首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Archaean Peninsular Gneiss of southern India is considered by a number of workers to be the basement upon which the Dharwar supracrustal rocks were deposited. However, the Peninsular Gneiss in its present state is a composite gneiss formed by synkinematic migmatization during successive episodes of folding (DhF1, DhF1a and DhF2) that affected the Dharwar supracrustal rocks. An even earlier phase of migmatization and deformation (DhF*) is evident from relict fabrics in small enclaves of gneissic tonalites and amphibolites within the Peninsular Gneiss. We consider these enclaves to represent the original basement for the Dharwar supracrustal rocks. Tonalitic pebbles in conglomerates of the Dharwar Supergroup confirm the inference that the supracrustal rocks were deposited on a gneissic basement. Whole rock Rb-Sr ages of gneisses showing only the DhF1 structures fall in the range of 3100–3200 Ma. Where the later deformation (DhF2) has been associated with considerable recrystallization, the Rb-Sr ages are between 2500 Ma and 2700 Ma. Significantly, a new Rb-Sr analysis of tonalitic gneiss pebbles in the Kaldurga conglomerate of the Dharwar sequence is consistent with an age of ~2500 Ma and not that of 3300 Ma reported earlier by Venkatasubramanian and Narayanaswamy (1974). Pb-Pb ages based on direct evaporation of detrital zircon grains from the metasedimentary rocks of the Dharwar sequence fall into two groups, 3300–3100 Ma, and 2800–3000 Ma. Stratigraphic, structural, textural and geochronologic data, therefore, indicate that the Peninsular Gneiss of the Dharwar craton evolved over a protracted period of time ranging from > 3300 Ma to 2500 Ma.  相似文献   

2.
The earliest decipherable record of the Dharwar tectonic province is left in the 3.3 Ga old gneissic pebbles in some conglomerates of the Dharwar Group, in addition to the 3.3–3.4 Ga old gneisses in some areas. A sialic crust as the basement for Dharwar sedimentation is also indicated by the presence of quartz schists and quartzites throughout the Dharwar succession. Clean quartzites and orthoquartzite-carbonate association in the lower part of the Dharwar sequence point to relatively stable platform and shelf conditions. This is succeeded by sedimentation in a rapidly subsiding trough as indicated by the turbidite-volcanic rock association. Although conglomerates in some places point to an erosional surface at the contact between the gneisses and the Dharwar supracrustal rocks, extensive remobilization of the basement during the deformation of the cover rocks has largely blurred this interface. This has also resulted in accordant style and sequence of structures in the basement and cover rocks in a major part of the Dharwar tectonic province. Isoclinal folds with attendant axial planar schistosity, coaxial open folds, followed in turn by non-coaxial upright folds on axial planes striking nearly N-S, are decipherable both in the “basement” gneisses and the schistose cover rocks. The imprint of this sequence of superposed deformation is registered in some of the charnockitic terranes also, particularly in the Biligirirangan Hills, Shivasamudram and Arakalgud areas. The Closepet Granite, with alignment of feldspar megacrysts parallel to the axial planes of the latest folds in the adjacent schistose rocks, together with discrete veins of Closepet Granite affinity emplaced parallel to the axial planes of late folds in the Peninsular Gneiss enclaves, suggest that this granite is late-tectonic with reference to the last deformation in the Dharwar tectonic province. Enclaves of tonalite and migmatized amphibolite a few metres across, with a fabric athwart to and overprinted by the earliest structures traceable in the supracrustal rocks as well as in a major part of the Peninsular Gneiss, point to at least one deformation, an episode of migmatization and one metamorphic event preceding the first folding in the Dharwar sequence. This record of pre-Dharwar deformation and metamorphism is corroborated also by the pebbles of gneisses and schists in the conglomerates of the Dharwar Group. Volcanic rocks within the Dharwar succession as well as some of the components of the Peninsular Gneiss give ages of about 3.0 Ga. A still younger age of about 2.6 Ga is recorded in some volcanic rocks of the Dharwar sequence, a part of the Peninsular Gneiss, Closepet Granite and some charnockites. These, together with the 3.3 Ga old gneisses and 3.4 Ga old ages of zircons in some charnockites, furnish evidence for three major thermal events during the 700 million year history of the Archaean Dharwar tectonic province.  相似文献   

