首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
扬-泰-靖地区地下水系统水力联系与硫酸盐污染特征   总被引:2,自引:0,他引:2  
本文对长江三角洲扬-泰-靖地区第四系松散层地下水中环境同位素(D、18O、34S)的分布特征进行了分析,旨在揭示大气降水、长江水、潜水及承压水之间的水力联系,辨别地下水中硫酸盐的来源及其污染状况。研究结果表明潜水含水层接受大气降水及长江水的补给,硫酸盐主要为农业污染来源或与海源硫酸盐的混合。承压含水层主要接受大气降水的补给,与潜水含水层及长江之间的水力联系较差,硫酸盐来源不同。在研究区顶部和沿江地段的浅层孔隙承压水中,硫酸盐来源于硫化物的氧化;在东部的深层孔隙承压水中,硫酸盐主要来源于硫酸盐岩的溶解或海源硫酸盐的滞留,基本未受到潜水或地表水中硫酸盐的污染。  相似文献   

2.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

3.
This study was based on the analysis of isotopic compositions of hydrogen and oxygen in samples from precipitation, groundwater and stream water. In addition, parts of groundwater samples were dated by carbon-14 and tritium. These data are integrated to provide other views of the hydrologic cycle in the Hsinchu-Miaoli groundwater district. The groundwater district is principally composed of Pleistocene and Holocene aquifers. The Pleistocene aquifers are highly deformed by folding and faults into small sub-districts with areas of only tens of square kilometers. These aquifers are exclusively recharged by local precipitation. The Holocene aquifers cover narrow creek valleys, only tens of meters in thickness. The local meteoric water line (LMWL), constructed from rainfall samples in the Hsinchu Science Park, is described by the equation δD=8.02δ18O+10.16, which agrees with the global meteoric water line. In addition, the precipitation isotopic compositions can be categorized into two distinct end members: typhoon type and monsoon type. The groundwater isotopic compositions are perfectly located on an LMWL and can be considered a mixture of precipitations. Based on the mass balance of isotopic compositions of oxygen and hydrogen, infiltration is more active in the rainy season with depleted isotopic compositions. The amount of infiltration during May–September is roughly estimated to comprise at least 55% of the whole year’s recharge. The isotopic compositions of stream water are expressed by a regression equation: δD=7.61δ18O+9.62, which is similar to the LMWL. Although precipitation isotopic compositions are depleted during summer time, the isotopic compositions contrarily show an enriched trend in the upstream area. This is explained by the opposite altitude effect on isotopic compositions for typhoon-related precipitations.  相似文献   

4.
The present work was conducted in the Sinai Peninsula (1) to identify the recharge and flow characteristics and to evaluate the continuity of the Lower Cretaceous Nubian Sandstone aquifer; and (2) to provide information for the aquifer's rational appraisal. Isotopic and hydrochemical compositions combined with the geological and hydrogeological settings were used for this purpose. A considerable depletion in isotopic content (oxygen-18 and deuterium) and low d-excess values exist in the studied groundwater, reflecting the contribution of old meteoric water that recharged the aquifer in pluvial times. Modern recharge also occurs from precipitation that falls on the aquifer outcrops. The wide scatter of the data points around the two meteoric lines, the global meteoric water line (GMWL) and Mediterranean meteoric water line (MMWL), in the δ18O–δD diagram indicates considerable variation in recharge conditions (amount, altitude, temperature, air masses, distances from catchment, overland flow, etc.). The isotopic composition in the El-Bruk area is minimum (18O=–9.53‰), very close to the average value of the Western Desert Nubian Sandstone (18O=–10‰), where the local structural and lithologic conditions retard groundwater flow and the main bulk of water becomes noncyclic. The continuity of the aquifer in northern and central Sinai is evidenced by the isotopic similarity between samples taken from above and below the central Sinai Ragabet El-Naam fault, the distribution of potentiometric head, and hydrogeological cross sections. The combination of isotopic composition in terms of 18O and chemical composition in terms of TDS and salt contents is the basis for separating the studied groundwater into groups that reflect the recharge sources and isotopic and chemical modifications during flow. Electronic Publication  相似文献   

