首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E.S. Farahat 《Lithos》2010,120(3-4):293-308
Ophiolites are widely distributed in the Central Eastern Desert (CED) of Egypt, occurring as clusters in the northern (NCEDO) and southern (SCEDO) segments. Mineralogical and geochemical data on the volcanic sections of Wizer (WZO) and Abu Meriewa (AMO) ophiolites as representatives of the NCEDO and SCEDO, respectively, are presented.The WZO volcanic sequence comprises massive metavolcanics of MORB-like compositions intruded by minor boninitic dykes and thrust over island-arc metavolcanic blocks in the mélange matrix. Such transitional MORB-IAT-boninitic magmatic affinities for the WZO metavolcanics suggest that they most likely formed in a protoarc–forearc setting. Chemical compositions of primary clinopyroxene and Cr-spinel relicts from the WZO volcanic section further confirm this interpretation. The compositional variability in the WZO volcanic sequence is comparable with the associated mantle rocks that vary from slightly depleted harzburgites to highly depleted harzburgites containing small dunite bodies, which are residues after MORB, IAT and boninite melt formation, respectively. Source characteristics of the different lava groups from the WZO indicate generation via partial melting of a MORB source which was progressively depleted by melt extraction and variably enriched by subduction zone fluids. MORB-like magma may have been derived from ~ 20% partial melting of an undepleted lherzolite source, leaving slightly depleted harzburgite as a residuum. The generation of island-arc magma can be accounted for by partial melting (~ 15%) of the latter harzburgitic mantle source, whereas boninites may have been derived from partial melting (~ 20%) of a more refractory mantle source previously depleted by melt extraction of MORB and IAT melts, leaving ultra-refractory dunite bodies as residuum.The AMO volcanic unit occurs as highly deformed pillowed metavolcanic rocks in a mélange matrix. They can be categorized geochemically into LREE-depleted (La/YbCN = 0.41–0.50) and LREE-enriched (La/YbCN = 4.7–4.9) lava types that show an island arc to MORB geochemical signature, respectively, signifying a back-arc basin setting. This is consistent, as well, with their mantle section. Source characteristics indicate depleted to slightly enriched mantle sources with overall slight subduction zone geochemical affinities as compared to the WZO.Generally, CED ophiolites show supra-subduction zone geochemical signature with prevalent island arc tholeiitic and minor boninitic affinities in the NCEDO and MORB/island-arc association in the SCEDO. Such differences in geochemical characteristics of the NCEDO and SCEDO, along with the abundance of mature island arc metavolcanics which are close in age (~ 750 Ma) to the ophiolitic rocks, general enrichment in HFSE of ophiolites from north to south, and lack of a crustal break and major shear zones, is best explained by a geotectonic model whereby the CED represents an arc–back-arc system above a southeast-dipping subduction zone.  相似文献   

2.
A geophysical signature associated with Nb–Ta–Sn mineralization of G. (G. : abbreviation to word Gebel which means mountain in Arabic) Nuweibi area, located the Central Eastern Desert of Egypt is presented. This signature was established by an integration of airborne gamma ray spectrometric and magnetic data. Variations seen in the gamma ray spectrometric data are used as a base to study the three granitic suites: younger-, albite-, and older granites in G. Nuweibi area. Graphical techniques such as frequency histograms and box-plots are used to visualize the shape of the distribution and determine the anomaly thresholds of the three radioelements eU, eTh, and K% data in these granitic suites. The box-plot graphical representations and calculations made on data sets indicate that no samples have eU values above the thresholds, i.e., no outliers representing values of the box-plots. Nuweibi albite granite is associated with a gamma ray response that includes the strongest eU, eTh, K%, and eTh/K ratio anomalies in the study area. K–eTh plot shows that the albite granite has a higher eTh concentration than the older and younger granites. The increase in K concentration and raise in Th/K ratio of Nuweibi albite granite points to unusual geological processes leading to mineralization and reflects the highly fractionated nature of the magma which results in thorium enrichment. This also reflects that K alteration associated with Nb–Ta–Sn mineralization is both poorly focused spatially and very much weaker than observed in any other mineralizing districts. The distribution of magnetic sources and their locations and depths in the study region are determined by Euler deconvolution and analytical signal techniques. Good clustering of Euler solutions were obtained using SI?=?0.5 and SI?=?1.0 for most of the features in the area under consideration. The solutions obtained have shown magnetic sources which can be related to the impact structure whose depths varies between ground surface to 1.66 km. The analytical signal revealed that the metamorphosed basic rocks (mainly olivine metagabbro), serpentinite and dyke bodies are the main sources of high magnetic anomalies, particularly within the area east G. Nuweibi region.  相似文献   