3.
Oldest rocks are sparsely distributed within the Dharwar Craton and little is known about their involvement in the sedimentary sequences which are present in the Archean greenstone successions and the Proterozoic Cuddapah basin.Stromatolitic carbonates are well preserved in the Neoarchean greenstone belts of Dharwar Craton and Cuddapah Basin of Peninsular India displaying varied morphological and geochemical characteristics.In this study,we report results from U-Pb geochronology and trace element composition of the detrital zircons from stromatolitic carbonates present within the Dharwar Craton and Cuddapah basin to understand the provenance and time of accretion and deposition.The UPb ages of the detrital zircons from the Bhimasamudra and Marikanve stromatolites of the Chitradurga greenstone belt of Dharwar Craton display ages of 3426±26 Ma to 2650±38 Ma whereas the Sandur stromatolites gave an age of 3508±29 Ma to 2926±36 Ma suggesting Paleo-to Neoarchean provenance.The U-Pb detrital zircons of the Tadpatri stromatolites gave an age of 2761±31 Ma to1672±38 Ma suggesting Neoarchean to Mesoproterozoic provenance.The Rare Earth Element(REE)patterns of the studied detrital zircons from Archean Dharwar Craton and Proterozoic Cuddapah basin display depletion in light rare earth elements(LREE)and enrichment in heavy rare earth elements(HREE)with pronounced positive Ce and negative Eu anomalies,typical of magmatic zircons.The trace element composition and their relationship collectively indicate a mixed granitoid and mafic source for both the Dharwar and Cuddapah stromatolites.The 3508±29 Ma age of the detrital zircons support the existence of 3.5 Ga crust in the Western Dharwar Craton.The overall detrital zircon ages(3.5-2.7 Ga)obtained from the stromatolitic carbonates of Archean greenstone belts and Proterozoic Cuddapah basin(2.7-1.6 Ga)collectively reflect on^800-900 Ma duration for the Precambrian stromatolite deposition in the Dharwar Craton.  相似文献   

4.
The Precambrian terranes of southern Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the southern and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents – Rodinia and Gondwana. These Proterozoic orogens are described as Southern Granulite Terrane (SGT) in the southern tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ∼400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear zone systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P–T paths, development of lithospheric shear zones, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale “flower structures”, transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a subvertical grain conducive to reactivation tectonics. Our synthesis of the spatial distribution, geometry, kinematics and the transpressional strain of the shear zone systems provides insights into the tectono-metamorphic history of the Proterozoic orogens of southern India and their contiguity and complexities. Recent understanding of subduction, accretion and collisional history along these zones together with a long lived transpressional tectonic regime imply that these orogens witnessed identical tectonic regimes at different times in Earth history, although the major and common structural architecture was built during the final assembly of the Gondwana supercontinent.  相似文献   

