首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and seasonal variabilities of submesoscale currents in the northeastern South China Sea are investigated by employing a numerical simulation with a horizontal resolution of 1km. The results suggest that submesoscale currents are widespread in the surface mixed layer mainly due to the mixed layer instabilities and frontogenesis. In horizontal, submesoscale currents are generally more active in the north than those in the south, since that active eddies, especially cyclonic eddies, mainly occur in the northern area. Specifically, submesoscale currents are highly intensified in the east of Dongsha Island and south of Taiwan Island. In temporal sense, submesoscale currents are more active in winter than those in summer, since the mixed layer is thicker and more unstable in the winter. The parameterization developed by Fox-Kemper et al. is examined in terms of vertical velocity, and the results suggest that it could reproduce the vertical velocity if mixed layer instability dominates there. This study improves our understanding of the submesoscale dynamics in the South China Sea.  相似文献   

2.
Submesoscale activity in the upper ocean has received intense studies through simulations and observations in the last decade, but in the eddy-active South China Sea (SCS) the fine-scale dynamical processes of submesoscale behaviors and their potential impacts have not been well understood. This study focuses on the elongated filaments of an eddy field in the northern SCS and investigates submesoscale-enhanced vertical motions and the underlying mechanism using satellite-derived observations and a high-resolution (~500 m) simulation. The satellite images show that the elongated highly productive stripes with a typical lateral scale of ~25 km and associated filaments are frequently observed at the periphery of mesoscale eddies. The diagnostic results based on the 500 m-resolution realistic simulation indicate that these submesoscale filaments are characterized by cross-filament vertical secondary circulations with an increased vertical velocity reaching O(100 m/d) due to submesoscale instabilities. The vertical advections of secondary circulations drive a restratified vertical buoyancy flux along filament zones and induce a vertical heat flux up to 110 W/m2. This result implies a significant submesoscale-enhanced vertical exchange between the ocean surface and interior in the filaments. Frontogenesis that acts to sharpen the lateral buoyancy gradients is detected to be conducive to driving submesoscale instabilities and enhancing secondary circulations through increasing the filament baroclinicity. The further analysis indicates that the filament frontogenesis detected in this study is not only derived from mesoscale straining of the eddy, but also effectively induced by the subsequent submesoscale straining due to ageostrophic convergence. In this context, these submesoscale filaments and associated frontogenetic processes can provide a potential interpretation for the vertical nutrient supply for phytoplankton growth in the high-productive stripes within the mesoscale eddy, as well as enhanced vertical heat transport.  相似文献   

3.
The seasonal cycle of submesoscale flows in the upper ocean is investigated in an idealised model domain analogous to mid-latitude open ocean regions. Submesoscale processes become much stronger as the resolution is increased, though with limited evidence for convergence of the solutions. Frontogenetical processes increase horizontal buoyancy gradients when the mixed layer is shallow in summer, while overturning instabilities weaken the horizontal buoyancy gradients as the mixed layer deepens in winter. The horizontal wavenumber spectral slopes of surface temperature and velocity are steep in summer and then shallow in winter. This is consistent with stronger mixed layer instabilities developing as the mixed layer deepens and energising the submesoscale. The degree of geostrophic balance falls as the resolution is made finer, with evidence for stronger non-linear and high-frequency processes becoming more important as the mixed layer deepens. Ekman buoyancy fluxes can be much stronger than surface cooling and are locally dominant in setting the stratification and the potential vorticity at fronts, particularly in the early winter. Up to 30% of the mixed layer volume in winter has negative potential vorticity and symmetric instability is predicted inside mesoscale eddies as well as in the frontal regions outside of the vortices.  相似文献   