3.
The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event (M1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.  相似文献   

4.
The Sukari gold mine (18.8 Mt @ 2.14 g/t Au) is located 15 km west of the Red Sea coast in the southern central Eastern Desert of Egypt. The vein-type deposit is hosted in Late Neoproterozoic granite that intruded island-arc and ophiolite rock assemblages. The vein-forming process is related to overall late Pan-African shear and extension tectonics. At Sukari, bulk NE–SW strike-slip deformation was accommodated by a local flower structure and extensional faults with veins that formed initially at conditions of about 300 °C and 1.5–2 kbar. Gold is associated with sulfides in quartz veins and in alteration zones. Pyrite and arsenopyrite dominate the sulfide ore beside minor sphalerite, chalcopyrite and galena. Gold occurs in three distinct positions: (1) anhedral grains (GI) at the contact between As-rich zones within the arsenian pyrite; (2) randomly distributed anhedral grains (GII) and along cracks in arsenian pyrite and arsenopyrite, and (3) large gold grains (GIII) interstitial to fine-grained pyrite and arsenopyrite. Fluid inclusion studies yield minimum vein-formation temperatures and pressures between 96 and 188 °C, 210 and 1,890 bar, respectively, which is in the range of epi- to mesothermal hydrothermal ore deposits. The structural evolution of the area suggests a long-term, cyclic process of repeated veining and leaching followed by sealing, initiated by the intrusion of granodiorite. This cyclic process explains the mineralogical features and is responsible for the predicted gold reserves of the Sukari deposits. A characteristic feature of the Sukari gold mineralization is the co-precipitation of gold and arsenic in pyrite and arsenopyrite.Editorial handling: H. Frimmel  相似文献   

5.
Through a large-scale examination of the morpho-sedimentary features on sea floors in the Taiwan–Luzon convergent margin, we determined the main sediment dispersal system which stretches from 23°N to 20°N and displays as an aligned linear sediment pathway, consisting of the Penghu Canyon, the deep-sea Penghu Channel and northern Manila Trench. The seafloor of South China Sea north of 21°N are underlain by a triangle-shaped collision marine basin, resulting from oblique collision between the Luzon Arc and Chinese margin, and are mainly occupied by two juxtaposed slopes, the South China Sea and Kaoping Slopes, and a southward tilting basin axis located along the Penghu Canyon. Two major tributary canyons of the Formosa and Kaoping and small channels and gullies on both slopes join into the axial Penghu Canyon and form a dendritic canyon drainage system in this collision marine basin. The canyon drainage system is characteristic of lateral sediment supply from flank slopes and axial sediment transport down-canyon following the tilting basin axis. The significance of the collision marine basin in term of source to sink is that sediments derived from nearby orogen and continental margins are transported to and accumulated in the collision basin, serving as a temporary sediment sink and major marine transport route along the basin axis. The comparison of the Taiwan–South China Sea collision zone with the Papua New Guinea collision zone of the western Solomon Sea reveals remarkable similarities in tectonic settings and sedimentary processes that have resulted in similar sediment dispersal systems consisting of (1) a canyon drainage network mainly in the collision basin and (2) a longitudinal sediment transport system comprising a linear connection of submarine canyon, deep-sea channel and oceanic trench beyond the collision marine basin.  相似文献   

