首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°–20°) and at high angles in clay-rich layers (θi = 45°–86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.  相似文献   

2.
Our research focuses on Holocene tectonics in a broad area surrounding the junction between the active NW–SE trending Husavik-Flatey transform fault (HFF) and the N–S Gudfinnugja normal fault (GF), an exceptional example of onshore transform-ridge intersection. We mapped 637 minor and major faults, and measured the dip-slip and strike-slip offset components on the major faults. We also mapped 1016 individual tension fractures, as well as opening directions on the most reliable ones. The results indicate that this portion of the HFF comprises major right-stepping segments, with both normal and right-lateral strike-slip components, linked by local normal faults. The entire GF always shows pure dip-slip normal displacements, with a strong decrease in offset at the junction with the HFF. Fissure opening directions are in the range N45°-65°E along the HFF, N90°E along the GF, and N110°E within the area south of the HFF and west of the GF. Fault kinematics and fissure openings suggest a displacement field in good agreement with most of present-day GPS measurements, although our data indicate the possible long-term Holocene effects of the superimposition of magma-related stresses on the regional tectonic stresses. The HFF and the GF work together as a structural system able to accommodate differential crustal block motion, and possibly past dyke intrusions.  相似文献   

3.
Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within CambrianOrdovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19° to 62° in the Cambrian and 26° to 51° in the Ordovician, and their modes are 42° and 44° respectively. These data are significantly different from the ~60° predicted by the Coulomb fracture criterion. It is concluded that:(1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated with shallow burial;(2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting;(3) Sequential slip may have played an important role in forming conjugate fault intersections;(4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.  相似文献   

4.
Deformation studies require that geological bodies are kinematically moved along faults. Fault-parallel flow is one of a small number of kinematic restoration algorithms developed for this purpose. This scale-independent method describes how material nodes are displaced parallel to the fault plane, in the direction of fault movement. The one-dimensional strain of linear objects and two-dimensional strain of bodies within the hanging-wall during the restoration is shown for all cutoff angles and all angles of fault bends. A line moving over a fault bend is either shortened or extended depending on its initial orientation. However, the elongation of the line is significantly different under shortening and extension, with respect to the fault bend angle. The geometries of compressional fault systems, in which faults change angle by about 20 to 40°, generate low values of elongation. Modeling of extensional faults, which typically have steeper dips (60 to 80°) and therefore have tighter fault bends, causes high, unnatural values of elongation. The calculated strain ellipse ratios are directly proportional to the fault bend angle, corroborating the one-dimensional results. The fault-parallel flow method should be used primarily to kinematically restore and forward-model compressional faults, and other faults where the fault bend angles do not exceed 40°.  相似文献   

5.
江苏如东洋口地区断裂特征及其意义   总被引:1,自引:0,他引:1  
结合已有地热钻孔采用多种物探方法研究了江苏如东洋口地区断裂的空间展布特征。研究结果表明,洋口地区分布3组断裂,分别为隶属滨海断裂的北西向雁行型次级断裂、近东西向栟茶河断裂及海安-河口断裂。北西向雁行型次级断裂为4条,主要分布于洋口地区北段及老坝港地区,断裂陡倾,倾向北东,倾角70°-80°,推测切穿至新近系。栟茶河断裂由3条次级断裂组成,主要分布于洋口地区中段,断裂走向近东西,倾向北,整体呈曲折状延伸,倾角60°-80°。结合以往地震地质特征以及地热钻孔资料,认为栟茶河断裂为活动性断裂,切穿了第四纪全新世地层,全新世地层断距较小。断裂的活动性影响如东洋口经济开发区的建设与发展。海安-河口断裂自海安延伸至洋口地区南段,走向近东西,倾向南,倾角约为70°,切穿古近纪地层。洋口地区断裂的分布与该地区地热资源分布具有良好的对应关系,其对于该地区地热资源开发具有良好的指导意义。   相似文献   