4.
近年来的现场观测和理论研究发现, 次中尺度现象广泛存在于上层海洋, 其产生与锋生作用及混合层斜压不稳定存在密切联系。本文利用高分辨率的数值模拟结果并结合动力学及能量诊断分析, 对黑潮延伸体海域次中尺度过程的季节变化进行了探讨。探讨结果表明, 黑潮延伸体海域次中尺度过程具有冬季最强, 春季和秋季次之, 夏季最弱的显著季节变化特征。基于冬、夏季次中尺度能量源的诊断可以看到, 这些季节变化特征主要与上层海洋的斜压不稳定和锋生作用有关。冬季, 黑潮延伸体海域的中尺度能量较弱, 但次中尺度过程在季节尺度上表现最为活跃, 这主要与混合层斜压不稳定的作用有关; 夏季, 黑潮延伸体海域的混合层较浅, 次中尺度过程较弱, 但中尺度涡旋活跃, 中尺度流场变形引起的锋生作用对夏季次中尺度现象的产生具有重要影响。在次中尺度能量的季节变化方面, 冬季次中尺度过程从中尺度过程汲取能量的速率远高于夏季, 这是冬季次中尺度过程比夏季更为活跃的主要原因。本文研究结果有助于加深对黑潮延伸体海域次中尺度过程季节性变化及其动力机制的理解。  相似文献   

5.
次中尺度过程的水平空间尺度约为0.1~10km, 时间尺度约为1天, 里查森数和罗斯贝数为0(1), 能有效地从中尺度环流中汲取能量向小尺度湍流串级, 并对上层海洋物质的垂向交换有着重要影响。本文基于水平分辨率为~500m的高分辨率ROMS(regional ocean modeling system)数值模拟结果, 采用方差椭圆方法, 评估了黑潮延伸体海域上层海洋次中尺度涡旋的各向异性特征, 并探讨了涡旋各向异性值的大小与次中尺度过程特征参数的相关性。研究结果表明, 黑潮延伸体主轴强流区域的次中尺度涡旋各向异性值明显小于两侧海域, 主轴区域的次中尺度涡旋特征明显强于流轴两侧海域, 各向异性值与次中尺度过程的强弱有着较为显著的负相关关系, 表明次中尺度过程具有较小的各向异性特征(更趋各向同性)。方差椭圆表征了涡与平均流相互作用过程中的能量反馈机制, 较大的各向同性特征意味着动能更趋正向串级。  相似文献   

6.
南海西部风驱离岸急流次中尺度锋面的动力学分析   总被引:1,自引:0,他引:1  
本文利用卫星观测资料和500 m分辨率数值模拟结果,结合理论分析,对南海西部夏季风场驱动的离岸急流海域次中尺度锋面及其不稳定对背景流场的动力学影响进行了研究。卫星观测和模拟结果表明,南海西部(WSCS)存在侧向尺度为O(1-10)km的次中尺度锋面,在地转和非地转运动的共同作用下,次中尺度密度锋面具有一阶Rossby(Ro)和Richardson(Ri)数。锋面诊断结果显示,沿锋面急流方向的风场强迫引起了显著的跨锋面Ekman净输送,有效地在跨锋面方向将表层冷水平流输送至暖水侧,导致海表浮力损失。减弱的垂向层结和增强的水平浮力梯度使得锋面海域出现负Ertel位涡(PV),表明该密度锋面易受次中尺度对称不稳定(SI)的影响。次中尺度锋面不稳定引起的跨锋面次级环流能够显著增强垂向速度,其最大值可达100 m·d-1。能量评估结果表明,次中尺度湍流的两个主要能量源,即地转剪切项(GSP)和垂向浮力通量(BFLUX)在锋面海域显著增强表明在沿锋面急流方向的风场强迫作用下,大尺度地转流的地转剪切动能和锋面有效位能能有效地通过锋面不稳定向次中尺度过程传递。因此,次中尺度锋面及其不稳定有助于增强局地垂向交换和正向串级地转能量,可以为夏季WSCS高叶绿素浓度的相干结构和锋面地转能量的正向传递提供新的动力解释。  相似文献   