6.
Fawakhir serpentinites are the most western ophiolitic ultramafics relative to the Pan-African collision suture at the Qift-Quseir road in the Central Eastern Desert of Egypt. Their location is the basis for their selection in examining the possible contribution of the westerly dipping subducted oceanic slab-related melt/fluid with the intraplate granitic intrusion-related melt/fluid in the metasomatism of the Neoproterozoic ophiolitic serpentinites in the Eastern Desert. Non-residual mineralogy and geochemistry of serpentinites (SF1) far from the post-collision A2-type Fawakhir granitoids and those of serpentinites (SF2) in the vicinity of the granitoid pluton were investigated. The Fawakhir serpentinites are harzburgitic in composition and the Cr# (0.66–0.80) and Mg# (0.32–0.50) of their unaltered spinel cores are indicators for their forearc setting, where they were formed in the oceanic mantle wedge. Based on the spinel Cr# and the whole rock Yb–V bivariate, the melt extraction from the primitive mantle is in excess of 18% up to 24%. The HREE pattern of the SF1 serpentinites refers to the fractional type of melting. The formation of non-residual mineral phases particularly in SF2 samples (amphibole, biotite, apatite thorite, and monazite) and the enrichment of all serpentinites in trace incompatible elements refer to these two serpentinite groups having underwent modal metasomatism. It is suggested that viscous fluid/melt related to the Fawakhir granitoid emplacement metasomatized the SF2 serpentinites, causing a strong enrichment in LREE (display concave LREE; LaN/SmN?=?3.32–6.25 and U-type HREE; GdN/YbN?=?1.14–2.69) and a slight enrichment in Zr (12–16.62 ppm). All serpentinites are enriched in fluid-mobile elements by aqueous fluids, but the SF2 are more enriched in these elements. The spiked B compared to the other fluid-mobile elements (16.97–24.61 and 42.94–60.66?×?PM in SF1 and SF2 samples, respectively) suggests that these elements were added to the obducted ophiolitic Fawakhir serpentinites by the percolation of subduction-related fluids at shallow depths. The contribution of B from shallow continental crust-related fluids is debated. Hosting the Fawakhir serpentinites for the gold deposit at Fawakhir Mine implies a possible genetic relation between gold mineralizations hosted in the ultramafic rocks of the ANS and the processes of recycling of the subducted oceanic slab and the interaction with the mantle. Detailed stable and radiogenic isotopic analyses of the mineralization zones are required to address this question.  相似文献   

7.
《Gondwana Research》2011,19(4):583-595
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced ∼ 600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at ∼ 730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt (∼ 810–780 Ma and ∼ 730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma.  相似文献   

8.
The Emizözü shear zone is the west–northwest-trending ductile shear zone within the A?açören granitoid in central Turkey. Deformation that affected the granitoid along the Emizözü shear zone resulted in mylonites with mylonitic foliation and stretching lineation. The textural features of the deformed minerals suggest that mylonitization occurred under conditions of upper greenschist facies. The shear indicators, including asymmetric porphyroclasts, oblique foliation, and shear bands, suggest a down-dip (top-to-the-southwest) displacement. The orientation of stretching lineation, as well as kinematic indicators, indicates the extensional character of the Emizözü shear zone. Although it is not precisely dated, the available age constraints suggest that the zone formed at 78–71 Ma. According to field and micro-structural data, the A?açören granitoid was most likely emplaced during a regional deformation in central Turkey, and synchronously or shortly after was overprinted by the extensional Emizözü shear zone. The zone can also be correlated with the earlier stage development of the Tuzgölü basin in central Turkey.  相似文献   

9.
The newly discovered Chaqupacha Mississippi Valley-type (MVT) Pb–Zn deposit in central Tibet has been found to be helpful for understanding MVT ore formation relative to tectonic evolution of a foreland fold and thrust belt. The deposit lies in the Tuotuohe area of the western Fenghuo Shan-Nangqian fold and thrust belt of the India–Asia continental collision zone. It contains NNW-striking and folded Late Permian strata including an upper clastic unit and an underlying limestone unit. The strata overlie late Oligocene clastic rocks through a south-dipping reverse fault that is associated with regional northward thrusting during the Paleogene. The Late Permian and late Oligocene strata are unconformably overlain by flat-lying early Miocene marl and mudstone of the Wudaoliang Formation. Lead and zinc ores are mainly hosted by pre-ore dissolution and collapse breccias in the Late Permian limestone. The style of mineralization is epigenetic, as shown by replacement of the pre-ore dissolution breccia matrix and open-space-fill by galena, sphalerite, calcite, and minor barite and pyrite. δ34S values of the main sulfide galena range from − 27.5‰ to + 12.6‰. These features, together with the lack of magmatic activity during the mineralization, suggest that Chaqupacha is an MVT deposit. Subordinate mineralization is also present in the early Miocene Wudaoliang Formation marl and the paleokarst breccia which contains matrix compositionally equivalent to strata of the Wudaoliang Formation. The mineralization shares similar mineral associations and textures with the pre-ore dissolution breccia-hosted mineralization. Thus, the Pb and Zn mineralization in the entire deposit probably resulted from the same mineralizing event, which is younger than the youngest ore-hosting rocks (i.e., the early Miocene Wudaoliang Formation). Considering that thrusting in the Tuotuohe area had ceased prior to deposition of the Wudaoliang Formation host rocks, the mineralization at Chaqupacha post-dated the regional deformation. The Chaqupacha deposit thus provides a good example of MVT mineralization in a foreland fold and thrust belt that post-dates regional thrusting.  相似文献   