6.
New structural and tectonophysical data, combined with the published geophysical and seismological evidence, were used to map the Late Cenozoic fault pattern and crustal stress in the Barguzin rift. Faults striking in the NE direction are the most abundant elements of the rift structure. A special part in the Late Cenozoic patterns of faults and stresses belongs to an over 400 km long N-S lineament which shows up as a system of separate fault segments between 110° and 110°30′ E. The Late Cenozoic evolution of the rift has been controlled mainly by extension punctuated with local shear stresses derived from the regional extension stress and accommodated by strike slip, combined with the dominant normal motion, along NE or N-NE faults and/or along their cross faults. Extension was of a relatively stable NW-SE direction, almost rift-orthogonal. The obtained fault pattern and stress maps can be used for reference in mapping seismic hazard associated with ongoing faulting in an active and changeable stress field.  相似文献   

7.
A series of small-scale gravity induced synsedimentary faults are described from the Middle Coal Measures (Westphalian B) of the South Wales Coalfield. The synsedimentary nature of the faults is indicated by abrupt changes in sediment thickness across faults, eroded fault scarps and the restriction of faulting to 8·75 m of sediment bounded by laterally persistent black shales above and a seatearth below. Evidence for the non-tectonic origin of the faults is given by the presence of passive footwalls. Channel sandstone bodies occurring within the hanging walls of individual faults were deposited by discrete overbank flood events. Drainage patterns during flood events were controlled by topographic lows adjacent to the faults such that palaeocurrent data within the channel sandstone bodies indicate a S/SW transport direction parallel to fault strike. Synsedimentary fault movements resulted in the diagonal stacking of successively younger sandstone bodies adjacent to the faults, and an increase in tilt of the bodies with depth from 0 → 26°. The architecture of channel sandstone bodies was controlled by (1) the amount of fault movement and (2) fault block dimensions (or fault spacing). The interaction of these controlling factors resulted in deposition of symmetrical channel sandstone bodies over narrow fault blocks (12 m wide) with large fault displacements (7 m), asymmetrical sandstone bodies over wide fault blocks (30 m) with large fault displacement (7.5 m), and limited channel sandstone body development over fault blocks with small fault displacements (1.5 m). Synsedimentary faulting is thought to have been initiated by either seismic shock and/or overpressuring of pore fluids within buried mudstones.  相似文献   

8.
李兴唐 《地质科学》1981,(3):212-222
地质体是在地壳演化中形成的,它是建造和构造形变的综合体。断裂化的地质体在较晚期构造力或工程载荷作用下沿已存在的断裂发生形变和位移的现象被称为迭加断裂,其形成过程即是迭加断裂作用。 本文以莫尔-库仑理论为基楚,探讨断裂发育与迭加断裂作用、构造应力场的关系,并对地质构造研究中的“断裂继承”,“断裂复活”进行定量的探讨。研究过程中承谷德振老师指导和鼓励,于此表示衷心的感谢。  相似文献   

9.
A statistical analysis was carried out to investigate spatial associations between natural seismicity and faults in southeastern Ontario and north-central New York State (between 73°18′ and 77°00′W and 43°30′ and 45°18′N). The study area is situated to the west of the seismically active St. Lawrence fault zone, and to the east of the Lake Ontario basin where recently documented geological and geophysical evidence points to possible neotectonic faulting. The weights of evidence method was used to judge the spatial associations between seismic events and populations of faults in eight arbitrarily defined orientation groups. Spatial analysis of data sets for seismic events in the periods 1930–1970 and post-1970 suggest stronger spatial associations between earthquake epicentres and faults with strikes that lie in the NW–SE quadrants, and weaker spatial associations of epicentres with faults that have strikes in the NE–SW quadrants. The strongest spatial associations were determined for groups of faults with strikes between 101° and 146°. The results suggest that faults striking broadly NW–SE, at high angles to the regional maximum horizontal compressive stress, are statistically more likely to be spatially associated with seismic events than faults striking broadly NE–SW. If the positive spatial associations can be interpreted as indicating genetic relationships between earthquakes and mapped faults, then the results may suggest that, as a population, NW–SE trending faults are more likely to be seismically active than NE–SW striking faults. Detailed geological studies of faults in the study area would be required to determine possible neotectonic displacements and the kinematics of the displacements.  相似文献   

