首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical modelling ofSH wave seismograms in media whose material properties are prescribed by a random distribution of many perfectly elastic cavities and by intrinsic absorption of seismic energy (anelasticity) demonstrates that the main characteristics of the coda waves, namely amplitude decay and duration, are well described by singly scattered waves in anelastic media rather than by multiply scattered waves in either elastic or anelastic media. We use the Boundary Integral scheme developed byBenites et al. (1992) to compute the complete wave field and measure the values of the direct waveQ and coda wavesQ in a wide range of frequencies, determining the spatial decay of the direct wave log-amplitude relation and the temporal decay of the coda envelope, respectively. The effects of both intrinsic absorption and pure scattering on the overall attenuation can be quantified separately by computing theQ values for corresponding models with (anelastic) and without (elastic) absorption. For the models considered in this study, the values of codaQ –1 in anelastic media are in good agreement with the sum of the corresponding scatteringQ –1 and intrinsicQ –1 values, as established by the single-scattering model ofAki andChouet (1975). Also, for the same random model with intrinsic absorption it appears that the singly scattered waves propagate without significant loss of energy as compared with the multiply scattered waves, which are strongly affected by absorption, suggesting its dominant role in the attenuation of coda waves.  相似文献   

2.
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to 30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the codaQ measurements coincide at 1.5 Hz (Q c =100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Q c =525) and Long Valley (Q c =2100) with the Salinian midway between (Q c =900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency codaQ measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of codaQ measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan codaQ measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the codaQ measurement is currently a matter of controversy.  相似文献   

3.
TheLg wave consists of the superposition ofS waves supercritically reflected, and thus trapped, in the crust. This mode of propagation explains the strong amplitude of this phase and the large distance range in which it is observed. The numerical simulation leads to successful comparison between observed seismograms in stable continental areas and synthetics computed for simple standard crustal models. In regions with strong lateral variations, the influence of large-scale heterogeneities on theLg amplitude is not yet clearly established in terms of the geometrical characteristics of the crustal structure.The analysis of the decay of amplitude ofLg with epicentral distance allows the evaluation of the quality factor ofS waves in the crust. The results obtained show the same trends as codaQ: a clear correlation with the tectonic activity of the region considered, both for the value ofQ at 1 Hz and for its frequency dependence, suggesting that scattering plays a prominent part among the processes that cause the attenuation.The coda ofLg is made up of scatteredS waves. The study of the spatial attenuation of the coda indicated that a large part of the arrivals that compose the coda propagate asLg. The relative amplitude of the coda is larger at sites located on sediments because, in these conditions, a part ofLg energy can be converted locally into lower order surface modes.  相似文献   

4.
The physical implication of coda amplitude ratio is discussed in term of energy ratio. The digitized data recorded at the station of Beijing Telemetered Seismograph Network between 1989 and 1990 are used to calculate amplitude ratios of coda to direct S wave, and energy ratios. The spectral energy ratios are used to estimate the coda Q and mean free path l in the Beijing area, as well as the two quality factors Q i and Q S separately due to intrinsic absorption and scattering attenuation. The decay of seismic waves in their propagation seems mainly resulted from the intrinsic absorption in Beijing region. The temporal variations of amplitude ratio and energy ratio at Changli station during the above two years are inspected; some of them largely depart from their mean value. It may reflect the seismogenic process, but using the data lasting longer time with more case histories needs further study. This study is sponsored by the Key Project of State Science and Technology of China, No. 96-918.  相似文献   

5.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

6.
The attenuation of coda waves in the earth’s crust in southwest (SW) Anatolia is estimated by using the coda wave method, which is based on the decrease of coda wave amplitude in time and distance. A total of 159 earthquakes were recorded between 1997 and 2010 by 11 stations belonging to the KOERI array. The coda quality factor Q c is determined from the properties of scattered coda waves in a heterogeneous medium. Firstly, the quality factor Q 0 (the value of Q c at 1 Hz.) and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves for frequencies of 1.5, 3.0, 6.0, 8.0, 12 and 20 Hz. Secondly, the attenuation coefficients (δ) are estimated. The shape of the curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The average Q c values vary from 110 ± 15 to 1,436 ± 202 for the frequencies above. The Q 0 and η values vary from 63 ± 7 to 95 ± 10 and from 0.87 ± 0.03 to 1.04 ± 0.09, respectively, for SW Anatolia. In this region, the average coda Qf relation is described by Q c = (78 ± 9)f 0.98±0.07 and δ = 0.012 km?1. The low Q 0 and high η are consistent with a region characterized by high tectonic activity. The Q c values were correlated with the tectonic pattern in SW Anatolia.  相似文献   