10.
This paper presents new ID-TIMS U–Pb zircon and titanite ages from the El-Sibai gneiss complex in the Eastern Desert of Egypt. The zircon data support previous studies, indicating that the protoliths of the gneissic (oldest) units in the area were emplaced during the East African orogeny, and do not represent an older pre-Neoproterozoic, reworked cratonic basement. The crystallization ages of three compositionally distinct orthogneiss protoliths are c. 685, 682 and 679 Ma, respectively. A U–Pb titanite age from one orthogneiss overlaps with the protolith age, indicating that the gneisses did not undergo post-magmatic high-temperature metamorphism. The gneissic textures of the rocks are therefore interpreted to reflect syn-emplacement deformation. This, and evidence for static amphibolite facies metamorphism in country-rock metavolcanics, lead us to conclude that the gneisses of El-Sibai do not represent an exhumed middle crustal gneiss dome, but are part of the island arc affined allochthon into which they were emplaced synchronously with NW-ward nappe translation. We also report ages from rocks cross-cutting the gneisses and the surrounding island arc affined assemblages that yield the hitherto youngest robust pre-Cretaceous intrusive ages in the Eastern Desert. The dated rocks are an anorthosite and a cross-cutting syenogranite giving ages of c. 541 and 540 Ma, respectively. We consider this late magmatic pulse to be anorogenic, most likely reflecting a separate extensional event involving asthenospheric upwelling and decompression melting of the mantle.  相似文献   

11.
The Teggiolo zone is the sedimentary cover of the Antigorio nappe, one of the lowest tectonic units of the Penninic Central Alps. Detailed mapping, stratigraphic and structural analyses, and comparisons with less metamorphic series in several well-studied domains of the Alps, provide a new stratigraphic interpretation. The Teggiolo zone is comprised of several sedimentary cycles, separated by erosive surfaces and large stratigraphic gaps, which cover the time span from Triassic to Eocene. At Mid-Jurassic times it appears as an uplifted, partially emergent block, marking the southern limit of the main Helvetic basin (the Limiting South-Helvetic Rise LSHR). The main mass of the Teggiolo calcschists, whose base truncates the Triassic–Jurassic cycles and can erode the Antigorio basement, consists of fine-grained clastic sediments analogous to the deep-water flyschoid deposits of Late Cretaceous to Eocene age in the North-Penninic (or Valais s.l.) basins. Thus the Antigorio-Teggiolo domain occupies a crucial paleogeographic position, on the boundary between the Helvetic and Penninic realms: from Triassic to Early Cretaceous its affinity is with the Helvetic; at the end of Cretaceous it is incorporated into the North-Penninic basins. An unexpected result is the discovery of the important role played by complex formations of wildflysch type at the top of the Teggiolo zone. They contain blocks of various sizes. According to their nature, three different associations are distinguished that have specific vertical and lateral distributions. These blocks give clues to the existence of territories that have disappeared from the present-day level of observation and impose constraints on the kinematics of early folding and embryonic nappe emplacement. Tectonics produced several phases of superimposed folds and schistosities, more in the metasediments than in the gneissic basement. Older deformations that predate the amplification of the frontal hinge of the nappe generated the dominant schistosity and the km-wide Vanzèla isoclinal fold.  相似文献   