10.
The Mondy strike-slip fault connects the W-E Tunka and N-S Hovsgol basins on the southern flank of the Baikal rift system. Ground penetrating radar (GPR) surveys in its damage zone provide constraints on thicknesses, dips, and plunges of fault planes, as well as on the amount and sense of vertical slip. Strike-slip faulting in the southern segment of the Mondy fault within the territory of Russia bears a normal slip component of motion along the W-E and NW planes. These motions have produced negative flower structures in shallow crust appearing as grabens upon Pleistocene fluvioglacial terraces. The amount of normal slip estimated from the displacement of reflection events varies over the area and reaches its maximum of 3.4 m near Mondy Village. In the Kharadaban basin link, left-lateral strike slip displaces valleys of ephemeral streams to 22 m, while normal slip detected by GPR reaches 2.2 m; this normal-to-strike slip ratio corresponds to a direction of ~ 6° to the horizon. The angles of dips of faults are in the range 75°-79°; the thicknesses of fault planes marked by low- or high-frequency anomalies in GPR records vary from 2.5 to 17.0 m along strike and decrease with depth within a few meters below the surface, which is common to near-surface coseismic motions. Many ruptures fail to reach the surface but appear rather as sinkholes localized mainly in fault hanging walls. The deformation style in the damage zone of the Mondy fault bears impact of the NW Yaminshin fault lying between its two segments. According to photoelasticity, the stress field changes locally at the intersection of the two faults, under NE compression at 38°, till the inverse orientations of principal compression and extension stresses. This stress pattern leads to a combination of normal and left-lateral strike slip components.  相似文献   

11.
12.
Strains in rocks can be observed but ancient stresses can only be inferred. We should re-examine the potential of strain geometry as the key to understanding and interpreting common shear structures ranging from faults to plastic shear zones. The concept of failure along zero extension directions can be applied to natural structures in rocks and is predicated on strain compatibility between differently strained volumes. Zero extension directions are considered for two strain configurations, plane strain (k=1) and uniaxial shortening (k=0). The crucial difference between shear fractures, or faults, and plastic yield zones is that the former are preceded by dilatation while the latter are isovolumetric. Volume changes during deformation affect the orientations of zero extension directions and hence of the resulting structures. With isovolumetric strain, yield occurs on planes at 45° to the principal shortening direction in plane strain and at 54.7° to this axis in uniaxial shortening. Uniaxial shortening experiments on rock samples allow estimation of the relative volumetric strains when yield zones initiate. When this volumetric strain is used to estimate the orientation of shear fractures in plane strain, ca 70° dips are predicted for normal faults at high crustal levels, decreasing downwards to 45°.  相似文献   

13.
Siting linear engineering projects on or near active faults is usually inevitable in areas of intense seismotectonic activity, such as Greece. To confidently site and mitigate fault rupturing associated hazards, the design and construction of these projects requires knowledge of exact location of active fault traces as well as determination of their characteristics. Detailed investigations of the geological structures were performed along the 500 km-long Athens-Thessaloniki route in mainland Greece, particularly of the potential for surface faulting across or in the vicinity of the most important transportation facilities and lifelines (highway, railway and natural gas pipeline). The identified faults were evaluated and classified as seismic, active and potentially active, on the basis of geologic and geomorphologic evidences of repeated displacements throughout the Quaternary, as well as on the basis of macroseismic data. The map of active faults was compiled, while the magnitude of possible surface displacements along these faults in case of seismic reactivation was estimated. The dominant faults in the study zone are exclusively of normal or oblique-slip character, striking E–W and acting under N–S oriented extensional stresses. It is estimated that many of the numerous active faults which are crossing the Athens-Thessaloniki route and the other linear lifelines are capable of causing a seismic surface displacement up to about 1 m.  相似文献   