7.
Submesoscale processes in marginal seas usually have complex generating mechanisms, highly dependent on the local background flow and forcing. This numerical study investigates the spatial and seasonal differences of submesoscale activities in the upper ocean of the South China Sea (SCS) and the different dynamical regimes for sub-regions. The spatial and seasonal variations of vertical vorticity, horizontal convergence, lateral buoyancy gradient, and strain rate are analyzed to compare the submesoscale phenomenon within four sub-regions, the northern region near the Luzon Strait (R1), the middle ocean basin (R2), the western SCS (R3), and the southern SCS (R4). The results suggest that the SCS submesoscale processes are highly heterogeneous in space, with different seasonalities in each sub-region. The submesoscale activities in the northern sub-regions (R1, R2) are active in winter but weak in summer, while there appears an almost seasonal anti-phase in the western region (R3) compared to R1 and R2. Interestingly, no clear seasonality of submesoscale features is shown in the southern region (R4). Further analysis of Ertel potential vorticity reveals different generating mechanisms of submesoscale processes in different sub-regions. Correlation analyses also show the vertical extent of vertical velocity and the role of monsoon in generating submesoscale activities in the upper ocean of sub-regions. All these results suggest that the sub-regions have different regimes for submesoscale processes, e.g., Kuroshio intrusion (R1), monsoon modulation (R2), frontal effects (R3), topography wakes (R4).  相似文献   

8.
An analysis of mechanisms for submesoscale vertical motion at ocean fronts   总被引:8,自引:1,他引:8  
We analyze model simulations of a wind-forced upper ocean front to understand the generation of near-surface submesoscale, O(1 km), structures with intense vertical motion. The largest vertical velocities are in the downward direction; their maxima are situated at approximately 25 m depth and magnitudes exceed 1 mm/s or 100 m/day. They are correlated with high rates of lateral strain, large relative vorticity and the loss of geostrophic balance. We examine several mechanisms for the formation of submesoscale structure and vertical velocity in the upper ocean. These include: (i) frontogenesis, (ii) frictional effects at fronts, (iii) mixed layer instabilities, (iv) ageostrophic anticyclonic instability, and (v) nonlinear Ekman effects. We assess the role of these mechanisms in generating vertical motion within the nonlinear, three-dimensionally evolving flow field of the nonhydrostatic model. We find that the strong submesoscale down-welling in the model is explained by nonlinear Ekman pumping and is also consistent with the potential vorticity arguments that analogize down-front winds to buoyancy-forcing. Conditions also support the formation of ageostrophic anticyclonic instabilities, but the contribution of these is difficult to assess because the decomposition of the flow into balanced and unbalanced components via semigeostrophic analysis breaks down at O(1) Rossby numbers. Mixed layer instabilities do not dominate the structure, but shear and frontogenesis contribute to the relative vorticity and strain fields that generate ageostrophy.  相似文献   

9.
The unbalanced submesoscale motions and their seasonality in the northern Bay of Bengal(BoB) are investigated using outputs of the high resolution regional oceanic modeling system. Submesoscale motions in the forms of filaments and eddies are present in the upper mixed layer during the whole annual cycle. Submesoscale motions show an obvious seasonality, in which they are active during the winter and spring but weak during the summer and fall. Their seasonality is associated with the mixed layer...  相似文献   

10.
作为中尺度过程与小尺度过程中的过渡,次中尺度过程[空间尺度为O(1~10)km,时间尺度为O(1)天]是海洋动力过程中重要的一环。海洋次中尺度过程具有明显的非地转特征,从而促进垂向热量和物质的输运,因此在海洋上层热量与物质垂直交换中肩负着极为重要的作用。黑潮作为全球最强的西边界流之一,是海洋能量的重要聚集区。针对黑潮流区大尺度环流和中尺度涡旋等动力过程的研究,受到海洋和气象学者的广泛关注,但对黑潮流区次中尺度过程的相关研究相对较少。本文基于高分辨率ROMS数值模式(空间分辨率为1公里),针对黑潮流区(25.5°~29.4°N, 124.4°~131°E)次中尺度过程的空间分布特征及其诱导的热量输运特征进行了研究。模拟结果表明,黑潮流区存在着十分活跃的次中尺度过程,尤其是在黑潮流区及岛屿周边等地形变化剧烈的海区。相对涡度和垂直流速的分布特征表明,次中尺度相对涡度和垂向流速上表现出了明显的不对称性,正相对涡度强于负相对涡度,向下垂向流速强于向上垂向流速,而这主要是由惯性不稳定所导致。通过计算次中尺度引起的热量输运,结果表明次中尺度的水平热量通量为东北方向,从较低纬度朝较高纬度输运,这意味着次中尺度可以促进不同纬度的热量交换;而垂向热量通量则表现出向上输运的特征,即由深层往表层输运,这意味着次中尺度过程可以导致热量在垂直方向上的再分配,从而使得海洋趋于再分层。  相似文献   