5.
《Tectonophysics》1987,135(4):307-327
The Kutch-Saurashtra, Cambay and Narmada basins are pericontinental rift basins in the western margin of the Indian craton. These basins were formed by rifting along Precambrian tectonic trends. Interplay of three major Precambrian tectonic trends of western India, Dharwar (NNW-SSE), Aravalli-Delhi (NE-SW) and Satpura (ENE-WSW), controlled the tectonic style of the basins. The geological history of the basins indicates that these basins were formed by sequential reactivation of primordial faults. The Kutch basin opened up first in the Early Jurassic (rifting was initiated in Late Triassic) along the Delhi trend followed by the Cambay basin in the Early Cretaceous along the Dharwar trend and the Narmada basin in Late Cretaceous time along the Satpura trend. The evolution of the basins took place in four stages. These stages are synchronous with the important events in the evolution of the Indian sub-continent—its breakup from Gondwanaland in the Late Triassic-Early Jurassic, its northward drifting during the Jurassic-Cretaceous and collision with the Asian continent in the Early Tertiary. The most important tectonic events occurred in Late Cretaceous time. The present style of the continental margins of India evolved during Early Tertiary time.The Saurashtra arch, the extension of the Aravalli Range across the western continental shelf, subsided along the eastern margin fault of the Cambay basin during the Early Cretaceous. It formed an extensive depositional platform continuous with the Kutch shelf, for the accumulation of thick deltaic sediments. A part of the Saurashtra arch was uplifted as a horst during the main tectonic phase in the Late Cretaceous.The present high thermal regime of the Cambay-Bombay High region is suggestive of a renewed rifting phase.  相似文献   

6.
In the Dharwar tectonic province, the Peninsular Gneiss was considered to mark an event separating the deposition of the older supracrustal Sargur Group and the younger supracrustal Dharwar Supergroup. Compelling evidence for the evolution of the Peninsular Gneiss, a polyphase migmatite, spanning over almost a billion years from 3500 Ma to 2500 Ma negates a stratigraphic status for this complex, so that the decisive argument for separating the older and younger supracrustal groups loses its basis. Correlatable sequence of superposed folding in all the supracrustal rocks, the Peninsular Gneiss and the banded granulites, indicate that the gneiss ‘basement’ deformed in a ductile manner along with the cover rocks. An angular unconformity between the Sargur Group and the Dharwar Super-group, suggested from some areas in recent years, has been shown to be untenable on the basis of detailed studies, A number of small enclaves distributed throughout the gneissic terrane, with an earlier deformational, metamorphic and migmatitic history, provide the only clue to the oldest component which has now been extensively reworked.  相似文献   

7.
Coupled paleomagnetic and geochronologic data derived from mafic dykes provide valuable records of continental movement. To reconstruct the Proterozoic paleogeographic history of Peninsular India, we report paleomagnetic directions and U-Pb zircon ages from twenty-nine mafic dykes in the Eastern Dharwar Craton near Hyderabad. Paleomagnetic analysis yielded clusters of directional data that correspond to dyke swarms at 2.37 Ga, 2.22 Ga, 2.08 Ga, 1.89–1.86 Ga, 1.79 Ga, and a previously undated dual polarity magnetization. We report new positive baked contact tests for the 2.08 Ga swarm and the 1.89–1.86 Ga swarm(s), and a new inverse baked contact test for the 2.08 Ga swarm. Our results promote the 2.08 Ga Dharwar Craton paleomagnetic pole (43.1° N, 184.5° E; A95 = 4.3°) to a reliability score of R = 7 and suggest a position for the Dharwar Craton at 1.79 Ga based on a virtual geomagnetic pole (VGP) at 33.0° N, 347.5° E (a95 = 16.9°, k = 221, N = 2). The new VGP for the Dharwar Craton provides support for the union of the Dharwar, Singhbhum, and Bastar Cratons in the Southern India Block by at least 1.79 Ga. Combined new and published northeast-southwest moderate-steep dual polarity directions from Dharwar Craton dykes define a new paleomagnetic pole at 20.6° N, 233.1° E (A95 = 9.2°, N = 18; R = 5). Two dykes from this group yielded 1.05–1.01 Ga 207Pb/206Pb zircon ages and this range is taken as the age of the new paleomagnetic pole. A comparison of the previously published poles with our new 1.05–1.01 Ga pole shows India shifting from equatorial to higher (southerly) latitudes from 1.08 Ga to 1.01 Ga as a component of Rodinia.  相似文献   

