首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper evaluates atmospheric reanalysis as possible forcing of model simulations of the ocean circulation inter-annual variability in the Gulf of Lions in the Western Mediterranean Sea between 1990 and 2000. The sensitivity of the coastal atmospheric patterns to the model resolution is investigated using the REMO regional climate model (18 km, 1 h), and the recent global atmospheric reanalysis ERA40 (125 km, 6 h). At scales from a few years to a few days, both atmospheric data sets exhibit a very similar weather, and agreement between REMO and ERA40 is especially good on the seasonal cycle and at the daily variability scale. At smaller scales, REMO reproduces more realistic spatio-temporal patterns in the ocean forcing: specific wind systems, particular atmospheric behaviour on the shelf, diurnal cycle, sea-breeze. Ocean twin experiments (1990–1993) clearly underline REMO skills to drive dominant oceanic processes in this microtidal area. Finer wind patterns induce a more realistic circulation and hydrology of the shelf water: unique shelf circulation, upwelling, temperature and salinity exchanges at the shelf break. The hourly sampling of REMO introduces a diurnal forcing which enhances the behaviour of the ocean mixed layer. In addition, the more numerous wind extremes modify the exchanges at the shelf break: favouring the export of dense shelf water, enhancing the mesoscale variability and the interactions of the along slope current with the bathymetry.  相似文献   

2.
A hybrid coordinate ocean model for shelf sea simulation   总被引:1,自引:0,他引:1  
The general circulation in the North Sea and Skagerrak is simulated using the hybrid coordinate ocean model (HYCOM). Although HYCOM was originally developed for simulations of the open ocean, it has a design which should make it applicable also for coastal and shallow shelf seas. Thus, the objective of this study has been to examine the skills of the present version of HYCOM in a coastal shelf application, and to identify the areas where HYCOM needs to be further developed. To demonstrate the capability of the vertical coordinate in HYCOM, three experiments with different configurations of the vertical coordinate were carried out. In general, the results from these experiments compares quite well with in situ and satellite data, and the water masses and the general circulation in the North Sea and Skagerrak is reproduced in the simulations. Differences between the three experiments are small compared to other errors, which are related to a combined effect of model setup and properties of the vertical mixing scheme. Hence, it is difficult to quantify which vertical coordinate configuration works best for the coastal region. It is concluded that HYCOM can be used for simulations of coastal and shelf seas, and further suggestions for improving the model results are given. Since HYCOM also works well in open ocean and basin scale simulations, it may allow for a realistic modelling of the transition region between the open ocean and coastal shelf seas.  相似文献   

3.
The Harvard Ocean Prediction System (HOPS) is configured to simulate the circulation of the Scotia Sea and environs. This is part of a study designed to test the hypothesis that Antarctic krill (Euphausia superba) populations at South Georgia in the eastern Scotia Sea are sustained by import of individuals from upstream regions, such as the western Antarctic Peninsula. Comparison of the simulated circulation fields obtained from HOPS with observations showed good agreement. The surface circulation, particularly through the Drake Passage and across the Scotia Sea, matches observations, with its northeastward flow characterized by three high-speed fronts. Also, the Weddell Sea and the Brazil Current, and their associated transports match observations. In addition, mesoscale variability, an important component of the flow in this region, is found in the simulated circulation and the model is overall well suited to model krill transport. Drifter simulations conducted with HOPS showed that krill spawned in areas coinciding with known krill spawning sites along the west Antarctic Peninsula continental shelf can be entrained into the Southern Antarctic Circumpolar Current Front (SACCF). They are transported across the Scotia Sea to South Georgia in 10 months or less. Drifters originating on the continental shelf of the Weddell Sea can reach South Georgia as well; however, transport from this region averages about 20 months. Additional simulations show that such transport is sensitive to changes in wind stress and the location of the SACCF. The results of this study show that krill populations along the Antarctic Peninsula and the Weddell Sea are possible source populations that can provide krill to the South Georgia population. However, successful transport of krill to South Georgia is shown to depend on a multitude of factors, such as the location of the spawning area and timing of spawning, and variations in the location of the SACCF. Therefore, this study provides insight into which environmental factors control the successful transport of krill across the Scotia Sea and with it a better understanding of krill distribution in the region.  相似文献   