11.
利用卫星遥感资料和区域海洋数值模式ROMS(regional ocean modeling system)高分辨率数值模拟结果, 对南海西部夏季上升流锋面的次中尺度特征及其非地转过程进行了探讨。高分辨率卫星遥感观测和数值模拟结果显示, 南海西部夏季锋面海域存在活跃的次中尺度现象, 其水平尺度约为1~10km, 且具有O(1)罗斯贝数(Rossby number, Ro)的典型次中尺度动力学特征。进一步的诊断分析表明, 在夏季西南风的驱动下, 沿锋面射流方向的风应力(down-front wind stress)引起的跨锋面埃克曼输运有利于将海水由锋面冷水侧向暖水侧输运, 减小了锋面海域的垂向层结和Ertel位涡, 加剧了锋面的不稳定, 并形成跨锋面的垂向次级环流。高分辨率模拟结果显示, 锋面海域最大垂向流速可达100m?d -1, 显著增强了上层海洋的垂向物质交换。因此, 活跃在锋面海域的次中尺度过程可能是增强南海西部上升流海域垂向物质交换的重要贡献者。  相似文献   

12.
南海是西太平洋最大的边缘海, 由于受季风影响显著以及北部海域的黑潮入侵, 其动力环境复杂多变, 次中尺度过程丰富, 且在空间上和时间上存在多变性。文章基于高分辨率数值模式的结果, 通过对次中尺度动力参数的分析, 对比讨论了南海北部、中部、西部和南部海域4个典型子区域上层海洋次中尺度过程的空间差异、季节变化、影响深度、影响因素等问题。研究发现各区域季节性变化特征和机制有所不同: 北部海域受冬季风和黑潮入侵影响, 冬季次中尺度的混合层不稳定较强; 中部海域同样表现为“冬强夏弱”; 西部海域受夏季风影响显著, 夏季次中尺度过程更为活跃; 而南部海域主要受岛屿地形影响较大, 容易产生地形尾涡, 季节性特征不明显。统计分析表明, 次中尺度过程往往表现出强正相对涡度与高应变特征, 在表层更容易出现负位涡, 流体稳定性较差。此外, 文章从能量学角度对次中尺度过程的主要能量来源、控制因素等进行了讨论。  相似文献   

13.
Seasonal changes in the distribution of submesoscale (SM) flow features were examined using a fine-resolution numerical simulation. The SM flows are expected to be strong where mesoscale (MS) eddies actively develop and also when the mixed layer depth (MLD) is deep due to enhanced baroclinic instability. In the East Sea (ES), MS eddies more actively develop in summer while the MLD is deeper in winter, which provided the motivation to conduct this study to test the effects of MLD and MS eddies on the SM activity in this region. Finite-scale Liapunov exponents and the vertical velocity components were employed to analyze the SM activities. It was found that the SM intensity was marked by seasonality: it is stronger in winter when the mixed layer is deep but weaker in summer - despite the greater eddy kinetic energy. This is because in summer the mixed layer is so thin that there is not enough available potential energy. When the SM activity was quantified based on parameterization, (MLD × density gradient), it was determined that the seasonal variation of MLD plays a more important role than the lateral density gradient variation on SM flow motion in the ES.  相似文献   

