首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the seismic shear-wave velocity structure of the crust beneath nine broadband seismological stations of the Shillong–Mikir plateau and its adjoining region using teleseismic P-wave receiver function analysis. The inverted shear wave velocity models show ∼34–38 km thick crust beneath the Shillong Plateau which increases to ∼37–38 km beneath the Brahmaputra valley and ∼46–48 km beneath the Himalayan foredeep region. The gradual increase of crustal thickness from the Shillong Plateau to Himalayan foredeep region is consistent with the underthrusting of Indian Plate beyond the surface collision boundary. A strong azimuthal variation is observed beneath SHL station. The modeling of receiver functions of teleseismic earthquakes arriving the SHL station from NE backazimuth (BAZ) shows a high velocity zone within depth range 2–8 km along with a low velocity zone within ∼8–13 km. In contrast, inversion of receiver functions from SE BAZ shows high velocity zone in the upper crust within depth range ∼10–18 km and low velocity zone within ∼18–36 km. The critical examination of ray piercing points at the depth of Moho shows that the rays from SE BAZ pierce mostly the southeast part of the plateau near Dauki fault zone. This observation suggests the effect of underthrusting Bengal sediments and the underlying oceanic crust in the south of the plateau facilitated by the EW-NE striking Dauki fault dipping 300 toward northwest.  相似文献   

2.
The shear velocity structure beneath the Virunga volcanic area was estimated by using an average solution in the time domain inversion of stacked teleseismic receiver functions provided by two seismic broadband stations KUNENE (KNN) and KIBUMBA (KBB). These two stations are 29 km apart and located at the eastern and western escarpment of the Western Rift Valley of Africa in the Virunga area, respectively. The velocity model was presented as P-wave velocity models. From these models, the crust mantle transition zone beneath the area sampled by KNN and KBB in the Virunga area was determined at depth from about 36 to 39 km and 30 to 41 km, respectively. A low velocity zone was observed below stations KNN and KBB at depths between 20–30 km and 18–28 km, respectively, and with average velocity 5.9 km/s and 6.0 km/s. This low velocity zone may probably related to a magma chamber or a melt-rich sill. The models show also high velocity material (6.8–7.4 km/s) lying beneath stations KNN and KBB at depths 3–20 km and 3–10 km, respectively, which is indicative of magma cumulates within the volcanic edifice. The result obtained in this study was applied to the determination of epicentres during the period prior to the 27 November 2006 Nyamuragira eruption. This eruption was preceded by a swarm of hybrid volcanic earthquakes with clear P-waves onset. Using the receiver function model was found to improve the location of events. The located events correlate well with the location of the eruptive site and data provided by the INSAR observations of surface deformation associated with eruption.  相似文献   

3.
In this study, receiver function analysis is carried out at 32 broadband stations spread all over the Gujarat region, located in the western part of India to image the sedimentary structure and investigate the crustal composition for the entire region. The powerful Genetic Algorithm technique is applied to the receiver functions to derive S-velocity structure beneath each site. A detail image in terms of basement depths and Moho thickness for the entire Gujarat region is obtained for the first time. Gujarat comprises of three distinct regions: Kachchh, Saurashtra and Mainland. In Kachchh region, depth of the basement varies from around 1.5 km in the eastern part to 6 km in the western part and around 2–3 km in the northern part to 4–5 km in the southern part. In the Saurashtra region, there is not much variation in the depth of the basement and is between 3 km and 4 km. In Gujarat mainland part, the basement depth is 5–8 km in the Cambay basin and western edge of Narmada basin. In other parts of the mainland, it is 3–4 km. The depth of Moho beneath each site is obtained using stacking algorithm approach. The Moho is at shallower depth (26–30 km) in the western part of Kachchh region. In the eastern part and epicentral zone of the 2001 Bhuj earthquake, large variation in the Moho depths is noticed (36–46 km). In the Saurashtra region, the crust is more thick in the northern part. It varies from 36–38 km in the southern part to 42–44 km in the northern part. In the mainland region, the crust is more thick (40–44 km) in the northern and southern part and is shallow in Cambay and Narmada basins (32–36 km). The large variations of Poisson’s ratio across Gujarat region may be interpreted as heterogeneity in crustal composition. High values of σ (∼0.30) at many sites in Kachchh and few sites in Saurashtra and Mainland regions may be related to the existence of high-velocity lower crust with a mafic/ultramafic composition and, locally, to the presence of partial melt. The existing tectono-sedimentary models proposed by various researchers were also examined.  相似文献   