4.
In situ observations and numerical model simulations have been used to study the circulation of the western Mediterranean Sea during April–May 2005. A hydrological survey and direct current measurements carried out in the western Mediterranean Sea are analyzed with an inverse box model. The model result is a mean circulation of the region during spring 2005 along with simultaneous evaluation of water fluxes through eight transects and associated uncertainties. In order to evaluate the consistency of the results and the weight of currents at shorter temporal and spatial scales, an inter-comparison of differently achieved results is performed. The inverse solution is evaluated against both instantaneous current measurements and simulated velocity fields from a General Circulation Model. The results obtained and the general agreement between the three approaches are encouraging and confirms that the inverse box model is a powerful instrument to investigate flow fields in wide areas of the sea. The picture coming out confirms the previous qualitative knowledge on the mean circulation at all levels, providing, in addition, robust quantitative estimations of the water masses fluxes throughout the western Mediterranean basin.  相似文献   

5.
The variability in the Caribbean Sea is investigated using high resolution (1/15°) general circulation model experiments. For the first time in this region, simulations were carried out with a 2-way nested configuration of the NEMO primitive equation model. A coarse North Atlantic grid (1/3°) reproduces the main features of the North Atlantic and Equatorial circulation capable of influencing ocean dynamics in the Caribbean Sea. This numerical study highlights strong dynamical differences among basins and modifies the view that dynamics are homogeneous over the whole Caribbean Basin. The Caribbean mean flow is shown to organize in two intense jets flowing westward along the northern and southern boundaries of the Venezuela Basin, which merge in the center of the Colombia Basin. Diagnostics of model outputs show that width, depth and strength of baroclinic eddies increase westward from the Lesser Antilles to the Colombia Basin. The widening and strengthening to the west is consistent with altimetry data and drifter observations. Although influenced by the circulation in the Colombia Basin, the variability in the Cayman Basin (which also presents a westward growth from the Chibcha Channel) is deeper and less energetic than the variability in the Colombia/Venezuela Basins. Main frequency peaks for the mesoscale variability present a westward shift, from roughly 50 days near the Lesser Antilles to 100 days in the Cayman Basin, which is associated with growth and merging of eddies.  相似文献   

6.
Abstract. A number of recent studies based on hydrographic observations and modelling simulations have dealt with the major climatic shift that occurred in the deep circulation of the Eastern Mediterranean. This work presents hydrographic observations and current measurements conducted from 1997 to 1999, which reveal strong modifications in the dynamics of the upper, intermediate and deep layers, as well as an evolution of the thermohaline characteristics of the deep Aegean outflow since 1995. The reversal of the circulation in the upper layer of the north/central Ionian is worthy of note. The observations indicate a reduction of Atlantic Water in the northern Ionian with an increase on the eastern side of the basin. In the intermediate layer, the dispersal path of the Levantine Intermediate Water (LIW) is altered. Highly saline (>39.0) and well-oxygenated intermediate waters were found near the Western Cretan Arc Straits. They flow out from the Aegean, thus interrupting the traditional path of the LIW, and spread prevalently northwards into the Adriatic Sea. In the deep layer, dense waters, exiting from the Adriatic (σø−29.18 kg · m−3), flow against the western continental margin in the Ionian Sea at a depth of between 1000–1500 m. Dense waters of Aegean origin (> 29.20 kg · m−3), discharged into the central region of the Eastern Mediterranean during the early stages of the transient, propagate prevalently to the east in the Levantine basin and to the west in the northern Ionian Sea. Near-bottom current measurements conducted in the Ionian Sea reveal unforeseen aspects of deep dynamics, suggesting a new configuration of the internal thermohaline conveyor belt of the Eastern Mediterranean.  相似文献   

7.
The Ría de Ribadeo, a small embayment in NW Spain, was observed for the first time using three months of ADCP (Acoustic Doppler Current Profiler) current meter records and three CTD (Conductivity Temperature Depth) surveys. A wave driven circulation pattern arises from the observations, instead of the shelf wind driven circulation of other Galician Rias. Based on ADCP records, a unidirectional flow in the horizontal velocity field coexists with the classic two-layer circulation (bidirectional flow). The proposed horizontal circulation pattern can then be explained as a wave driven inflow. This flow enters the ria through the west side, describes an anticlockwise gyre inside of it, and flows out through the east side. Numerical simulations run with the HAMSOM (Hamburg Shelf Ocean Model) agreed with observations, confirming the proposed pattern.  相似文献   