14.
Recent realistic high resolution modeling studies show a net increase of submesoscale activity in fall and winter when the mixed layer depth is at its maximum. This submesoscale activity increase is associated with a reduced deepening of the mixed layer. Both phenomena can be related to the development of mixed layer instabilities, which convert available potential energy into submesoscale eddy kinetic energy and contribute to a fast restratification by slumping the horizontal density gradient in the mixed layer. In the present work, the mixed layer formation and restratification were studied by uniformly cooling a fully turbulent zonal jet in a periodic channel at different resolutions, from eddy resolving (10 km) to submesoscale permitting (2 km). The effect of the submesoscale activity, highlighted by these different horizontal resolutions, was quantified in terms of mixed layer depth, restratification rate and buoyancy fluxes. Contrary to many idealized studies focusing on the restratification phase only, this study addresses a continuous event of mixed layer formation followed by its complete restratification. The robustness of the present results was established by ensemble simulations. The results show that, at higher resolution, when submesoscale starts to be resolved, the mixed layer formed during the surface cooling is significantly shallower and the total restratification is almost three times faster. Such differences between coarse and fine resolution models are consistent with the submesoscale upward buoyancy flux, which balances the convection during the formation phase and accelerates the restratification once the surface cooling is stopped. This submesoscale buoyancy flux is active even below the mixed layer. Our simulations show that mesoscale dynamics also cause restratification, but on longer time scales. Finally, the spatial distribution of the mixed layer depth is highly heterogeneous in the presence of submesoscale activity, prompting the question of whether it is possible to parameterize submesoscale effects and their effects on the marine biology as a function of a spatially-averaged mixed layer depth.  相似文献   

15.
Ocean eddies produce strong vertical heat flux (VHF) in the upper ocean, exerting profound influences on the climate and ecosystem. Currently, mooring array provides a standard way to estimate the eddy-induced VHF (EVHF) based on the adiabatic potential density equation. Apart from the validity of adiabatic assumption, it remains unclear to what extent the estimated EVHF at a single location within a limited time period is representative of its climatological mean value. In this study, we analyzed the above issue by systematically evaluating the variability of EVHF simulated by a 1-km ocean model configured over the Kuroshio Extension. It is found that the EVHF at a single location exhibits pronounced variability. Even averaged over one year that is comparable to the current maintenance capacity of mooring array, the EVHF still deviates significantly from its climatological mean value. For more than 49% of locations in our computational domain (31°–40°N, 149°–166°E), the discrepancy between the one-year mean EVHF and its climatological mean value at the peaking depth is larger than the climatological mean itself. The mesoscale eddies play a dominant role in the variability of EVHF but contribute little to the climatological mean EVHF; the opposite is true for submesoscale eddies. Our findings indicate that nested mooring array allowing for isolating the effects of submesoscale eddies will be useful to obtain climatological mean EVHF.  相似文献   

16.
南海北部深水区东西构造差异性及其动力学机制   总被引:5,自引:1,他引:4  
This paper overviews research progress in observation, theoretical analysis and numerical modeling of submesoscale dynamic processes in the South China Sea(SCS) particularly during recent five years. The submesoscale processes are defined according to both spatial and dynamic scales, and divided into four subcategories as submesoscale waves, submesoscale vortexes, submesoscale shelf processes, and submesoscale turbulence. The major new findings are as follows.(1) Systematic mooring observations provide new insights into the solitary waves(ISWs) and the typhoon-forced near-inertial waves(NIWs), of which a new type of ISWs with period of 23 h was observed in the northern SCS(NSCS), and the influences of background vorticity, summer monsoon onset, and deep meridional overturning circulation on the NIWs, as well as nonlinear wave-wave interaction between the NIWs and internal tides, are better understood. On the other hand, satellite altimeter sea surface height data are used to reveal the internal tide radiation patterns and provide solid evidence for that the ISWs in the northeastern SCS originate from the Luzon Strait.(2) Submesoscale offshore jets and associated vortex trains off the Vietnam coast in the western boundary of the SCS were observed from satellite chlorophyll concentration images. Spiral trains with the horizontal scale of 15–30 km and the spacing of 50–80 km were identified.(3) 3-D vertical circulation in the upwelling region east of Hainan Island was theoretically analyzed. The results show that distribution patterns of all the dynamic terms are featured by wave-like structures with horizontal wavelength scale of 20–40 km.(4) Numerical models have been used for the research of submesoscale turbulence. Submesoscale vertical pump of an anticyclonic eddy and the spatiotemporal features of submesoscale processes in the northeastern SCS are well modeled.  相似文献   