4.
There is an ongoing debate about the tectonic evolution of southeast Australia, particularly about the causes and nature of its accretion to a much older Precambrian core to the west. Seismic imaging of the crust can provide useful clues to address this issue. Seismic tomography imaging is a powerful tool often employed to map elastic properties of the Earth's lithosphere, but in most cases does not constrain well the depth of discontinuities such as the Mohorovi?i? (Moho). In this study, an alternative imaging technique known as receiver function (RF) has been employed for seismic stations near Canberra in the Lachlan Orogen to investigate: (i) the shear-wave-velocity profile in the crust and uppermost mantle, (ii) variations in the Moho depth beneath the Lachlan Orogen, and (iii) the nature of the transition between the crust and mantle. A number of styles of RF analyses were conducted: H-K stacking to obtain the best compressional–shear velocity (V P /V S) ratio and crustal thickness; nonlinear inversion for the shear-wave-velocity structure and inversion of the observed variations in RFs with back-azimuth to investigate potential dipping of the crustal layers and anisotropy. The thick crust (up to 48 km) and the mostly intermediate nature of the crust?mantle transition in the Lachlan Orogen could be due to the presence of underplating at the base of the crust, and possibly to the existing thick piles of Ordovician mafic rocks present in the mid and lower crust. Results from numerical modelling of RFs at three seismic stations (CAN, CNB and YNG) suggest that the observed variations with back-azimuth could be related to a complex structure beneath these stations with the likelihood of both a dipping Moho and crustal anisotropy. Our analysis reveals crustal thickening to the west beneath CAN station which could be due to slab convergence. The crustal thickening may also be related to the broad Macquarie volcanic arc, which is rooted to the Moho. The crustal anisotropy may arise from a strong N–S structural trend in the eastern Lachlan Orogen and to the preferred crystallographic orientation of seismically anisotropic minerals in the lower and middle crust related to the paleo-Pacific plate convergence.  相似文献   

5.
周鹏哲  高锐  叶卓 《地学前缘》2022,29(4):265-277
青藏高原的隆升由印度-欧亚板块的碰撞而驱动,其生长演化,特别是从内到外的扩展机制仍尚存争议。祁连山地处青藏高原向东北扩展的前缘位置,其地壳结构与各向异性对于理解青藏高原向北扩展的生长机制具有重要意义。祁连山中部是青藏高原东北缘地壳遭受挤压强烈变形的区域,已有的研究已经揭示出地壳内部非耦合不均匀变形的几何行为,揭露其对应机制是亟待探索的前沿科学问题。此前该区域的各向异性研究大多基于面状台网数据,台站间距大,无法反映横跨祁连山地壳各向异性的精细变化。为此,本研究选用一条密集线性地震台阵,使用H-κ-c叠加方法,得到了横过祁连山中部的地壳厚度,泊松比以及地壳各向异性的横向变化。结果显示,在中祁连以及南祁连北部地壳厚度最大,平均泊松比最低,反映了地壳加厚过程中铁镁质下地壳的丢失以及长英质中上地壳的水平缩短。此外,偏长英质成分的泊松比值也不支持地壳流在该区域存在。在祁连山内部,地壳各向异性快波的偏振方向与地壳向外扩展方向一致,而与地幔各向异性快波方向近垂直,揭示了壳幔变形可能是解耦的。而在地壳较薄的南祁连和北祁连南部区域,快波方向与古缝合线的走向一致,说明早古生代的构造格局仍对现今的祁连山缩短隆升产生影响。  相似文献   