8.
《Gondwana Research》2014,25(1):190-203
Peninsular India forms a keystone in Gondwana, linking the East African and Malagasy orogens with Ediacaran–Cambrian orogenic belts in Sri Lanka and the Lützow Holm Bay region of Antarctica with similar aged belts in Mozambique, Malawi and Zambia. Ediacaran–Cambrian metamorphism and deformation in the Southern Granulite Terrane (SGT) reflect the past tectonic setting of this region as the leading vertex of Neoproterozoic India as it collided with Azania, the Congo–Tanzania–Bangweulu Block and Kalahari on one side and the Australia/Mawson continent on the other. The high-grade terranes of southern India are made up of four main tectonic units; from north to south these are a) the Salem Block, b) the Madurai Block, c) the Trivandrum Block, and d) the Nagercoil Block. The Salem Block is essentially the metamorphosed Dharwar craton and is bound to the south by the Palghat-Cauvery shear system — here interpreted as a terrane boundary and the Mozambique Ocean suture. The Madurai Block is interpreted as a continuation of the Antananarivo Block (and overlying Palaeoproterozoic sedimentary sequence — the Itremo Group) of Madagascar and a part of the Neoproterozoic microcontinent Azania. The boundary between this and the Trivandrum Block is the Achankovil Zone, that here is not interpreted as a terrane boundary, but may represent an Ediacaran rift zone reactivated in latest Ediacaran–Cambrian times.  相似文献   

9.
Abstract Two varieties of charnockites are recognized in the Dharwar craton of southern India. The style and sequence of structures in one charnockite variety, and related intermediate to basic granulites, are similar to those in the supracrustal rocks of the Dharwar Supergroup and the adjacent Peninsular Gneiss. This style has isoclinal folds with long limbs and sharp hinges with an axial planar fabric in some instances. Additional evidence of flattening is provided by pinch-and-swell and boudinage structures, with basic granulites forming boudins in the more ductile charnockites/enderbites in the limbs of isoclinal folds. These folds are involved in near-coaxial upright folding resulting in the bending of the axial planes of the isoclinal folds and the associated boudins. All these structures are overprinted by non-coaxial upright folds with axial planes striking nearly N–S. The map pattern of charnockites suggests that this sequence of structures is present not only on a mesoscopic scale, but also on a macroscopic scale. Charnockites of this variety provide, in some instances, evidence of having been migmatized to give rise to hornblende–biotite gneiss and biotite gneiss, which form a part of the Peninsular Gneiss terrane.
The second variety comprises charnockite sensu stricto with an entirely different structural style. This type occurs in the tensional domains of the hinge zones of the later buckle folds, in the necks of foliation boudinage, in shear zones and in release joints parallel to the axial planes of the later folds in the Peninsular Gneiss. Because the non-coaxial later folds are associated with a strain pattern different from, and later than, that of the isoclinal folds of the first generation, it follows that charnockites of the Dharwar craton have evolved in at least two distinct phases, separate both in time and in process.  相似文献   

10.
New geochemical data of the crater-facies Tokapal kimberlite system sandwiched between the lower and upper stratigraphic horizons of the Mesoproterozoic lndravati Basin a::e presented. The kimberlite has been subjected to extensive and pervasive low-temperature alteration. Spinel is the only primary phase identifiable, while olivine macrocrysts and juvenile lapilli are largely pseudomorphed (talc-serpentine- carbonate alteration). However, with the exception of the alkalies, major element oxides display systematic fractionation trends; likewise, HFSE patterns are well correlated and allow petrogenetic interpretation. Various crustal contamination indices such as (SiO2 + AI::O3 ~ Na20)](MgO ~ K20) and Si] Mg are close to those of uncontaminated kimberlites. Similar La]Yb ('79-109) of the Tokapal samples with those from the kimberlites of Wajrakarur (73-145) and Narayanpet (72-156), Eastern Dharwar craton, southern India implies a similarity in their genesis. In the discriminant plots involving HFSE the Tokapal samples display strong affinities to Group 1I kimberlites from southern Africa and central India as well as to 'transitional kimberlites' from the Eastern Dharwar craton, southern India, and those from the Prieska and Kuruman provinces of southern Africa. There is a striking ~;imilarity in the depleted-mantle (TOM) Nd model ages of the Tokapal kimberlite system, Bastar craton, th~ kimberlites from NKF and WKE Eastern Dharwar craton, and the Majhgawan diatreme, Bundelkhand craton, with the emplacement age of some of the lamproites from within and around the Palaeo~Mesoproterozoic Cuddapah basin, southern India. These similar ages imply a major tectonomagmatic event, possibly related to the break- up of the supercontinent of Columbia, at 1.3-1.5 Ga across the l:hree cratons. The 'transitional' geochemical features displayed by many of the Mesoproterozoic po~:assic-ultrapotassic rocks, across these Indian cratons are inferred to be memories of the metasomatisi  相似文献   

