含量超过5.0%,最高达到9.0%,显示埃达克岩具有明显的Na亏损现象。我们认为这是埃达克熔体在热的地幔楔中与地幔橄榄岩反应的结果。在俯冲带,大洋板片熔融产生的熔体(埃达克熔体)上升并与地幔橄榄岩发生反应,原始的埃达克熔体获得MgO、Cr及Ni等地幔组分,但其Na2O和SiO2等通过反应进入地幔,导致地幔交代作用。根据长英质熔体与橄榄岩反应体系的相关系,我们认为,地幔单斜辉石、橄榄石、尖晶石的混染作用以及钠质角闪石和斜方辉石的分离结晶作用,是改变埃达克熔体组成并导致其Na亏损的一个重要的过程。埃达克岩的Na亏损为地幔Na交代作用和一些富Na的弧岩浆成因提供了重要证据。  相似文献   

13.
中基性(SiO2= 50%~60%)成分源岩在中等压力(p =1.0~1.2 GPa,相当于35~40 km)下的失水部分熔融残留相中斜 长石比例大,而石榴子石的比例不超过20%,与之平衡的中酸性熔体难以具备埃达克岩的地球化学特征。富钾源岩部分熔 融体系中钾的地球化学行为不遵循稀溶液的Henry 定律,基于强不相容假设的模拟计算很可能会过高估计熔体中的钾含量。  相似文献   

14.
大兴安岭中段扎兰屯地区晚古生代埃达克岩主要岩石类型为安山岩、粗面安山岩、英安岩和粗面英安岩,取得一个安山岩样品的LA-ICP-MS锆石U-Pb年龄为(316.9±2.4)Ma,代表火山岩喷发的年龄.岩石具有较高Si(Si O2=54.97%~63.80%),富碱并相对略富Na(Na2O/K2O1),富Al(Al_2O_3=14.97%~17.69%),高Sr(715.98×10~(-6)~2100×10~(-6)),低Y(12×10~(-6)~18.41×10~(-6))和Yb(1.02×10~(-6)~1.91×10~(-6))的特点.在原始地幔标准化蛛网图中,富集LREE,亏损HREE,Eu呈微弱正异常(δEu=0.97~1.30).同时Mg值介于0.35~0.57,平均0.46.总体特征属于高钾钙碱性埃达克岩(为C型埃达克岩的一种),来源于增厚的玄武质下地壳的部分熔融.扎兰屯地区晚古生代高钾钙碱性埃达克岩的发现,为兴安地块与松嫩地块的拼贴作用提供了新的线索,对正确认识区域地壳演化有着重要的构造意义,为本区寻找与埃达克岩有关的矿产提供了线索.  相似文献   

15.
西藏多不杂铜矿床是班公湖-怒江带北侧新近发现的具有超大型远景的、典型的富金斑岩型铜矿床.本文对含矿斑岩、玄武质火山岩进行了系统的地球化学分析,甄别出三套岩石系列:埃达克岩、高Nb玄武岩和正常的岛弧玄武安山岩.三套岩石SiO2含量47%~68%,Al2O3含13%~18%,MgO含量1.4%~8.5%,FeOt含量2.3%~8.1%和CaO含量2.1%~10%,属于钙碱系列.MgO、CaO和FeOt与SiO2呈负相关,K2O与SiO2基本呈正相关.高Nb玄武岩和正常的岛弧玄武安山岩富Na,Na2O/K2O在0.9~7之间,而埃达克岩是相对富K,Na2O/K2O比为0.8.稀土元素总量∑REE为29×10-6-203×10-6,从基性到酸性岩乏REE是逐渐减小的,高Nb玄武岩的稀土元素含量最高,而埃达克岩最低.球粒陨石标准化配分曲线为轻稀土富集型,LREE/HREE为7.0~12.4,(La/Yb)N为3.2~13,δEu为0.9~2.1.埃达克岩和正常的岛弧玄武岩富集大离子亲石元素(LILE:如Rb、Ba、K、Sr)和活泼的高场强元素(如:U、Th),相对亏损其它高场强元素(HFSE:如Nb、Ta、Zr、Hf、Ti),表明具有俯冲带之上岛弧岩浆的特征.而高Nb玄武岩具有明显Nb、Ta正异常,且TiO2含量高(>2%),(La/Nb)PM<2.微量元素地球化学特征和Sr、Nd同位素结果表明该区埃达克岩直接来源于俯冲洋壳的部分熔融,但可能有俯冲沉积物成分的加入;而高Nb的玄武岩则可能来源于埃达克质熔体交代或者超临界流体交代而产生富Nb、Ta的地幔源区,可能有软流圈地幔的加入;而正常的岛弧火山岩则来源于俯冲流体交代过的地幔楔.另外,多不杂矿区埃达克岩和高Nb玄武岩(HNB)空间共生的"埃达克质岩浆交代的火山岩系列",表明多不杂铜矿床形成于典型的岛弧俯冲构造背景.对与成矿密切相关的花岗闪长斑岩进行精确的SHRIMP锆石U-Pb年代学研究,其锆石具有明显的岩浆结晶环带,Th/U比值范围为0.51~0.90,均大于0.1,为岩浆成因锆石,其SHRIMP U-Pb年龄为121.6±1.9Ma,表明至少在大约120Ma期间班公-怒江洋盆正在向北俯冲,洋盆闭合时间应晚于早白垩世中期.  相似文献   