6.
Crustal thicknesses previously estimated by [J. Geophys. Res. 107 (2002) 2] in SE Brazil varied from 47 km in the middle of the Paraná basin to approximately 35 km in the Ribeira fold belt. We study the crustal structure of the Ribeira belt in more detail by identifying the Ps Moho converted phase and its multiple reflection PpPms, as well as using waveform modeling of receiver functions. We use phase-weighted slant stacking to identify the Ps and PpPms arrival times, which provides the vP/vS beneath each station. In inverting the receiver functions, we use average crustal velocities and initial models obtained from a deep seismic refraction line, as well as data from a timed quarry blast. The crustal thickness ranges 34–42 km with a thinning trend toward the coast. Crustal thickness correlates with elevation, indicating approximate regional Airy isostasy. Along the Serra do Mar coastal range, the average crustal Poisson ratio is about 0.25. The southern part of the Mantiqueira range has a higher Poisson ratio of 0.28. Stations near the São Francisco craton have a lower Poisson ratio of 0.23.  相似文献   

7.
Teleseismic body waves from broadband seismic stations are used to investigate the crustal and uppermost mantle structure of Stromboli volcano through inversion of the receiver functions (RFs). First, we computed RFs in the frequency domain using a multiple-taper spectral correlation technique. Then, the non-linear neighbourhood algorithm was applied to estimate the seismic shear wave velocity of the crust and uppermost mantle and to define the main seismic velocity discontinuities. The stability of the inversion solution was tested using a range of initial random seeds and model parameterizations. A shallow Moho, present at depth of 14.8 km, is evidence of a thinned crust beneath Stromboli volcano. However, the most intriguing and innovative result is a low S velocity layer in the uppermost mantle, below 32 km. The low S velocity layer suggests a possible partial melt region associated with the volcanism, as also recently supported by tomographic studies and petrological estimations.  相似文献   

8.
中国东部地区深部结构的层析成像   总被引:3,自引:0,他引:3  
郑洪伟  耿树方  杨贵  刘淑聪 《地质通报》2012,31(7):1069-1077
利用中国国家台网60个宽频带地震台站和国际地震中心(ISC)592个台站分别记录的1996—2007和1990—2004的震相报告,从中提取出可供反演使用的远震事件9806个,共12078个高质量的P波初至走时数据,对中国东部地区进行了远震P波层析成像研究。结果显示,在五大连池火山区和大同火山区有明显的低速异常,大同火山源区较深。另外几个明显的低速区分别分布在广东地区、渤海湾地区和长江中下游地区。四川盆地的高速特征和扬子板块的低速特征在纵剖面图像上也较为明显。中国东南部的软流圈中存在大面积的地幔上涌,认为是由板块之间的碰撞俯冲、引起大尺度地幔横向流动造成的,而太平洋板块的作用局限于其俯冲的"远程效应",为大范围的软流圈物质上涌提供了东侧的深部动力条件。  相似文献   

9.
郑洪伟  耿树方  杨贵  刘淑聪 《地质通报》2012,31(07):1069-1077
利用中国国家台网60个宽频带地震台站和国际地震中心(ISC)592个台站分别记录的1996—2007和1990—2004的震相报告,从中提取出可供反演使用的远震事件9806个,共12078个高质量的P波初至走时数据,对中国东部地区进行了远震P波层析成像研究。结果显示,在五大连池火山区和大同火山区有明显的低速异常,大同火山源区较深。另外几个明显的低速区分别分布在广东地区、渤海湾地区和长江中下游地区。四川盆地的高速特征和扬子板块的低速特征在纵剖面图像上也较为明显。中国东南部的软流圈中存在大面积的地幔上涌,认为是由板块之间的碰撞俯冲、引起大尺度地幔横向流动造成的,而太平洋板块的作用局限于其俯冲的“远程效应”,为大范围的软流圈物质上涌提供了东侧的深部动力条件。  相似文献   