7.
The quality factors of coda and shear waves have been estimated for the SE Sabalan Mountain, geothermal region in northwestern Iran. We have analyzed 65 local earthquakes with magnitude of 2.8 to 6.1 and 2.8 to 5 for shear and coda wave quality factor estimation, respectively. These events were recorded on five stations installed by Building and Housing Research Center Network. Coda normalization and Spectral decay methods have been used to estimate the frequency dependence attenuation relation for shear wave, and single back-scattering method for coda waves. We have observed that the coda normalization method has supplied significantly higher Q S values as compared to the spectral method. The results show that, in general, Q values are significantly smaller for the entire frequency range as compared to tectonically active areas and are close to the values for volcanic areas.  相似文献   

8.
Coda site amplification factors are used to eliminate the site effect from records of three circum-PacificT phases recorded by the Hawaiian Volcano Observatory (HVO) network on the island of Hawaii. ObservedT-phase amplitudes across the island generally decrease with increasing distance from the conversion point where acoustic waves in the SOFAR channel become seismic waves propagating through the crust. However, the decay of the observedT-phase signal across the island is not regular in regions of dense station coverage, in particular, the Kilauea caldera region. We divide the maximum observedT-phase amplitudes at a given station by the coda site amplification factor obtained for the same station and frequency band (3.0Hz); the distribution of these amplitudes reveals a smooth pattern over the entire island. The distance over which the site effect-correctedT-phase amplitude decreases by one-half, combined with the apparent velocity of propagation ofT phases across the island, allows for an approximate determination of near-surfaceQ over much of the island of Hawaii. We found a region of lowQ in the Kilauea summit area (Q≈30) and east rift zone (Q≈60) with considerably higherQ in the Kaoiki and northern portions of the island (Q≈150 to 200). The lowQ values obtained in the Kilauea summit region and east rift zone are significantly lower than estimates of codaQ in the same region, suggestingT phases may be sampling the earth's near-surface properties.  相似文献   

9.
—Earthquake seismograms recorded by instruments in deep boreholes have low levels of background noise and wide signal bandwidth. They have been used to extend our knowledge of crustal attenuation both in the near-surface and at seismogenic depths. Site effects are of major importance to seismic hazard estimation, and the comparison of surface, shallow and deep recordings allows direct determination of the attenuation in the near-surface. All studies to date have found that Q is very low in the near-surface (~ 10 in the upper 100 m), and increases rapidly with depth. Unlike site amplification, attenuation at shallow depths exhibits little dependence on rock-type. These observations are consistent with the opening of fractures under decreasing lithostatic pressure being the principal cause of the severe near-surface attenuation. Seismograms recorded in deep boreholes are relatively unaffected by near-surface effects, and thus can be used to measure crustal attenuation to higher frequencies (≥ 100 Hz) than surface recordings. Studies using both direct and coda waves recorded at over 2 km depth find Q to be high (~ 1000) at seismogenic depths in California, increasing only weakly with frequency between 10 and 100 Hz. Intrinsic attenuation appears to be the dominant mechanism. These observations contrast with those of the rapidly increasing Q with frequency determined from surface studies in the frequency range 1 to 10 Hz. Further work is necessary to constrain the factors responsible for this apparent change in the frequency dependence of Q, but it is clearly unwise to extrapolate Q estimates made below about 10 Hz to higher frequencies.  相似文献   

10.
When the quality factorQ is taken into account in attenuation studies, it is necessary to know the relative losses of wave energy due to scattering and to anelastic absorption. The coda is the most important phenomenon now known which is related to elastic scattering of seismic waves. Utilizing coda, this study presents relationships which give theQ factors of the medium around the recording station and discriminate between attenuations arising from elastic scattering (under the assumption of isotropic scattering) and those arising from anelastic absorption. This work proposes a technique for separately determining the attenuation due to isotropic scattering and that due to absorption from the observed envelope of coda waves.  相似文献   

11.
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda wavesRg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1–10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constantQ), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedoB 0=0.8–0.9 and a scattering extinction length of 17–32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. TheRg results indicate thatQ increases with depth in the upper kilometer or two of the crust, at least in New England. CodaQ appears to be equivalent to intrinsic (anelastic)Q and indicates that thisQ increases with frequency asQ=Q o f n , wheren is in the range of 0.2–0.9. The intrinsic attenuation in the crust can be explained by a high constantQ (500Q o2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence (QQ o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms.Q is low near the surface and high in the body of the crust.  相似文献   