16.
甘肃黑石山早古生代埃达克质岩的发现及其构造动力学意义   总被引:11,自引:6,他引:11  
笔者近期在甘肃黑石山地区早古生代火成岩的研究中发现了埃达克质岩,埃达克质岩的岩石类型为奥长花岗岩、花岗闪长岩及花岗癍岩,侵入于北祁连东段的白银陆缘弧火山岩中。岩石具高Sr低Y,Sr/Y>40;富钠贫钾(Na2O/K2O>2), 富SiO,但含量变化不大;富集LREE,亏损重稀土元素,La/Yb>20,无Eu负异常或轻微正异常(δEu=1.0-1.19)。与典型的俯冲板块熔融的埃达克岩比较,黑石山埃达克质岩具有更高的SiO2含量和更低的MgO、Mg#(-46)、Cr(均11.6μg/g)、Ni(均 6.52μg/g),未显示出初始埃达克质熔体与地幔橄榄岩明显的交代过程,因而不大可能由俯冲板块直接熔融形成的;与中国东部燕山期高钾钙碱性埃达克岩相比,具有较高的Na2O(Na2O>4.0%;Na2O/K2O=1.97-2.59),但类似Cordilera Blanca岩基的(非板片熔融成因的埃达克质岩),推测形成于加厚的陆缘弧中基性下地壳的部分熔融。黑石山埃达克质岩的发现表明, 在早古生代晚期,北祁连东段经历了洋盆闭合、板块碰撞、陆缘弧地壳加厚、玄武质岩浆底侵作用及下地壳再造作用的构造演化过程。同时指出,在本区寻找与埃达克质岩有关的斑岩型铜、金矿可能是一个新的有希望的找矿方向。  相似文献   

17.
湖南桃林铅锌矿区花岗岩地球化学特征及其与成矿的关系   总被引:2,自引:0,他引:2  
桃林铅锌矿位于钦杭成矿带,矿区出露幕阜山花岗岩体,岩性为中粗粒黑云母二长花岗岩。通过研究,得出该岩石符合中国东部埃达克岩(C型埃达克岩)特征,其具有高的SiO2(>70%)和Al2O(314.61%-14.73%)含量,中等高K2O/Na2O比值(﹥1),高的Sr含量,低的Yb和Y含量,高的Sr/Y和La/Yb比值,富轻稀土元素(LREE),贫重稀土元素(HREE),球粒陨石标准化的REE配分模式为右倾斜、HREE平坦配分模式,此外花岗岩体还富集成矿元素。桃林铅锌矿为桃林大断裂控制的多源热液充填矿床,中粗粒黑云母二长花岗是其一种成矿物质来源,其形成时间晚于中粗粒黑云母二长花岗岩。  相似文献   