10.
青藏高原东北缘是研究高原隆升和演化的理想场所,其岩石圈结构记录了高原向外扩展的岩石圈变形行为和演化过程,本研究利用一条跨青藏高原东北缘的宽频带观测剖面(红原-景泰剖面)和部分甘肃、青海区域台网的远震体波波形资料,通过S波接收函数方法获得了青藏高原东北缘的岩石圈-软流圈边界(LAB)图像。结果表明:1)松潘-甘孜地体东北部和西秦岭造山带下方的岩石圈较薄,略向北加厚,其LAB深度为110~130 km,昆仑断层下方无明显岩石圈错断,推测松潘-甘孜地块与西秦岭造山带的岩石圈可能具有亲缘性; 2)祁连地块下方的岩石圈厚度为135~150 km,其中祁连造山带东缘的LAB震相不聚焦,反映复杂的造山带型岩石圈属性; 3)阿拉善地块下方岩石圈略向南加厚, LAB深度为130~150 km,呈向祁连造山带下方汇聚的趋势,但尚未通过海原断裂带; 4)鄂尔多斯地块下方的岩石圈较厚, LAB深度为160~170 km,反映其稳定的克拉通型岩石圈属性。  相似文献   

11.
华南大陆主要由扬子与华夏两大古陆块拼合而成,复杂的构造演化过程使得该区不仅具有多样的几何结构与变形特征,也发育成为中国南部重要的多金属成矿区域,其中包括长江中下游、钦州—杭州、武夷山、南岭、等多个重要成矿带。针对华南东南部及位于该区内的长江中下游、武夷山和南岭成矿带的深部结构与成矿背景,本文利用国家地震台网在该区固定地震台站的远震事件记录信息,通过对各个台站的远震接收函数开展H-κ扫描研究,获得了各台站下方的地壳厚度和波速比。对地壳厚度和波速比的相关性与地壳流变学构造模式进行了对比分析,研究结果显示,华南东南部的Moho面起伏整体较为平缓,自东向西逐渐增厚,波速比分布与成矿带和构造格局有明显相关性,在扬子与华夏块体之间的华南陆内复合造山区呈现明显的低波速比特征;结合该区已有的地质构造等研究分析,认为华南地区地壳减薄与燕山期的强烈岩浆活动和成矿过程密切相关,太平洋板块俯冲以及岩石圈和下地壳拆沉所造成的上地幔热物质扰动上涌或是该区矿产资源集中爆发的驱动力源;本研究所得地壳厚度与波速比分布特征与重力学多尺度边缘检测所刻画的构造界限一致性较好,支持其对扬子与华夏块体南界的划分方案。  相似文献   

12.
E.A. Hetland  F.T. Wu  J.L Song   《Tectonophysics》2004,386(3-4):157-175
During 1998–1999, we installed a temporary broadband seismic network in the Changbaishan volcanic region, NE China. We estimated crustal structure using teleseismic seismograms collected at the network. We detected a near surface region of strong anisotropy directly under the main volcanic edifice of the volcanic area. We modeled 109 receiver functions from 19 broadband stations using three techniques. First we used a “slant-stacking” method to model the principal crustal P reverberation phases to estimate crustal thickness and the average crustal P to S speed ratio (vp/vs), assuming an average P-wave velocity in the crust. We then estimated crustal S-wave velocity (vs) and vp/vs profiles by modeling stacked receiver functions using a direct search. Finally, we inverted several receiver functions recorded at stations closest to the main volcanic edifice using least squares to estimate vs velocity profiles, assuming a vp/vs value. The results from the three estimation techniques were consistent, and generally we found that the receiver functions constrained estimates of changes in wave speeds better than absolute values. We resolved that the crust is 30–39 km thick under the volcanic region and 28–32 km thick away from the volcanic region, with a midcrust velocity transition at about 10–15 km depth. We estimated that the average crust P-wave velocity is about 6.0–6.2 km/s surrounding the main volcanic region, while it is slightly lower in the vicinity of the main volcanic edifice. The estimates of vp/vs were more ambiguous, but we inferred that the bulk crustal Poisson's ratio (which is related to vp/vs) ranges between 0.20 and 0.30, with a suggestion that the Poisson's ratio is lower under the central volcanic region compared to the surrounding areas. We resolved low S-wave velocities (down to about 3 km/s) in the middle crust in the region of the main volcanic edifice. The low velocity anomaly extends from about 5–10 to 15–25 km below the surface, probably indicating a region of elevated temperatures. We were unable to determine if partial melt is present with the data we considered in this paper.  相似文献   