8.
冬季黄海暖流西偏机理数值探讨   总被引:1,自引:0,他引:1  
利用海洋数值模式(MITgcm)模拟了冬季黄海流场并对冬季黄海暖流西偏的机理进行了探讨。冬季黄海流场模拟试验表明,黄海暖流由济州岛以西约32.5°N,125°E附近进入黄海,然后沿着黄海深槽西侧70 m等深线附近向北偏西运动;海面高度调整对黄海暖流路径具有重要影响,沿着黄海暖流路径的海面高度梯度比周围海区大,由海面高度梯度产生的地转流引起的北向体积输运占总的北向体积输运的78%。狭长海湾地形控制试验表明,单纯的黄海地形分布不足以引起黄海暖流西偏。黄海典型断面试验与渤海、黄海、东海地形控制试验说明,黄海暖流进入黄海的地理位置对流场分布有重要影响,黄海暖流进入黄海的位置恰好位于深槽西侧地形坡度较大区域,在位涡守恒的约束下黄海暖流受地形捕获沿70 m等深线附近向北偏西运动;试验还表明,黄海暖流进入黄海的位置与东海北部环流和地形分布有关,在冬季风的作用下东海北部环流的一部分沿着地形陡坡进入黄海形成黄海暖流。由此认为,黄海、东海环流在其特殊地形的约束下对冬季风的响应和调整,是引起黄海暖流西偏的主要原因。  相似文献   

9.
北冰洋与邻近海区海洋-海冰模式的试算与校验   总被引:3,自引:1,他引:2  
本文将目前先进的大尺度海洋、海冰模式(NEMO3.6和LIM3)应用于北大西洋–北冰洋–北太平洋(简称NAPA),并进行了试验后报模拟。所建立的模式NAPA1/4和NAPA1/12的水平分辨率分别为(1/4)°和(1/12)°经、纬度,计算范围覆盖太平洋45°N以北海区、整个北冰洋及北大西洋;其中,NAPA1/4和NAPA1/12在北大西洋的边界分别为26°N和7°N。目前,已利用NAPA1/4完成了1993–2015年的后报模拟。本文基于观测数据和已发表文献对模拟结果中的北冰洋海冰变化、环流结构以及水文特征进行了校验。结果表明,NAPA1/4能够再现北冰洋的主要热力与动力过程,可以用来分析海冰、水团、大西洋/太平洋入/出流等的季节与年际变化规律。利用NAPA1/12进行了1993–1996年的模拟计算。初步结果分析表明,提高分辨率可更为精细地刻画北冰洋的海冰、水团和环流的结构。  相似文献   

10.
X.H. Wang   《Ocean Modelling》2005,10(3-4):253-271
The Princeton Ocean Model was implemented to investigate the response of northern Adriatic Sea during the Bora event in January 2001 when strong wind and surface cooling was reported. The model has been run with realistic wind stress, surface heat flux and river runoffs forcings continuously from 1 January 1999 to 31 January 2001. The wind stress and surface heat flux was computed by the bulk parameterization, using the European Centre for Medium Range Weather Forecast analysis fields and the Comprehensive Ocean Atmosphere Data Set cloud data. All the freshwater sources along the Adriatic coastlines were represented by point or line source functions. Open boundary conditions in the Ionian Sea along a latitudinal boundary were nested within a large scale model of the Mediterranean Sea. The numerical study found that, before the Bora event of 13–17 January 2001, the water column of the northern Adriatic Sea was stratified by salinity, and the temperature was already cooler at the surface and over the shallower shelf region. The pre-Bora circulation of the northern Adriatic Sea was relatively weak and baroclinic with maximum surface currents occurred near the Italian coast. During the Bora event, the water column was well mixed in the most of coastal region of the northern Adriatic Sea. The atmospheric cooling produced colder water over the northern and western Adriatic Coast. The circulation of the northern Adriatic Sea was barotropic and dominantly wind driven, with maximum current speed of about 1 m s−1. The numerical study also demonstrated that the Bora event decreased the heat content of the water column with an area averaged value of 205 W m−2 over the shallow northern shelf. It was concluded that the heat budget of the northern Adriatic Sea during the Bora event was a balance between the surface heat loss, horizontal net heat inflow and resulting heat content decrease. The horizontal advection played a particularly important role in controlling the water temperature change over the shallower northern shelf.  相似文献   