17.
Altimetry and ocean color observations are used in combination with a coupled physical-primary production ocean model to investigate anticyclonic eddies at two locations in the Norwegian Sea. Of particular interest are the formation of the anticyclonic eddies, and their influence on primary production. The formation of these anticyclonic eddies are due to baroclinic instabilities set up by shifts in the wind in north/south direction, leading to simultaneously formation of eddies throughout the area. After a density stratification develops in the upper 100 m of the water column, the anticyclones become a subsurface lens of well mixed water with the characteristics of intra-thermocline eddies. The deep mixed layer inside anticyclonic eddies delay phytoplankton bloom by approximately two weeks compared to the surrounding areas. As the mixed layer within the anticyclones become smaller than the critical depth, the combination of this and sufficiently high nutrient levels support a phytoplankton bloom. From the satellite observations, there is an evidence of phytoplankton being advected toward the center of the eddies, but also of isolated phytoplankton blooms within the intra-thermocline eddies. The combined use of a numerical model and satellite observations provides three-dimensional information on the structure and properties of both eddies and primary production. The presented model is particularly useful in cloud-covered areas where ocean color images are frequently unavailable.  相似文献   

18.
广泛存在于上层海洋的次中尺度过程能有效地从平衡态的中尺度地转剪切中汲取动能, 并通过非地转斜压不稳定正向串级能量至小尺度的耗散过程, 从而对海洋物质能量输运、中尺度过程变异以及混合层再层化等产生重要影响。文章利用高分辨率(500m)的区域海洋数值模式ROMS(Regional Ocean Modeling System)模拟结果, 并结合理论分析, 对南海北部冬季典型反气旋涡的次中尺度动力过程进行了初步探讨。研究结果表明, 典型中尺度涡边缘存在显著的锋面, 锋面海域强烈的水平浮力梯度能有效地减小Ertel位涡, 有利于诱发次中尺度对称不稳定(symmetric instability); 锋生作用是引起该中尺度涡边缘发生对称不稳定的主要动力机制之一。同时, 次中尺度过程及其不稳定引起的垂向次级环流显著增强了混合层垂向物质能量交换, 最大垂向速度可达95m·d-1, 影响深度最深至80m。  相似文献   

19.
Mesoscale eddies are important suppliers of nutrients to the surface waters of oligotrophic gyres, but little is known about the biological response, particularly that of higher trophic levels, to these physical perturbations. During the summers of 2004 and 2005, we followed the development of a cyclonic eddy and an anti-cyclonic mode-water eddy in the Sargasso Sea. Zooplankton (>150 μm) were collected across both eddies in 9 discrete depth intervals between 0 and 700 m. Comparison of the abundance of major taxa of mesozooplankton in the upper 150 m at eddy center and outside the eddies (day and night) indicated that the cyclone and mode-water eddy supported similar mesozooplankton communities, with several taxa significantly higher in abundance inside than outside the eddies, when compared with the Bermuda Atlantic Time-series Study site as representative of mean conditions. In both eddies copepod peak abundance occurred in the 50-100 m depth interval, coincident with the chlorophyll a maximum, suggesting elevated food concentration in the eddies may have influenced zooplankton vertical distribution. The two eddies differed in the strength of diel vertical migration of zooplankton, as indicated by the ratio of night:day abundance in the epipelagic zone, which was higher at the center of the mode-water eddy for most taxa. Over the sampling interval of 1-2 months, abundance of the three most common taxa (copepods, chaetognaths, and ostracods) decreased in the cyclone and increased in the mode-water eddy. This further supports previous findings that over the sampling period the cyclone was in a decay phase, while the mode-water eddy was sustaining nutrient fluxes and high phytoplankton concentrations. A more detailed analysis of community structure in the mode-water eddy indicated the 0-700 m integrated abundance of doliolids was significantly higher inside the mode-water eddy than outside. The presence of a mesopelagic (200-700 m) layer of lepadid barnacle cyprids in this eddy highlights the potential of eddies to transport and disperse biota. We conclude that when compared with average ambient conditions (as measured at BATS), mesoscale eddies can influence zooplankton behavior and alter zooplankton community structure which can affect food-web interactions and biogeochemical cycling in the open ocean.  相似文献   