14.
We present new constraints on an active low-angle normal fault system in the Città di Castello–Sansepolcro basin (CSB) of the northern Apennines of Italy. New field data from the geological survey of the Carta Geologica d'Italia (CARG project) define the surface geometry of the normal fault system and lead to an interpretation of the CROP 03 deep-crust seismic reflection profile (Castiglion Fiorentino–Urbania segment), with particular attention paid to the geometry of the Plio-Quaternary extensional structures. Surface and sub-surface geological data are integrated with instrumental and historical seismicity in order to define the seismotectonics of the area.Low-angle east-dipping reflectors are the seismic expression of the well-known Altotiberina Fault (AF), a regional extensional detachment on which both east- and west-dipping high-angle faults, bounding the CSB, sole out. The AF breakaway zone is located ~ 10 km west of the CSB. Within the extensional allochthon, synthetic east-dipping planes prevail. Displacement along the AF is ~ 4.5 km, which agrees with the cumulative offset due to its synthetic splays. The evolution of the CSB has mainly been controlled by the east-dipping fault system, at least since Early Pleistocene time; this system is still active and responsible for the seismicity of the area. A low level of seismic activity was recorded instrumentally within the CSB, but several damaging earthquakes have occurred in historical times. The instrumental seismicity and the intensity data points of the largest historical earthquakes (5 events with maximum MCS intensity of IX to IX–X) allow us to propose two main seismogenic structures: the Monte Santa Maria Tiberina (Mmax = 5.9) and Città di Castello (Mmax up to 6.5) normal faults. Both are synthetic splays of the AF detachment, dipping to the NE at moderate (45–50°) to low (25–30°) angles and cutting the upper crust up to the surface. This study suggests that low-angle normal faults (at least with dips of 25–30°) may be seismogenic.  相似文献   

15.
Secondary fractures at the tips of strike-slip faults are common in the ice shell of Europa. Large magnitude perturbed stress fields must therefore be considered to be a viable driving mechanism for the development of part of the fracture sequence. Fault motions produce extensional and compressional quadrants around the fault tips. Theoretically, these quadrants can be associated with tensile and compressive deformational features (i.e. cracks and anti-cracks), respectively. Accordingly, we describe examples of both types of deformation at fault tips on Europa in the form of extensional tailcracks and compressional anti-cracks. The characteristics of these features with respect to the plane of the fault create a fingerprint for the mechanics of fault slip accumulation when compared with linear elastic fracture mechanics (LEFM) models of perturbed stress fields around fault tips. Tailcrack kink angles and curving geometry can be used to determine whether opening accompanies sliding motion. Kink angles in the 50–70° range are common along strike-slip faults that resemble ridges, and indicate that little to no opening accompanied sliding. In contrast, tailcrack kink angles are closer to 30° for strike-slip faults that resemble bands, with tailcrack curvatures opposite to ridge-like fault examples, indicating that these faults undergo significant dilation and infill during fault slip episodes. Anti-cracks, which may result from compression and volume reduction of porous near-surface ice, have geometries that further constrain fault motion history, corroborating the results of tailcrack analysis. The angular separation between anti-cracks and tailcracks are similar to LEFM predictions, indicating the absence of cohesive end-zones near the tips of Europan faults, hence suggesting homogeneous frictional properties along the fault length. Tailcrack analysis can be applied to the interpretation of cycloidal ridges: chains of arcuate cracks on Europa that are separated by sharp kinks called cusps. Cusp angles are reminiscent of tailcrack kink angles along ridge-like strike-slip faults. Cycloid growth in a temporally variable tidal stress field ultimately resolves shear stresses onto the near-tip region of a growing cycloid segment. Thus, resultant slip and associated tailcrack development may be the driving force behind the initiation of the succeeding arcuate segment, hence facilitating the ongoing propagation of the cycloid chain.  相似文献   

16.
The active kinematics of the eastern Tibetan Plateau are characterized by the southeastward movement of a major tectonic unit, the Chuan-Dian crustal fragment, bounded by the left-lateral Xianshuihe–Xiaojiang fault in the northeast and the right-lateral Red River–Ailao Shan shear zone in the southwest. Our field structural and geomorphic observations define two sets of young, active strike–slip faults within the northern part of the fragment that lie within the SE Tibetan Plateau. One set trends NE–SW with right-lateral displacement and includes the Jiulong, Batang, and Derong faults. The second set trends NW–SE with left-lateral displacement and includes the Xianshuihe, Litang, Xiangcheng, Zhongdian, and Xuebo faults. Strike–slip displacements along these faults were established by the deflection and offset of streams and various lithologic units; these offsets yield an average magnitude of right- and left-lateral displacements of ~15–35 km. Using 5.7–3.5 Ma as the time of onset of the late-stage evolution of the Xianshuihe fault and the regional stream incision within this part of the plateau as a proxy for the initiation age of conjugate strike–slip faulting, we have determined an average slip rate of ~2.6–9.4 mm/year. These two sets of strike–slip faults intersect at an obtuse angle that ranges from 100° to 140° facing east and west; the fault sets define a conjugate strike–slip pattern that expresses internal E–W shortening in the northern part of the Chuan-Dian crustal fragment. These conjugate faults are interpreted to have experienced clockwise and counterclockwise rotations of up to 20°. The presence of this conjugate fault system demonstrates that this part of the Tibetan Plateau is undergoing not only southward movement, but also E–W shortening and N–S lengthening due to convergence between the Sichuan Basin and the eastern Himalayan syntaxis.  相似文献   