12.
Spinels, Fe–Ti oxide minerals, apatites, and carbonates hosted in ophiolitic serpentinites and metagabbros of Gabal Garf (southern ED) and Wadi Hammariya (central ED) of Egypt are discussed. Microscopic and electron probe studies on these minerals are made to evaluate their textural and compositional variations. Alteration of chromites led to form ferritchromite and magnetite; rutile–magnetite intergrowths and martite are common in serpentinites. Fine trillis exsolution of ilmenite–magnetite and ilmenite–hematite and intergrowth of rutile–magnetite and ilmenite–sphene are recorded. Composite intergrowth grains of titanomagnetite–ilmenite trellis lamellae are common in metagabbros. The formation of ilmenite trellis and lamellae in magnetite and titanomagnetite indicate an oxidation process due to excess of oxygen contained in titanomagnetite; trapped and external oxidizing agents. This indicates the high P H2O and oxygen fugacity of the parental magma. The sulfides minerals include pyrrhotite, pyrite and chalcopyrite. Based on the chemical characteristics, the Fe–Ti oxide from the ophiolitic metagabbros in both areas corresponds to ilmenite. The patites from the metagabbros are identified as fluor-apatite. Carbonates are represented by dolomites in serpentinites and calcite in metagabbros. Spinel crystals in serpentinites are homogenous or zoned with unaltered cores of Al-spinel to ferritchromit and Cr-magnetite toward the altered rims. Compared to cores, the metamorphic rims are enriched in Cr# (0.87–1.00 vs. 0.83–0.86 for rims and cores, respectively) and impoverished in Mg# (0.26–0.48 vs. 0.56–0.67) due to Mg–Fe and Al (Cr)–Fe3+ exchange with the surrounding silicates during regional metamorphism rather than serpentinization process. The Fe–Ti oxides have been formed under temperature of ~800 °C for ilmenite. Al-spinels equilibrated below 500–550 °C, while the altered spinel rims correspond to metamorphism around 500–600 °C. Geochemical evidence of the podiform Al-spinels suggest a greenschist up to lower amphibolite facies metamorphism (at 500–600 °C), which is isofacial with the host rocks. Al-spinel cores do not appear to have re-equilibrated completely with the metamorphic spinel rims and surrounding silicates, suggesting relic magmatic composition unaffected by metamorphism. The composition of Al-spinel grains suggest an ophiolitic origin and derivation by crystallization of boninitic magma that belonging to a supra-subduction setting could form either in forearcs during an incipient stage of subduction initiation or in back-arc basins.  相似文献   

13.
《International Geology Review》2012,54(14):1825-1842
The Longmala and Mengya’a deposits are two representative skarn Pb–Zn deposits of the Nyainqêntanglha Pb–Zn–(Cu–Mo–Ag) polymetallic belt in the Gangdese region, Tibet, China. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating of the mineralization-related biotite monzogranite from the Longmala deposit yielded a weighted mean age of 55.7 Ma, which can be interpreted as the emplacement age of the pluton. Re–Os dating of three molybdenite samples from the Longmala deposit yielded model ages of 51.8–54.3 Ma, with a weighted mean age of 53.3 Ma, which is interpreted as the mineralization age of the deposit and overlaps the age of the causative intrusion. The Re–Os dating of four molybdenite samples from the Mengya’a deposit yielded model ages of 60.4–65.8 Ma, with a weighted mean age of 63.6 Ma, which represents the mineralization age of this deposit. Our new precise age data for these two deposits are consistent with the existing ages of ca. 65–51 Ma for other skarn polymetallic deposits in the Nyainqêntanglha metallogenic belt. In addition, these new age data, combined with existing information on the geological evolution history of the Lhasa terrane, indicate that the belt of skarn deposits is closely related to initial collision between India and the Asian continents.  相似文献   

14.
The radiometric responses of the Gebel (G., which means mountain in Arabic) Meatiq area display the overall high radiation of the high grade metamorphic Um Ba’anib granite gneiss, metasediments, as well as Arieki adamellite rocks. Whereas, the low grade metamorphic ophiolitic nappes country reveal the lowest radiometric response. The eU, eTh, and K contents tend to increase with the youthfulness of the plutons with a maximum amounts in the more alkali varieties, e.g., Arieki adamellite (580 Ma), then the high grade metamorphic rocks of the younger Meatiqian orogeny (626?±?2 Ma). Also, these rocks reveal that the major radiometric anomaly with exposure rates ≈139 nGy/h, more than double of the global terrestrial values. While, the low grade metamorphic ophiolitic rocks reveal the lowest average exposure rates ≈46.8 nGy/h. The areas of high gamma ray values of F-parameter of Efimov (K × U/Th), ternary composite map, K map, K/eTh, and K/eU ratios maps are related to K enrichment conditions during formation (diagenesis) or deformation of the high grade metamorphic rocks and the Arieki adamellite intrusion. From the geochemical point of view, these areas are associated with rocks that are characterized by high-K calc-alkaline, calc-alkaline affinity, and enriched in REE.  相似文献   