20.
Observations of topographic Rossby waves (TRW), using moored current meters, bottom pressure gauges, and Lagrangian RAFOS floats, are investigated for the deep basin of the Gulf of Mexico. Recent extensive measurement programs in many parts of the deep gulf, which were inspired by oil and gas industry explorations into ever deeper water, allow more comprehensive analyses of the propagation and dissipation of these deep planetary waves. The Gulf of Mexico circulation can be divided into two layers with the ∼800-1200 m upper layer being dominated by the Loop Current (LC) pulsations and shedding of large (diameters ∼300-400 km) anticyclonic eddies in the east, and the translation of these LC eddies across the basin to the west. These processes spawn smaller eddies of both signs through instabilities, and interactions with topography and other eddies to produce energetic surface layer flows that have a rich spectrum of orbit periods and diameters. In contrast, current variability below 1000 m often has the characteristics of TRWs, with periods ranging from ∼10-100 days and wavelengths of ∼50-200 km, showing almost depth-independent or slightly bottom intensified currents through the weakly stratified lower water column. These fluctuations are largely uncorrelated with simultaneous upper-layer eddy flows. TRWs must be generated through energy transfer from the upper-layer eddies to the lower layer by potential vorticity adjustments to changing depths of the bottom and the interface between the layers. Therefore, the LC and LC eddies are prime candidates as has been suggested by some model studies. Model simulations have also indicated that deep lower-layer eddies may be generated by the LC and LC eddy shedding processes.In the eastern gulf, the highest observed lower-layer kinetic energy was north of the Campeche Bank under the LC in a region that models have identified as having strong baroclinic instabilities. Part of the 60-day TRW signal propagates towards the Sigsbee Escarpment (a steep slope at the base of the northern continental slope), and the rest into the southern part of the eastern basin. Higher energy is observed along the escarpment between 89°W and 92°W than either under the northern part of the LC or further south in the deep basin, because of radiating TRWs from the western side of the LC. In the northern part of the LC, evidence was found in the observations that 20-30-day TRWs were connected with the upper layer through coherent signals of relative vorticity. The ∼90° phase lead of the lower over the upper-layer relative vorticity was consistent with baroclinic instability. Along the Sigsbee Escarpment, the TRWs are refracted and reflected so that little energy reaches the lower continental slope and a substantial mean flow is generated above the steepest part of the escarpment. RAFOS float tracks show that this mean flow continues along the escarpment to the west and into Mexican waters. This seems to be a principal pathway for deepwater parcels to be transported westward. Away from the slope RAFOS floats tend to oscillate in the same general area as if primarily responding to the deep wave field. Little evidence of westward translating lower-layer eddies was found in both the float tracks and the moored currents. In the western gulf, the highest deep energy levels are much less than in the central gulf, and are found seaward of the base of the slope. Otherwise, the situation is similar with TRWs propagating towards the slope, probably generated by the local upper-layer complex eddy field, being reflected and forcing a southward mean flow along the base of the Mexican slope. Amplitudes of the lower-layer fluctuations decay from the northwest corner towards the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号