5.
The integrated use of isotopic and hydrochemical tracers is an effective approach for investigating complex hydrological processes of groundwater. The stable isotope composition and hydrochemistry of the groundwater around Qinghai Lake were investigated to study the sources and recharge areas. Most of the groundwater points lie close to the local meteoric water line, indicating that the ground waters were recharged primarily from precipitation in the basin, though it had undergone varying degrees of evaporation. The hydrochemical analysis showed that the groundwater was mainly freshwater and that the hydrochemical type was Ca–Mg–HCO3; the results of the boomerang envelope model and solutes calculated indicated that the groundwater chemistry was mainly controlled by carbonate dissolution around Qinghai Lake. The recharge altitudes of groundwater were relatively low (at 3,400 m.a.s.l) on the northern shore of Qinghai Lake (locations G1 and G5), relatively high (above 3,900 m.a.s.l) on the southern shore (locations G3 and G4), and approximately 3,700 m.a.s.l on the western shore (location G2). Furthermore, groundwater samples from the fault zone (e.g., G3) would be recharged in part from fissure or inter-basin water. High salinity of groundwater on the western shore (location G2) was related with the evaporite dissolution, the groundwater is unsuitable for drinking, and the drinking water should be improved and enhanced in this area. Knowledge of our research can promote effective management of water resources in this cold and semiarid region and add new data to global groundwater database.  相似文献   

6.
宁夏南部月亮山西麓地下水化学特征研究   总被引:20,自引:1,他引:20       下载免费PDF全文
通过对宁夏南部月亮山西麓水文地质条件的研究,分析了研究区内含水层中地下水化学组分的特征以及各组分含量之间的相互依存关系,认为含水介质的矿物成分对该区内地下水组分影响显著,地下水同位素等分析显示,该区地下水的补给主要为现代大气降水,认为地下水化学组分的成因主要是溶滤作用和蒸发作用。  相似文献   

7.
Sources of groundwater recharge to the Badain Jaran Desert in China have been investigated using geochemical and isotopic techniques. Stable isotope compositions (δ18O and δ2H) of shallow groundwater and surface water from oasis lakes evolve from a starting composition considerably depleted compared to local unsaturated zone moisture, confirming inferences from chloride mass balance that direct infiltration of precipitation is not a volumetrically important source of recharge to the shallow aquifer in the study area. Shallow phreatic and deeper confined groundwater bodies appear unconnected based on chemical composition and radiocarbon activities. Hydrogeologic evidence points toward a bordering mountain range (Yabulai) as a likely recharge zone, which is consistent with tracer results. A mean residence time in the range of 1–2 ka for the desert’s southeastern margin is inferred from radiocarbon. These results reveal that some replenishment to the desert aquifer is occurring but at a rate much lower than previously suggested, which is relevant for water resources planning in this ecologically sensitive area.  相似文献   

8.
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of ?7.8‰ and ?53.0‰ for δ18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from ?10.6‰ to ?6.0‰ with an average of ?8.4‰ for δ18O and from ?85‰ to ?46‰ with an average of ?63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from ?11.6‰ to ?8.8‰ with an average of ?10.2‰ for δ18O and from ?89‰ to ?63‰ with an average of ?76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of 14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.  相似文献   