11.
CTD and ADCP measurements together with a sequence of satellite images indicate pronounced current meandering and eddy activity in the western Black Sea during April 1993. The Rim Current is identified as a well-defined meandering jet stream confined over the steepest topographic slope and associated cyclonic–anticyclonic eddy pairs located on both its sides. It has a form of highly energetic and unstable flow system, which, as it propagates cyclonically along the periphery of the basin, is modified in character. It possesses a two-layer vertical structure with uniform upper layer speed in excess of 50 cm/s (maximum value ∼100 cm/s), followed by a relatively sharp change across the pycnocline (between 100 and 200 m) and the uniform sub-pycnocline currents of 20 cm/s (maximum value ∼40 cm/s) observed up to the depth of ∼350 dbar, being the approximate limit of ADCP measurements. The cross-stream velocity structure exhibits a narrow core region (∼30 km), flanked by a narrow zone of anticyclonic shear on its coastal side and a broader region of cyclonic shear on its offshore side. The northwestern shelf circulation is generally decoupled from the influence of the basinwide circulation and is characterized by much weaker currents, less than 10 cm/s. The southward coastal flow associated with the Danube and Dinepr Rivers is weak during the measurement period and is restricted to a very narrow coastal zone.The data suggest the presence of temperature-induced overturning prior to the measurements, and subsequent formation of the Cold Intermediate Water mass (CIW) within the Northwestern Shelf (NWS) and interior of the western basin. The newly formed shelf CIW is transported in part along the shelf by the coastal current system, and in part it flows downslope across the shelf and intrudes into the Rim Current convergence zone. A major part of the cold water mass, however, seems to be trapped within the northwestern shelf. The CIW mass, injected into the Rim Current zone from the shelf and the interior region, is then circulated around the basin.  相似文献   

12.
南海的季节环流─TOPEX/POSEIDON卫星测高应用研究   总被引:49,自引:8,他引:49  
应用1992~1996年的TOPEX/POSEIDON卫星高度计遥感资料,研究了冬、夏季风强盛期多年平均的南海上层环流结构。研究结果表明,南海上层流结构呈明显的季节变化,在很大程度上受该海区冬、夏交替的季风支配。冬季总环流呈气旋型,并发育有两个次海盆尺度气旋型环流;夏季总环流大致呈反气旋型、但在南海东部18°N以南海域未见明显流系发育。研究还表明,南海环流的西向强化趋势明显,无论冬、夏在中南半岛沿岸和巽他陆架外缘均存在急流,其流向冬、夏相反,是南海上层环流中最强劲的一支。鉴于该海流的动力特征与海洋动力学中定义的漂流不同,有相当大的地转成分,建议称为“南海季风急流(South China Sea MonsoonJet)”.冬季南下的季风急流在南海南部受巽他陆架阻挡折向东北,沿加里曼丹岛和巴拉望岛外海有较强东北向流发育。夏季北上的季风急流在海南岛东南分为两支:北支沿陆架北上,似为传统意义上的南海暖流;南支沿18°N向东横穿南海后折向东北;二者之间(陆架坡折附近)为弱流区。两分支在汕头外海汇合后,南海暖流流速增强。就多年平均而言,黑潮只在冬季侵入南海东北部,并在南海北部诱生一个次海盆尺度的气旋型环流,这时南海暖流只出现在汕头以东海域.夏季南海北部完全受东北向流控制,未见黑潮入侵迹象.用卫星跟踪海面漂流浮标观测进行的对比验证表明,以上遥感分析结果与海上观测一致。  相似文献   

13.
The eastern Mediterranean (Levantine Basin) hydrography and circulation are investigated by comparing the results of a high-resolution primitive equation model with observations. After a 10-year integration, the model is able to reproduce the major water masses and the circulation patterns of the eastern Mediterranean. Comparisons with the POEM hydrographical observations show good agreement. The vertical distribution of the water masses matches that of the observations quite well in terms of monthly mean. The model surface circulation is in agreement with circulation schemes derived from recent observations. Some well-known mesoscale features of the upper thermocline circulation are also realistically reproduced. In agreement with satellite observations, the model shows that high-energy mesoscale eddies dominate the upper thermocline circulation in the southern and the central parts of the Levantine Basin. Most of the Atlantic Water follows the north African coast and forms a strong coastal jet near the Libyan coast rather than forming the Mid-Mediterranean Jet described by several authors. The sub-basin circulation shows a strong seasonal signal. A strong and stable current flows along the isobaths in winter, becoming weaker and with more meanders in summer. The mesoscale eddies throughout the whole basin are more energetic in summer than in winter.  相似文献   