17.
多边断层在世界50多个沉积盆地中均有发现,它是指平面上走向多方位且相互交叉组合成多边形形态、具有层控特征的伸展断裂系统,主要发育在被动大陆边缘盆地和内克拉通盆地内的细粒沉积物中。这类断层为非构造成因断层,目前占主流地位的成因机制有密度反转、脱水收缩和重力载荷机制;与构造正断层相比,多边断层明显具有层控性、多边性和体积应变等方性等特点。共同的几何学特征有:延伸长度短,多为平直或铲式断层,倾角变化范围为30°~70°(平均为45°),走向随机,断层平面交叉组合呈多边形形态。多边断层对储层砂体形态以及流体、天然气水合物的运移和聚集具有重要的意义。文中综合了自多边断层提出以来的国内外研究资料,概括了多边断层发育的几何学特征和成因机制以及多边断层对流体运移的影响,希望能对中国以后的多边断层研究提供参考。  相似文献   

18.
The seismic hazard for the Lake Van basin is computed using a probabilistic approach, along with the earthquake data from 1907 to present. The spatial distribution of seismic events between the longitudes of 41–45° and the latitudes of 37.5–40°, which encompasses the region, indicates distinct seismic zones. The positions of these zones are well aligned with the known tectonic features such as the Tutak-Çald?ran fault zone, the Özalp fault zone, the Geva? fault zone, the Bitlis fault zone and Karl?ova junction where the North Anatolian fault zone and East Anatolian fault zone meet. These faults are known to have generated major earthquakes which strongly affected cities and towns such as Van, Mu?, Bitlis, Özalp, Muradiye, Çald?ran, Erci?, Adilcevaz, Ahlat, Tatvan, Geva? and Gürp?nar. The recurrence intervals of M s ≥ 4 earthquakes were evaluated in order to obtain the parameters of the Gutenberg–Richter measurements for seismic zones. More importantly, iso-acceleration maps of the basin were produced with a grid interval of 0.05 degrees. These maps are developed for 100- and 475- year return periods, utilizing the domestic attenuation relationships. A computer program called Sistehan II was utilized to generate these maps.  相似文献   

19.
Prediction of hydrocarbon column heights in structural traps critically depends on proper analysis of the sealing capacity of faults. Entrainment of clay in fault zones in upper crustal levels may lead to the development of continuous clay smears that dramatically increase the sealing capacity of faults. In this study, direct shear experiments on large-scale samples of layered sandstone–claystone–sandstone are simulated using two-dimensional discrete element numerical models to study the development of clay smears for different claystone types and normal stress conditions. Analysis of clay smear structures in terms of drag, slicing, wear and flow of clay reveals that drag is dominant at low shear displacements and high local stress concentrations, slicing and wear become important at higher shear displacement and low stresses at source bed near the fault zone. Correlation between critical fault displacements in the experiments and local stress ratios (shear stress divided by normal stress) in the models is used to determine smear failure and leakage for all claystones and normal stresses. A smear breach diagram with sealing/leaking conditions for faults containing clay smears shows that clay smears may be sealing at larger displacements than predicted by other fault seal algorithms, such as shale gouge ratio, in particular for low shale content and high normal stress.  相似文献   

20.
The contemporary structure of the West Sakhalin Terrane started to form in the Pleistocene and the process of its formation continues up to now in a setting of ENE (60°–90°) shortening. Evidence of the preceding NE (30°–45°) compression was revealed during the study. This compression prevailed in the Eocene–Pliocene. Under the settings of NE (30°–45°) compression, dextral displacements occurred along the West Sakhalin and Tym’–Poronai fault systems, bounding the West Sakhalin Terrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号