12.
The attenuation properties of the crust in the Chamoli region of Himalaya have been examined by estimating the frequency-dependent relationships of quality factors for P waves (Qα) and for S waves (Qβ) in the frequency range 1.5–24 Hz. The extended coda normalization method has been applied on the waveforms of 25 aftershocks of the 1999 Chamoli earthquake (M 6.4) recorded at five stations. The average value of Qα is found to be varied from 68 at 1.5 Hz to 588 at 24 Hz while it varies from 126 at 1.5 Hz to 868 at 24 Hz for Qβ. The estimated frequency-dependent relations for quality factors are Qα = (44 ± 1)f(0.82±.04) and Qβ = (87 ± 3)f(0.71±.03). The rate of increase of Q(f) for P and S waves in the Chamoli region is comparable with the other regions of the world. The ratio Qβ/Qα is greater than one in the region which along with the frequency dependence of quality factors indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of attenuation relation for S wave estimated here (Qβ = 87f0.71) with that of coda waves (Qc = 30f1.21) obtained by Mandal et al. (2001) for the same region shows that Qc > Qβ for higher frequencies (>8 Hz) in the region. This indicates a possible high frequency coda enrichment which suggests that the scattering attenuation significantly influences the attenuation of S waves at frequencies >8 Hz. This observation may be further investigated using multiple scattering models. The attenuation relations for quality factors obtained here may be used for the estimation of source parameters and near-source simulation of earthquake ground motion of the earthquakes, which in turn are required for the assessment of seismic hazard in the region.  相似文献   

13.
3-D S-waveQ structure in Jiashi earthquake region is inverted based on the attenuation of seismic waves recorded from earthquakes in this region in 1998 by the Research Center of Exploration Geophysics (RCEG), CSB, and a rough configuration of deep crustal faults in the earthquake region is presented. First, amplitude spectra of S-waves are extracted from 450 carefully-chosen earthquake records, called observed amplitude spectra. Then, after instrumental and site effect correction, theoretical amplitude spectra are made to fit observed amplitude spectra with nonlinear damped least-squares method to get the observed travel time overQ, provided that earthquake sources conform to Brune’s disk dislocation model. Finally, by 3-D ray tracing method, theoretical travel time overQ is made to fit observed travel time overQ with nonlinear damped least-squares method. In the course of fitting, the velocity model, which is obtained by 3-D travel time tomography, remains unchanged, while onlyQ model is modified. When fitting came to the given accuracy, the ultimateQ model is obtained. The result shows that an NE-trending lowQ zone exists at the depths of 10–18 km, and an NW-trending lowQ zone exists at the depths of 12–18 km. These roughly coincide with the NE-trending and the NW-trending low velocity zones revealed by other scientists. The difference is that the lowQ zones have a wider range than the low velocity zones. Foundation item: Joint Seismological Science Foundation of China (957-07-414) and State Key Basic Research Development and Programming Project (95-13-02-02). Contribution No. RCEG200105, Research Center of Exploration Geophysics, China Seismological Bureau.  相似文献   

14.
Estimation of seismic wave attenuation in the shallow crust in terms of coda wave Q structure previously investigated in the vicinity of Cairo Metropolitan Area was improved using seismograms of local earthquakes recorded by the Egyptian National Seismic Network. The seismic wave attenuation was measured from the time decay of coda wave amplitudes on narrow bandpass filtered seismograms based on the single scattering theory. The frequency bands of interest are from 1.5 to 18 Hz. In general, the values obtained for various events recorded at El-Fayoum and Wadi Hagul stations are very similar for all frequency bands. A regional attenuation law Q c = 85.66 f 0.79 was obtained.  相似文献   

15.
Digital recordings of three component microearthquake codas from shallow seismic events in the volcanic region of Campi Flegrei — Southern Italy — were used with an automatic technique to calculate the attenuation factorQ c (codaQ) in the hypothesis of singleS toS backscattering.Results show the same value ofQ for each of the three components. This result is interpreted as due to isotropicS wave radiation pattern.A check of the coda method was performed using a single station method based on simple assumptions on the direct SH wave spectrum. Single stationQ was averaged over the stations and over the earthquakes. Results show that the two methods lead to comparable results.A frequency dependence quite different from that evaluated in active tectonic regions was found for coda attenuation, comparable to other volcanic areas throughout the world. This is interpreted as due to the presence of magma that affects anelasticity and scattering.  相似文献   