14.
The reliability of a numerical tide model for detiding acoustic Doppler current profiler (ADCP) data is examined on the East China Sea shelf. The process is adopted for the ADCP data obtained on 12–13 May 2003. The ocean model accompanied by the most precise harmonic constants available to public is used to compute external tides. The root mean square difference is less than 10 cm/s between the detided currents and those using the least squares method, and so the detiding process using the numerical model is available to detect the East China Sea shelf circulation faster than this speed.  相似文献   

15.
CharacteristicsofsummerandwintercirculationsandtheirvariabilityinthesourceareaoftheTsushimaWarmCurrent¥SongWanxian(ReceivedNo...  相似文献   

16.
The north-western Alboran Sea is a highly dynamic region in which the hydrological processes are mainly controlled by the entrance of the Atlantic Jet (AJ) through the Strait of Gibraltar. The biological patterns of the area are also related to this variability in which atmospheric pressure distributions and wind intensity and direction play major roles. In this work, we studied how changes in atmospheric forcing (from high atmospheric pressure over the Mediterranean to low atmospheric pressure) induced alterations in the physical and biogeochemical environment by re-activating coastal upwelling on the Spanish shore. The nursery area of European anchovy (Engraulis encrasicolus) in the NW Alboran Sea, confirmed to be the very coastal band around Malaga Bay, did not show any drastic change in its biogeochemical characteristics, indicating that this coastal region is somewhat isolated from the rest of the basin. Our data also suggests that anchovy distribution is tightly coupled to the presence of microzooplankton rather than mesozooplankton. Finally, we use detailed physical and biological information to evaluate a hydrological-biogeochemical coupled model with a specific hydrological configuration to represent the Alboran basin. This model is able to reproduce the general circulation patterns in the region forced by the AJ movements only including two variable external forcings; atmospheric pressure over the western Mediterranean and realistic wind fields.  相似文献   

17.
The existence and strength of the annual KwaZulu-Natal (KZN) sardine run has long been a conundrum to fishers and scientists alike ― particularly that the sardine Sardinops sagax migrate along the narrow Transkei shelf against the powerful, warm Agulhas Current. However, examination of ship-borne acoustic Doppler current profiler (S–ADCP) data collected during two research surveys in 2005 indicated that northward-flowing coastal countercurrents exist at times between the Agulhas Bank and the KZN Bight, near Port Alfred, East London, Port St Johns and Durban. The countercurrent near Port Alfred extended as far east as the Keiskamma River, within an upwelling zone known to exist there. An ADCP mooring at a depth of 32 m off Port Alfred indicated that the countercurrent typically lasted a few days, but at times remained in the same direction for as long as 10 days. Velocities ranged between 20 and 60 cm s?1 with maximum values of ~80 cm s?1. The S–ADCP data also highlighted the existence of cyclonic flow in the Port St Johns–Waterfall Bluff coastal inset, with a northward coastal current similarly ranging in velocity between 20 and 60 cm s?1. CTD data indicated that this was associated with shelf-edge upwelling, with surface temperatures 2–4 °C cooler than the adjacent core temperature (24–26 °C) of the Agulhas Current. Vertical profiles of the S–ADCP data showed that the countercurrent, about 7 km wide, extends down the slope to at least 600 m, where it appeared to link with the deep Agulhas Undercurrent at 800 m. S–ADCP and sea surface temperature (SST) satellite data confirmed the existence of the semi-permanent, lee-trapped, cyclonic eddy off Durban, associated with a well-defined northward coastal current between Park Rynie and Balito Bay. Analysis of three months (May–July 2005) of satellite SST and ocean colour data showed the shoreward core-boundary of the Agulhas Current (24 °C isotherm) to commonly be close to the coast along the KZN south coast, as well as between the Kei and Mbhashe rivers on the Transkei shelf. The Port St Johns–Waterfall Bluff cyclonic eddy was also frequently visible in these satellite data. Transient cyclonic eddies, which spanned 150–200 km of shelf, appeared to move downstream in the shoreward boundary of the Agulhas Current at a frequency of about once a month. These seemed to be break-away Durban eddies. Data collected by ADCP moorings deployed off Port Edward in 2005 showed that these break-away eddies and the well-known Natal Pulse are associated with temporary northward countercurrents on the shelf, which can last up to six days. It is proposed that these countercurrents off Port Alfred, East London and Port St Johns assist sardine to swim northwards along the Transkei shelf against the Agulhas Current, but that their progress north of Waterfall Bluff is dependent on the arrival of a transient, southward-moving, break-away Durban cyclonic eddy, which apparently sheds every 4–6 weeks, or on the generation of a Natal Pulse. This passage control mechanism has been coined the ‘Waterfall Bluff gateway’ hypothesis. The sardine run survey in June–July 2005 was undertaken in the absence of a cyclonic eddy on the KZN south coast, i.e. when the ‘gate’ was closed.  相似文献   