11.
Gondwana Basins of India occur within the suture zones of Precambrian cratonic blocks of Peninsular India along some linear belts. More than 99% of the total coal resource of the country is present within these basins. The basins are demarcated by boundary faults having graben or half-graben geometry.  相似文献   

12.
In many Precambrian provinces the understanding of the tectonic history is constrained by limited exposure and aeromagnetic data provide information below the surface cover of sediments,water,etc.and help build a tectonic model of the region.The advantage of using the aeromagnetic data is that the data set has uniform coverage and is independent of the accessibility of the region.In the present study,available reconnaissance scale aeromagnetic data over Peninsular India are analyzed to understand the magnetic signatures of the Precambrian shield and suture zones thereby throwing light on the tectonics of the region.Utilizing a combination of differential reduction to pole map,analytic signal,vertical and tilt derivative and upward continuation maps we are able to identify magnetic source distribution,tectonic elements,terrane boundaries,suture zones and metamorphic history of the region.The magnetic sources in the region are mainly related to charnockites,iron ore and alkaline intrusives.Our analysis suggests that the Chitradurga boundary shear and Sileru shear are terrane boundaries while we interpret the signatures of Palghat Cauvery and Achankovil shears to represent suture zones.Processes like metamorphism leave their signatures on the magnetic data:prograde granulites(charnockites)and retrograde eclogites are known to have high susceptibility.We fnd that charnockites intruded by alkali plutons have higher magnetization compared to the retrogressed charnockites.We interpret that the Dharwar craton to the north of isograd representing greenschist to amphibolite facies transition,has been subjected to metamorphism under low geothermal conditions.Some recent studies suggest a plate tectonic model of subductionecollisioneaccretion tectonics around the Palghat Cauvery shear zone(PCSZ).Our analysis is able to identify several west to east trending high amplitude magnetic anomalies with deep sources in the region from Palghat Cauvery shear to Achankovil shear.The magnetic high associated with PCSZ may represent the extruded high pressureeultra high temperature metamorphic belt(granulites at shallow levels and retrogressed eclogites at deeper levels)formed as a result of subduction process.The EW highs within the Madurai block can be related to the metamorphosed clastic sediments,BIF and mafc/ultramafc bodies resulting from the process of accretion.  相似文献   

13.
Crustal or mantle xenoliths are not common in evolved, tholeiitic flood basalts that cover huge areas of the Precambrian shields. Yet, the occasional occurrences provide the most direct and unequivocal evidence on basement composition. Few xenolith occurrences are known from the Deccan Traps, India, and inferences about the Deccan basement have necessarily depended on geophysical studies and geochemistry of Deccan lavas and intrusions. Here, we report two basalt dykes (Rajmane and Talwade dykes) from the central Deccan Traps that are extremely rich in crustal xenoliths of great lithological variety (gneisses, quartzites, granite mylonite, felsic granulite, carbonate rock, tuff). Because the dykes are parallel and only 4 km apart, and only a few kilometres long, the xenoliths provide clear evidence for high small-scale lithological heterogeneity and strong tectonic deformation in the Precambrian Indian crust beneath. Measured 87Sr/86Sr ratios in the xenoliths range from 0.70935 (carbonate) to 0.78479 (granite mylonite). The Rajmane dyke sampled away from any of the xenoliths shows a present-day 87Sr/86Sr ratio of 0.70465 and initial (at 66 Ma) ratio of 0.70445. The dyke is subalkalic and fairly evolved (Mg No. = 44.1) and broadly similar in its Sr-isotopic and elemental composition to some of the lavas of the Mahabaleshwar Formation. The xenoliths are comparable lithologically and geochemically to basement rocks from the Archaean Dharwar craton forming much of southern India. As several lines of evidence suggest, the Dharwar craton may extend at least 350–400 km north under the Deccan lava cover. This is significant for Precambrian crustal evolution of India besides continental reconstructions.  相似文献   