13.
江南造山带位于华南大陆扬子块体和华夏块体之间,其深部地壳结构与变形特征记录了扬子块体与华夏块体拼合与相互作用的痕迹,且在其内部与邻区发育了丰富的多金属矿床,并形成了巨型Cu-Au-Pb-Zn-Ag多金属成矿带,是深化认识华南大陆地壳演化、岩浆作用与成矿系统的关键地域。针对华南大陆地区的地壳结构与成矿过程,国家科技重点研发计划“华南陆内成矿系统的深部过程与物质响应”项目在该区实施了一条密集宽频带地震流动探测剖面,旨在探测其深部结构与物性变化特征和深部成矿背景。本文利用其中江西广昌-湖南浏阳段长320km的宽频带地震流动台站数据开展了远震P波接收函数研究,获得了剖面辖区深部地壳结构和Vp/Vs变化特征。研究结果表明:(1)剖面Moho界面深度在29~35km之间变化,呈近穹窿状分布,平均Moho界面深度为31km左右,低于全球大陆地壳平均值,且与地形高程在整体上呈镜像相关,均衡程度较好;(2)剖面沿线地壳Vp/Vs在1.64~1.83之间呈波浪状起伏变化,平均值为1.72左右,且华夏块体略高于江南造山带...  相似文献   

14.
We have developed a simple semblance-weighted stacking technique to estimate crustal thickness and average VP/VS ratio using teleseismic receiver functions. We have applied our method to data from 32 broadband seismograph stations that cover a 700 × 400 km2 region of the Grenville orogen, a 1.2–0.98 Ga Himalayan-scale collisional belt in eastern North America. Our seismograph network partly overlaps with Lithoprobe and other crustal refraction surveys. In 8 out of 9 cases where a crustal-refraction profile passes within 30 km of a seismograph station, the two independent crustal thickness estimates agree to within 7%. Our regional crustal-thickness model, constructed using both teleseismic and refraction observations, ranges between 34.0 and 52.4 km. Crustal-thickness trends show a strong correlation with geological belts, but do not correlate with surface topography and are far in excess of relief required to maintain local isostatic equilibrium. The thickest crust (52.4 ± 1.7 km) was found at a station located within the 1.1 Ga mid-continent (failed) rift. The Central Gneiss Belt, which contains rocks exhumed from deep levels of the crust, is characterized by VP/VS ranging from 1.78 to 1.85. In other parts of the Grenville orogen, VP/VS is found to be generally less than 1.80. The thinnest crust (34.5–37.0 km) occurs northeast of the 0.7 Ga Ottawa–Bonnechere graben and correlates with areas of high intraplate seismicity.  相似文献   

15.
Broadband receiver functions abstracted from teleseismicP waveforms recorded by a 3-component Streckeisen seismograph at Hyderabad, have been inverted to constrain the shear velocity structure of the underlying crust. Receiver functions obtained from the Hyderabad records of both shallow and intermediate focus earthquakes lying in different station-event azimuths, show a remarkable coherence in arrival times and shapes of the significant shear wave phases:Ps, PpPs, PsPs/PpSs, indicating horizontal stratification within the limits of resolution. This is also supported by the relatively small observed amplitudes of the tangential component receiver functions which are less than 10% of the corresponding radial component. Results of several hundred inversions of stacked receiver functions from closely clustered events (within 2°), show that the crust beneath the Hyderabad granites has a thickness of 36 ± 1 km, consisting of a 10 km thick top layer in which shear wave velocity is 3.54 ± 0.07 km/sec, underlain by a 26 ± 1 km thick lower crust in which the shear wave velocity varies uniformly with a small gradient of 0.02 km/sec/km. The shear wave velocity at its base is 4.1 ± 0.05 km/sec, just above the moho transition zone which is constrained to be less than 4 km thick, overlying a 4.74 ±0.1 km/sec half space.  相似文献   