18.
In this paper, we present the results from a 1/8° horizontal resolution numerical simulation of the Mediterranean Sea using an ocean model (DieCAST) that is stable with low general dissipation and that uses accurate control volume fourth-order numerics with reduced numerical dispersion. The ocean model is forced using climatological monthly mean winds and relaxation towards monthly climatological surface temperature and salinity. The variability of the circulation obtained is assessed by computing the volume transport through certain sections and straits where comparison with observations is possible. The seasonal variability of certain currents is reproduced in the model simulations. More important, an interannual variability, manifested by changes in currents and water mass properties, is also found in the results. This may indicate that the oceanic internal variability (not depending on external atmospheric forcing), is an important component of the total variability of the Mediterranean circulation; variability that seems to be very significant and well documented by in situ and satellite data recovered in the Mediterranean Sea during the last decade.  相似文献   

19.
The first data on the creation of the subsatellite polygon on the Black Sea shelf and continental slope in the Gelendzhik area (designed in order to permanently monitor the state of the aquatic environment and biota) and the plans for maintaining and developing this polygon are presented. The autonomous measuring systems of the polygon in the composition of bottom stations with acoustic Doppler current profilers (ADCP), Aqualog robotic profilers, and thermo-chains on moored buoy stations should make it possible to regularly obtain hydrophysical, hydrochemical, and bio-optical data with a high spatial-time resolution and transmit these data to the coastal center on a real-time basis. These field data should be used to study the characteristics and formation mechanisms of the marine environment and biota variability, as well as the water-exchange processes in the shelf-deep basin system, ocean-atmosphere coupling, and many other processes. These data are used to calibrate the satellite measurements and verify the water circulation numerical simulation. It is assumed to use these data in order to warn about the hazardous natural phenomena and control the marine environment state and its variation under the action of anthropogenic and natural factors, including climatic trends. It is planned to use the polygon subsatellite monitoring methods and equipment in other coastal areas, including other Black Sea sectors, in order to create a unified system for monitoring the Black Sea shelf-slope zone.  相似文献   

20.
The fidelity of numerical simulations of the general circulation of the North Atlantic Ocean in basin- to global-scale models have improved considerably in the last several years. This improvement appears to represent a regime shift in the dynamics of the simulated flow as the horizontal grid spacing decreases to around 10 km. Nevertheless, some significant biases in the simulated circulation and substantial uncertainties about the robustness of these results with respect to parameterization choices remain. A growing collection of simulations obtained with the POP primitive equation model allow us to investigate the convergence properties and sensitivity of high resolution numerical simulations of the North Atlantic, with particular attention given to Gulf Stream separation and the subsequent path of the North Atlantic Current into the Northwest Corner. Increases in resolution and reductions in dissipation both contribute to the improvements in the circulation seen in recent studies. We find that our highest resolution eddy-resolving simulations retain an appreciable sensitivity to the closure scheme. Our most realistic simulations of the Gulf Stream are not obtained at the lowest levels of dissipation, while the simulation of the North Atlantic Current continues to improve as dissipation is reduced to near the numerical stability limit. In consequence, there is a limited range of parameter space where both aspects of the simulated circulation can be brought into agreement with observations. This experience gained with the comparatively affordable regional North Atlantic model is now being used to configure the next generation of ocean climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号