14.
Felsic magmatism associated with ocean–ocean and ocean–continent subduction processes provide important evidence for distinct episodes of crust-generation and continental lithospheric evolution. Rhyolites constitute an integral component of the tholeiitic to calc-alkaline basalt–andesite–dacite–rhyolite (BADR) association and contribute to crustal growth processes at convergent plate margins. The evolution of the Dharwar Craton of southern peninsular India during Meso- to Neoarchean times was marked by extensive development of greenstone belts. These granite-greenstone terranes have distinct volcano-sedimentary associations consistent with their geodynamic setting. The present study deals with geochemistry of rhyolites from the Chitradurga-Shimoga greenstone belts of western (WDC) and the Gadwal-Kadiri greenstone belts of eastern (EDC) sectors of Dharwar Craton to compare and evaluate their petrogenesis and geodynamic setting and their control on the continental lithospheric evolution of the Dharwar Craton. At a similar range of SiO2, Al2O3, Fe2O3, the rhyolites of WDC are more potassic, whereas the EDC rhyolites are more sodic and less magnesian with slight increase in TiO2. Minor increase in MgO content of WDC rhyolites reflects their ferromagnesian trace elements which are comparatively lower in the rhyolites of EDC. The relative enrichment in LILE (K, Rb) and depletion in HFSE (Nb, Ta, Zr, Hf) marked by negative Nb–Ta, Zr–Hf and Ti anomalies endorse the convergent margin processes for the generation of rhyolites of both the sectors of Dharwar Craton. The high silica potassic rhyolites of Shimoga and Chitradurga greenstone belts of WDC showing prominent negative Eu and Ti anomalies, flat HREE patterns correspond to Type 3 rhyolites and clearly point towards their generation and emplacement in an active continental margin environment. The geochemical characteristics of Gadwal and Kadiri rhyolites from eastern Dharwar Craton marked by aluminous compositions with low and fractionated HREE patterns and minor negative Eu anomalies are in conformity with Type 1 rhyolites and suggest that they were erupted in an intraoceanic island arc system. The overall geochemical systematics of the rhyolites from both the sectors of Dharwar Craton suggest a change in the geodynamic conditions from intraoceanic island arc of eastern Dharwar Craton and an active continental margin of western Dharwar marked by ocean–ocean subduction and migration of oceanic arc towards a continent followed by arc-continent collision that contributed for the evolution of continental lithosphere in the Dharwar Craton.  相似文献   

15.
Isotope and hydrochemical investigations have been carried out in the Ilkal area of Karnataka, India, in order to determine the source and mechanism of fluoride release into groundwaters and to understand groundwater hydrochemistry. Agriculture, granite quarrying and rock-polishing industries are the main occupations in this area. Closepet granite, Peninsular gneiss and Dharwar schists are the major geological formations. Results show that the fluoride concentration in groundwater is 0.3–6.5 mg/L and it is found to increase from recharge area to discharge area. Fluoride variability is found to be influenced by the geology of the area and depth wise correlation was not observed. Water samples are unsaturated with respect to fluorite, indicating the possibility of further increase in fluoride in groundwater. Positive correlations between fluoride with sodium and bicarbonate in groundwater show that high fluoride content and alkaline sodic characteristics are the result of dissolution of fluoride bearing minerals, possibly derived from weathered granite and gneiss. A positive correlation between fluoride and δ18O, and the presence of high tritium in fluoride-contaminated groundwater, point to contribution from surface waters, contaminated by anthropogenic activities. Dumping of rock wastes that are rich in fluoride into the streams by the rock-polishing industries plays a significant role in contaminating groundwater.  相似文献   