16.
Through analysis of seismic ambient noise recorded by the GHENGIS array, we constructed a high‐resolution 3‐D crustal shear‐wave velocity model for the central Tien Shan. The obtained shear‐wave velocity model provides insight into the detailed crustal structure beneath the Tien Shan. The results obtained at shallow depths are well correlated with known subsurface geological features. Low velocities are found mainly beneath sedimentary basins, whereas high velocities are mainly associated with mountain ranges. At greater depths of ~43–45 km, high velocities were observed beneath the Tarim Basin and Kazakh Shield; these high velocities extend forward in opposite directions and tilt down towards the central Tien Shan to a depth of in excess of 50 km, most likely reflecting lateral variations in crustal thickness beneath the Tien Shan and surrounding platforms.  相似文献   

17.
The Rwenzori mountains in western Uganda, with a maximum elevation of more than 5,000 m, are located within the Albertine rift valley. We have deployed a temporary seismic network on the Ugandan side of the mountain range to study the seismic velocity structure of the crust and upper mantle beneath this section of the rift. We present results from a receiver-function study revealing a simple crustal structure along the eastern rift flank with a more or less uniform crustal thickness of about 30 km. The complexity of inner-crustal structures increases drastically within the Rwenzori block. We apply different inversion techniques to obtain reliable results for the thickness of the crust. The observations expose a significantly thinner crust beneath the Rwenzori range with thickness values ranging from about 20–28 km beneath northern and central parts of the mountains. Our study therefore indicates the absence of a crustal root beneath the Rwenzori block. Beneath the Lake Edward and Lake George basins we detect the top of a layer of significantly reduced S-wave velocity at 15 km depth. This low-velocity layer may be attributed to the presence of partial melt beneath a region of recent volcanic activity.  相似文献   

18.
In this study, the recent update of the gravity database with new measurements has raised the opportunity of improving the knowledge of the crustal structure beneath the large volcanic system called Mount Cameroon, and its implication in the regional tectonics. The multi-scale wavelet analysis method was applied to highlight the geologic features of the area, and their depths were estimated using the logarithmic power spectrum method. The results reveal a complex crustal structure beneath Mount Cameroon with high variation in the lateral distribution of crustal densities. The upper and lower crusts are intruded by dense materials originating from the mantle with less lateral extension. The trends of Tiko and Ekona faults along the intrusion suggest tectonic activities as deep as 25 km. The difference in mantle composition or temperature between the East and the West of the studied area is clearly seen in detailed wavelet images and agrees with a mantle origin for the Cameroon Volcanic Line.  相似文献   

19.
The Himalaya and Lhasa blocks act as the main belt of convergence and collision between the Indian and Eurasian plates. Their crustal structures can be used to understand the dynamic process of continent–continent collision. Herein, we present a 3D crustal density model beneath these two tectonic blocks constrained by a review of all available active seismic and passive seismological results on the velocity structure of crust and lower lithosphere. From our final crustal density model, we infer that the present subduction-angle of the Indian plate is small, but presents some variations along the west–east extension of the orogenic belt: The dip angle of the Moho interface is about 8–9° in the eastern and western part of the orogenic belt, and about 16° in the central part. Integrating crustal P-wave velocity distribution from wide-angle seismic profiling, geothermal data and our crustal density model, we infer a crustal composition model, which is composed of an upper crust with granite–granodiorite and granite gneiss beneath the Lhasa block; biotite gneiss and phyllite beneath the Himalaya, a middle crust with granulite facies and possible pelitic gneisses, and a lower crust with gabbro–norite–troctolite and mafic granulite beneath the Lhasa block. Our density structure (<3.2 g/cm3) and composition (no fitting to eclogite) in the lower crust do not be favor to the speculation of ecologitized lower crust beneath Himalaya and the southern of Lhasa block.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号