15.
Geological, petrological and structural observations were obtained along a 30-km-long traverse across a segment of the Valle Fértil shear zone, central-western Argentina. On a regional scale, the shear zone appears as numerous discontinues belts over 25 km in width and is approximately 140 km in length, extended on the western section of the Sierras Valle Fértil – La Huerta mountain range. The steeply dipping shear zone with a vertical mylonitic lineation is composed of amphibolite facies ribbon mylonites and amphibolite to greenschist facies ultramylonites derived from Early Ordovician plutonic and metasedimentary parent rocks. Locally, syn-kinematic retrogression of mylonites formed greenschist facies phyllonites. During the later stages of deformation, unstrained parent rocks, mylonites, ultramylonites and phyllonites were affected by pervasive cataclasis under low greenschist facies conditions associated with localized faulting. One new 40Ar/39Ar age on biotite and published 40Ar/39Ar ages on amphibole in the shear zone yield an average cooling rate of 6.2 °C/Ma for a time period that crosses the Silurian–Devonian boundary. Since in metasedimentary rocks the youngest zircon's rims dated at 465 Ma marks the beginning of cooling, nearly continuous uplift of rocks within the shear zone occurred over a minimum time span of 55 Ma. During the period of active deformation, dip-slip movement can explain uplift of several kilometers of the Early Ordovician arc crust. The Valle Fértil shear zone, which was formed near above the inferred suture zone between the Famatinian arc and Cuyania microcontinent, is a major structural boundary nucleated within the Early Ordovician crust. The simplest geodynamic model to explain the evolution of the Valle Fértil shear zone involves the collision of the composite Cuyania/Precodillera microcontinent against the Famatinian arc.  相似文献   

16.
In the Variscan French Massif Central and Armorican Massif, the tectonic significance of a widespread NW–SE-trending stretching lineation, coeval with medium pressure–medium temperature metamorphism, is an open question. Based on a structural analysis in the southern part of the Massif Central, we show that this top-to-the-NW shearing is a deformation event, referred to as D2, which followed a D1 top-to-the-south shearing Devonian phase, and was itself re-deformed by a Late D3 Visean–Serpukhovian southward-thrusting event. We date the D2 phase at 360 Ma (Famennian–Tournaisian boundary). In the Armorican Massif, D2 is the “Bretonian phase” recorded in the metamorphic series and sedimentary basins. Geodynamically, D2 is related to a general northwestward shearing during the Laurussia–Gondwana collision, which occurred after the closure of the Rheic Ocean, as indicated by the emplacement of the Lizard ophiolitic nappe in Britain. The left-lateral Nort-sur-Erdre fault accommodated the absence of ductile shearing in Central Armorica.  相似文献   

17.
The genus Assilina is a taxon within the Nummulitacea that appeared early in the Ypresian (Early Eocene) and continued until the end of the Lutetian (Middle Eocene). Thus, this taxon could be useful for the chronostratigraphy of this time interval. Lower Eocene rocks in southern Galala, Egypt are exposed at Bir Dakhl. This section includes marl sediments with debris flow shallow-marine facies deposits laid down during early Eocene times and includes fossils of large foraminifera: Assilina placentula Deshayes, 1838 and Nummulites burdigalensis de la Harpe, 1926. These are systematically treated, described and illustrated. Nummulites burdigalensis belongs to the N. burdigalensis group, and Assilina placentula belongs to the group of Assilina exponens. This assumption is based on qualitative morphology and quantitative measurements. Both species, together with Operculina libyca Schwager, 1883, enable the assignment of the Bir Dakhl (D5-40 Section) to the Early Eocene, Ypresian (SBZ10 of Serra- Kiel et al., 1998) supporting an earlier opinion that Assilina placentula belongs to that zone in the calibrated larger foraminiferal biostratigraphic zonation.  相似文献   