16.
杨明芝 《地震学报》1990,12(2):130-139
本文采用三层地壳介质模型,讨论了地方台网记录的小近震三分向地震图S波段振幅包络形状问题.认为S波包络的规则形状主要是由于强反射界面上的一次和多次全反射波形成的.分析了地壳分层结构,震源辐射特性,介质衰减对n次全反射波振幅的影响.在此基础上,从理论上给出了从直达S波到尾波之间的S波段记录部分振幅包络形状函数和S波最大振幅.利用包络形状函数方法测定了宁夏地区介质品质因素Q值.   相似文献   

17.
This article summarizes work on multiple scattering based on models of media with randomly distributed scatterers. The scatterers are isotropic and statistically uniform. Measuring distance in terms of mean-free pathL s and time in terms of the mean-free timesL s/V, whereV is the velocity of scattered waves, we have more convenient dimensionless distance and time. It can be shown that after the dimensionless time equals 0.65 energy contributed from multiple scattering becomes predominant. Thus the later coda reflects the effect of multiple scattering rather than single scattering. Treating the seismic record, including starting and tail parts, as a whole, the diffusion theory predicts that at a dense distribution of scatterers and a small distance between source and receiver, codas reflect mainly intrinsicQ i. Of course, this conclusion is coincident with the presumption of the diffusion theory,Q s>Q i. However, from a new integral equation of multiple scattering, which deals with the scattered waves and primary waves separately, the conclusion is similar but clearer. This article quotes the new expression for coda energy in two-dimensional space. It shows that if the receiver is close to the source, the coda decay reflects only intrinsicQ i, then as the distance increases, effects of scatteringQ s, are involved in the decay feature. The theoretical plots of coda decay show that it seems in most cases in the earthQ i should not be smaller than one tenth ofQ s.Project Sponsored by the Joint Earthquake Science Foundation of China.  相似文献   

18.
利用震源距23 km范围内观测的2000年姚安MS65地震余震记录,计算了震源及近邻区域的尾波规一直达S波在频率15~20 Hz之间的傅里叶谱振幅.结果显示谱振幅随震源距增大而增大, 在对谱振幅进行了震源辐射方向性校正之后, 才出现谱振幅随震源距衰减的现象.由此获得了震源及近邻区域S波的Q(f)值,可表示为QS(f)=89f098其值比由尾波得出的姚安地区的平均QC(f)值低得多,表明了震源破裂带的强烈非均匀性对QS(f)的重大影响.  相似文献   

19.
利用尾波测定四川部分地区的介质品质因子   总被引:1,自引:0,他引:1       下载免费PDF全文
张耀国  杨桂珍 《地震学报》1983,5(3):304-312
按照安艺敬一(Aki)提出的地震尾波理论,利用同一地震的多台记录,以同一地震有一确定的地震矩为基础建立方程,并以文献[8]所得出的品质因子数为基准,测定了四川部份地区地壳浅部的介质品质因子.结果表明,地震尾波的衰减存在着明显的方位依赖.根据1971年至1975年间几次地震所给出 Q 值来看,四川部份地区大致可以分为三个不同的 Q 值区,值得注意的是:低 Q 区内曾发生过7.1级强震.   相似文献   

20.
Three types of seismic data recorded near Coalinga, California were analyzed to study the behavior of scattered waves: 1) aftershocks of the May 2, 1983 earthquake, recorded on verticalcomponent seismometers deployed by the USGS; 2) regional refraction profiles using large explosive sources recorded on essentially the same arrays above; 3) three common-midpoint (CMP) reflection surveys recorded with vibrator sources over the same area. Records from each data set were bandpassed filtered into 5 Hz wide passbands (over the range of 1–25 Hz), corrected for geometric spreading, and fit with an exponential model of amplitude decay. Decay rates were expressed in terms of inverse codaQ (Q c –1 ).Q c –1 values for earthquake and refraction data are generally comparable and show a slight decrease with increasing frequency. Decay rates for different source types recorded on proximate receivers show similar results, with one notable exception. One set of aftershocks shows an increase ofQ c –1 with frequency.Where the amplitude decay rates of surface and buried sources are similar, the coda decay results are consistent with other studies suggesting the importance of upper crustal scattering in the formation of coda. Differences in the variation ofQ c –1 with frequency can be correlated with differences in geologic structure near the source region, as revealed by CMP-stacked reflection data. A more detailed assessment of effects such as the depth dependence of scattered contributions to the coda and the role of intrinsic attenuation requires precise control of source-receiver field geometry and the study of synthetic seismic data calculated for velocity models developed from CMP reflection data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号