16.
The Kanigiri mélange within the Proterozoic Nellore–Khammam schist belt in southern Peninsular India includes ophiolitic fragments that represent the remnants of an oceanic plate. The ophiolitic units were accreted along a NE-trending suture that juxtaposes the Proterozoic Eastern Ghats Granulite Belt (EGGB) against the Archean Nellore Schist Belt of the Dharwar craton. The ophiolite components in the Kanigiri mélange include plagiogranites and gabbros which show mutually intrusive relations indicating their coeval nature. We report laser ablation-ICP-MS age data and REE geochemistry of zircons from the gabbro and granite. The zircons from both gabbro and granite show high REE contents, prominent HREE enrichment and a conspicuous negative Eu anomaly, suggesting a common melt source. Zircon REE abundances and normalized patterns show little intersample and intrasample variations. U–Pb dating of the zircons reveals prominent Mesoproterozoic ages for the plagiogranite, with the ca.1.33 Ga age of the Kanigiri ophiolitic mélange offering important clues for arc–continent collision during the final stages of amalgamation of the Columbia-derived fragments within the Neoproterozoic supercontinent assembly.  相似文献   

17.
The northern part of the Nellore–Khammam schist belt and the Karimnagar granulite belt, which are juxtaposed at high angle to each other have unique U–Pb zircon age records suggesting distinctive tectonothermal histories. Plate accretion and rifting in the eastern part of the Dharwar craton and between the Dharwar and Bastar craton indicate multiple and complex events from 2600 to 500 Ma. The Khammam schist belt, the Dharwar and the Bastar craton were joined together by the end of the Archaean. The Khammam schist belt had experienced additional tectonic events at \(\sim \)1900 and \(\sim \)1600 Ma. The Dharwar and Bastar cratons separated during development of the Pranhita–Godavari (P–G) valley basin at \(\sim \)1600 Ma, potentially linked to the breakup of the Columbia supercontinent and were reassembled during the Mesoproterozoic at about 1000 Ma. This amalgamation process in southern India could be associated with the formation of the Rodinia supercontinent. The Khammam schist belt and the Eastern Ghats mobile belt also show evidence for accretionary processes at around 500 Ma, which is interpreted as a record of Pan-African collisions during the Gondwana assembly. From then on, southern India, as is known today, formed an integral part of the Indian continent.  相似文献   