18.
ABSTRACT

The Late Mesozoic tectonics strongly reworked the tectonic framework of East Asia. In the South China Block (SCB), the major Late Mesozoic phenomena are featured by numerous magmatic activities, (half-) graben basins opening, and abundant ore deposits formation. The intrinsic relationships of these phenomena with the tectonic regime are still hotly debated, partly due to the lack of structural data. To advance the understanding of these issues, we conducted a detailed structural analysis including field and microscopic observations as well as an Anisotropy of Magnetic Susceptibility (AMS) investigation in the Laoshan’ao shear zone (LSA), which is the northern branch of the major Chaling–Chenzhou–Linwu Fault (CCLF) in the SCB. The new data enable us to reach the following conclusions: the evolution of the LSA can be divided into three deformation phases. D1 is a NW–SE-stretching event featured by the SE-dipping normal fault with a top-to-the-SE shear sense, coeval with the emplacement of the 154 Ma Batuan syn-tectonic pluton that leads to the development of the Xiangdong tungsten deposit and the opening of the Cretaceous Chaling basin; D2 is a NE–SW-striking dextral strike–slip event that dislocated the ore veins formed during the D1 event; D3 is a NW-directed thrusting event that cross-cut the previous gneissic foliation. D1 is the major event of the LSA shear zone, interpreted as the reactivation of the CCLF in response to the Late Mesozoic tectonics in the SCB, and indicates a NW-SE extensional regime since the Late Jurassic in the study area. This study also provides an example for an ore-forming process controlled by both the hydrothermal fluid coming from a syn-tectonic granite and the accommodation of tension gashes opened by the regional extensional event.  相似文献   

19.
The Basil Cu–Co deposit, Harts Range, central Australia, is hosted by the Riddock Amphibolite, a sequence that has been metamorphosed at upper-amphibolite- to granulite-facies conditions at 480–460 Ma (Larapinta Event), and subsequently reworked at amphibolite-facies conditions (450–300 Ma). As a result, many of the primary mineralization textures and other features that could characterise ore genesis have been obliterated. However, preserved textures and mineral relationships in the mineralized zone, allow some constraints to be placed on the genetic history of the deposit using mineralogical, petrographic and geochemical studies of host rocks and sulphides.Results of this study permit at least two genetic models to be ruled out. Firstly, whole rock geochemistry and garnet compositions suggest that the deposit is not a skarn system. Secondly, the lack of any significant Ni-signature, and the presence of abundant zircons in the host amphibolite (indicating that not all host rocks are mafic in composition and/or magmatic in character), make an orthomagmatic Ni–Cu–(PGE) system unlikely. Alternatively, Basil is assigned to a volcanic-hosted massive sulphide (VHMS)-style of mineralization, formed on the seafloor, within basaltic and sedimentary host rocks, typical of deposits occurring in such settings. The lack of a recognisable hydrothermal alteration zone is consistent with either destruction of the alteration zone during metamorphism or detachment of the ore from alteration during later deformation.The occurrence of sulphide inclusions within garnet and amphibole indicates that the sulphides must be syn-metamorphic or earlier. Partitioning of trace elements between pyrite and co-existing pyrrhotite suggests that (re)crystallization occurred under equilibrium conditions. The composition of sphalerite coexisting with pyrite and pyrrhotite indicates crystallization at pressures of at least 10 kbar, consistent with peak metamorphism during the Early Ordovician Larapinta Event. Zr-in-titanite geothermometry indicates peak temperatures of 730–745 °C.  相似文献   

20.
Mumbai City, situated on the western Indian coast, is well known for exposures of late-stage Deccan pillow basalts and spilites, pyroclastic rocks, rhyolite lavas, and trachyte intrusions. These rock units, and a little-studied sequence of tholeiitic flows and dykes in the eastern part of Mumbai City, constitute the west-dipping limb of a regional tectonic structure called the Panvel flexure. Here we present field, petrographic, major and trace element and Sr–Nd isotopic data on these tholeiitic flows and dykes, best exposed in the Ghatkopar–Powai area. The flows closely resemble the Mahabaleshwar Formation of the thick Western Ghats sequence to the east, in Sr–Nd isotopic ratios and multielement patterns, but have other geochemical characteristics (e.g., incompatible trace element ratios) unlike the Mahabaleshwar or any other Formation. The flows may have originated from a nearby eruptive center, possibly offshore of Mumbai. Two dykes resemble the Ambenali Formation of the Western Ghats in all geochemical characteristics, though they may not represent feeders of the Ambenali Formation lavas. Most dykes are distinct from any of the Western Ghats stratigraphic units. Some show partial (e.g., Sr–Nd isotopic) similarities to the Mahabaleshwar Formation, and these include several dykes with unusual, concave-downward REE patterns suggesting residual amphibole and thus a lithospheric source. The flows and dykes are inferred to have undergone little or no contamination, by lower continental crust. Most dykes are almost vertical, suggesting emplacement after the formation of the Panvel flexure, and indicate considerable east–west lithospheric extension during this late but magmatically vigorous stage of Deccan volcanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号