18.
本文报道了分布于中亚造山带南缘苏尼特右旗太古生庙地区太古生庙岩体和库伦哈达岩体的岩相学、地球化学和年代学特征,以讨论该岩体的形成时代、岩石成因及其构造环境。锆石U-Pb定年结果显示,太古生庙英云闪长岩结晶年龄为442.6±2.4Ma,库伦哈达石英闪长岩结晶年龄为434.2±2.2Ma,说明太古生庙地区早古生代存在岩浆活动。其中太古生庙岩体地球化学特征类似于典型的埃达克岩,其Si O2含量56%(70.02%~70.51%),Al2O3含量≥15%(15.99%~16.37%),Mg O3%(0.56%~0.83%),Na2O3%(4.33%~4.66%),K2O/Na2O比值0.5(0.3~0.4);在微量元素特征方面,Sr400×10-6(681×10-6~783×10-6),Yb1.9×10-6(0.6×10-6~0.9×10-6),Y18×10-6(5.4×10-6~9.3×10-6),无明显的Eu异常。库伦哈达岩体与太古生庙岩体相比,Si O2含量较低(57.92%~66.78%),Al2O3为相当(14.91%~18.26%),MgO含量为1.17%~2.31%,Na2O含量为3.29%~4.36%,K2O含量为1.43%~3.09%;在微量元素判别图解中,库伦哈达岩体的岩石样品投图位于埃达克岩和典型的岛弧型火山岩的叠加区域,而太古生庙岩体样品全部落入埃达克岩区域内,太古生庙岩体可能是洋壳部分熔融的产物,而库伦哈达岩体可能是早期俯冲的洋壳部分熔融的产物混染了部分熔融的地幔楔之后形成了这种具有正常岛弧岩浆特征的岩石,其形成的环境为岛弧环境。  相似文献   

19.
赤峰蒙古营子岩体位于华北板块以北的兴蒙造山带南端,岩性主要为花岗闪长岩。其SiO2含量介于56.88%~68.82%之间,Na2O含量为4.32%~4.54%,K2O含量为2.3%~3.86%,且Na2O>K2O。里特曼指数σ=2.4~3.29,Al2O3含量介于15.1%~16.8%之间,A/CNK=0.81~0.92,属于高钾钙碱性I型花岗岩。富集轻稀土元素(LREE)、亏损重稀土元素(HREE)和高场强元素(HFSE)。Sr含量为782×10-6~1230×10-6,Y和Yb平均值分别为20.1×10-6和1.77×10-6,(La/Yb)N值为19.84~22.03,δEu=0.81~1.04,Eu异常不明显。岩体总体显示出C型埃达克岩的地球化学属性,暗示岩浆可能源于加厚的下地壳部分熔融。采用LA-ICP-MS 技术测得的锆石206Pb/238U年龄为252.8±2.4Ma,表明该岩体形成于古生代末期—早中生代。结合兴蒙造山带的构造演化历史,认为蒙古营子花岗闪长岩应为西伯利亚板块和华北板块后碰撞阶段的产物,具有幔源岩浆底侵诱发地壳生长的指示意义。  相似文献   

20.
野外地质调查结合锆石U-Pb年龄测定和岩石化学成分分析,发现西藏冈底斯碰撞造山带晚中新世发育两套埃达克岩.一套呈NS向岩墙产出,锫石U-Pb-LAICP-MS年龄为15.6~16.8 Ma,地球化学上以富Na2O、贫K2O、Sr/Y比值高为特点,不含矿;另一套呈岩株产出,锆石 U-Pb SHRIMP 年龄为14.0~15.3 Ma,地球化学上以富K2O、贫NaO、Sr/Y比值低为特点,伴随着大规模的斑岩型铜钼矿化.两套埃达克岩都高度富集大离子不相容元素(LILE)Rb、Ba、Th、U、K、Sr、Pb,强烈亏损高场强元素(HFSE)Nb、Ta、Ti,反映出俯冲组分对岩浆源区的明显影响,具备岛弧岩浆作用的基本特征.比较而言,含矿埃达克岩更富集Rb、Th、U、K、Pb,而不含矿埃达克岩更富集Sr;不含矿埃达克岩的高场强元素Nb、Ta、Ti亏损更加强烈,Zr、Hf相对富集.两套埃达克岩都是形成于碰撞后地壳伸展的同一地球动力学背景下,其岩石地球化学差异主要与岩浆源区有关.研究表明,含矿埃达克岩的岩浆源区较浅,位于下地壳底部,参与岩浆作用的俯冲组分以沉积物熔体为主,岩浆的氧化性较强,并且经历了更多的分异过程.不含矿埃达克岩的岩浆源区较深,位于岩石圈地幔上部,参与源区岩浆作用的俯冲组分主要是板片流体,岩浆氧化性较低,岩浆分异过程较少.两套埃达克岩含矿与不含矿的原因包含了源区物质组成和岩浆生成条件两方面的差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号