18.
The area adjoining the western part of Archaean Nellore schist belt and the eastern margin of the Proterozoic Cuddapah basin in south Peninsular India is marked by emplacement of a number of granite plutons of Proterozoic age, intermittently extending over a stretch of 350 km from Vinukonda in the north to Sri Kalahasti in the south. Vinukonda, Darsi, Podili and Anumalakonda plutons are intensely deformed particularly along the margins, while development of crude deformational fabric is noticed in Kanigiri, Rapur and Kayyuru-Vendodu plutons. Petrographically majority of these granites vary from alkali feldspar granite to granite with the exception of Rapur granite which varies from granite to granodiorite. Geochemically they exhibit calc-alkaline trend and in A/NK-A/CNK plot they are positioned at the juncture of peraluminous-metaluminous-peralkaline field. Characteristically, majority of these granites are fluorite bearing. Biotite mineral chemistry suggests high FeOT contents (31.68 to 34.69 %) and very low MgO contents (0.49 to 2.41 %). Geochemically, these are charecterised by high SiO2 (69 to 74.5 %), Na2O+K2O (8.19 to 10.11%), Zr (280–660ppm), Y (70–340 ppm), Rb content (180–370 ppm) and high REE contents (except Eu); and low CaO (0.01 to 1.99), MgO (0.01 to 0.92%) and Sr (10 ppm to 85 ppm) contents. Rare earth element studies reveal a general enrichment of LREE, pronounced negative Eu anomaly; flat and depleted HREE. Enriched LILE and HFSE contents; presence of fluorite and interstitial biotite indicate that these granites are crystallized from a fluorine saturated magma derived from enriched crustal source. The field setup, distinct mineralogy and chemical characteristics suggest that these granite plutons are emplaced along a major tectonic zone i.e. terrane boundary shear zone (TBSZ) in a late-orogenic to anorogenic tectonic setup, close to the vicinity of a collision boundary zone; western margin of NSB and eastern margin of Nallamalai Fold Belt (NFB). The Proterozoic granite magmatism reported in the present studies represents a significant event of Precambrian crustal growth at the juncture of two tectonically contrasting terranes i.e. the Archaean Nellore schist belt and the Proterozoic Cuddapah basin in eastern Dharwar craton.  相似文献   

19.
The tectonic history of Sri Lanka - India can be traced from the Precambrian to the present. On the basis of the geological record, plate tectonic processes have operated for example, the Highland Group of Sri Lanka may have represented a Precambrian plate tectonic suture. Tectonic models of these Precambrian events may be presented by spreading, collision, subduction, shearing or in situ jostling. The recent tectonic history of Sri Lanka and India relates to the evolution of the Indian Ocean since at least the Cretaceous. Although Sri Lanka is considered to be a part of the larger Indo - Australian plate, it may have had a local independent history as a block within the larger crustal unit of India. There is evidence that the separation of Sri Lanka from India was in part controlled by Precambrian structures and a history of translational, rotational and vertical adjustments to the Indian Ocean developmental plate tectonic stresses still operating.  相似文献   

20.
The Bentong‐Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the major structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana‐derived Sibumasu terrane in the west and Sukhothai Arc in the east. The BRSZ is genetically related to the sediment‐hosted/orogenic gold deposits associated with the major lineaments in the Central Gold Belt of Peninsular Malaysia. In this investigation, the Phased Array type L‐band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to map major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and curvilinear structures in the BRSZ, as well as their implication for sediment‐hosted/orogenic gold exploration in tropical environments. Major structural lineaments such as the Bentong‐Raub Suture Zone (BRSZ) and Lebir Fault Zone, ductile deformation related to crustal shortening, brittle disjunctive structures (faults and fractures) and collisional mountain range (Main Range granites) were detected and mapped at regional scale using PALSAR ScanSAR data. The major geological structure directions of the BRSZ were N–S, NNE–SSW, NE–SW and NW–SE, which derived from directional filtering analysis to PALSAR fine and polarimetric data. The pervasive array of N–S faults in the Central Gold Belt and surrounding terrain is mainly linked to the N–S trending of the Suture Zone. N–S striking lineaments are often cut by younger NE–SW and NW–SE‐trending lineaments. Gold mineralized trend lineaments are associated with the intersection of N–S, NE–SW, NNW–SSE and ESE–WNW faults and curvilinear features in shearing and alteration zones. Compressional tectonic structures such as the NW–SE trending thrust, ENE–WSW oriented faults in mylonite and phyllite, recumbent folds and asymmetric anticlines in argillite are high potential zones for gold prospecting in the Central Gold Belt. Three generations of folding events in Peninsular Malaysia have been recognized from remote sensing structural interpretation. Consequently, PALSAR satellite remote sensing data is a useful tool for mapping major geological structural features and detailed structural analysis of fault systems and deformation areas with high potential for sediment‐hosted/orogenic gold deposits and polymetallic vein‐type mineralization along margins of Precambrian blocks, especially for inaccessible regions in tropical environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号