9.
An isotopic and chemical study was conducted on precipitation, spring water, streams, groundwater wells and submarine groundwater discharge (SGD) to constrain the recharge areas and flow paths of SGD. The isotopic values of precipitation were used to determine the local meteoric water lines (LMWLs) of Rishiri Island. The d-excess values of precipitation showed seasonal variation, with lows of 2.5‰ in the summer and highs of 24.2‰ in the winter. The d-excess values of spring water, streams, groundwater wells and SGD ranged from 12.5‰ to 23.0‰, indicating that the resulting waters were a mix of two seasons of precipitation. The isotopic composition of the groundwater wells sampled along the coast and SGD showed more negative values than that of the spring water sampled along the coast. This indicated that SGD recharged at high altitudes and flowed into the sea. The isotopic and chemical composition of SGD indicated unidirectional flow from land to sea.  相似文献   

10.
The isotopic composition of groundwater sources of the Sinai Desert was surveyed. The results are characterized by a large spread in the oxygen-18 and deuterium abundances, compared to equivalent systems from less arid climates. The variability reflects differences in the altitude at which precipitation occurred, the evaporation from stagnant surface waters prior to their infiltration into the ground and admixtures of waters which are not of meteoric or recent origin. It is difficult to distinguish between water sources recharged by direct infiltration and others recharged through the intermediary of flood waters, on the basis of their isotope composition. The isotopio composition enables a clearcut distinction, however, between paleowaters and more recently recharged groundwaters. Among the conclusions: paleowaters play a central role in the deep aquifers of desert areas; direct rain recharge to aquifers is widespread; surface waters which have undergone extensive evaporation contribute their water to local perched aquifers which are found along their route.  相似文献   

11.
The recharge sources and groundwater age in the Songnen Plain, Northeast China, were confirmed using environmental isotopes. The isotopic signatures of the unconfined aquifers in the southeast elevated plain and the north and west piedmont, cluster along local meteoric water lines (LMWLs) with a slope of about 5. The signature of source water was obtained by the intersection of these LMWLs with the regional meteoric water line (RMWL). This finding provides evidence that the recharge water for these areas originate from the Changbai Mountains and the Low and High Hingan Mountains, respectively. Groundwater in the unconfined aquifer in the low plain yields a LMWL with a slope of 4.4; its nitrate concentration indicates the admixture of irrigation return flow. The δ-values of the unconfined aquifer in the east elevated plain plot along the RMWL, reflecting recharge by local precipitation. The mean residence time of groundwater in these aquifers is less than 50?years. However, the 14C age of the groundwater in the confined Quaternary aquifer ranges from modern to 19,500?years, and in the Tertiary confined aquifer from 3,100 to 24,900?years. Modern groundwater is mainly recharged to the Quaternary confined aquifer on the piedmont by local precipitation and lateral subsurface flow.  相似文献   

12.
洞庭湖湖区降水-地表水-地下水同位素特征   总被引:8,自引:0,他引:8  
为探明洞庭湖湖区水体稳定同位素时间和空间上的变化规律,弄清各水体间的相互关系,分别在2012年4月和8月对区域内具有代表性的采样点进行了地表水和地下水的采样。通过对样品进行D、18O同位素分析,结合全球大气降水同位素监测网(GNIP)公布的1988—1992年间长沙降水同位素数据,发现湖区年内受不同盛行风影响,降水及地表水的同位素存在较大的季节性差异,4月份同位素富集,8月份贫化。此外,河水、湖水同位素也呈现明显的空间差异。两个时期地表水的水线斜率均小于当地降水线,地表水在两个时期均存在蒸发作用。虽然地表水和地下水的来源均为大气降水,但与地表水相比,地下水同位素季节变化较小,地下水接受地表水补给是一个较为长期的过程。  相似文献   

13.
Groundwater systems in the San Luis Valley, Colorado, USA have been re-evaluated by an analysis of solute and isotopic data. Existing stream, spring, and groundwater samples have been augmented with 154 solute and isotopic samples. Based on geochemical stratification, three groundwater regimes have been identified within 1,200 m of the surface: unconfined, upper active confined, and lower active confined with maximum TDS concentrations of 35,000, 3,500 and 600 mg/L, respectively. The elevated TDS of northern valley unconfined and upper active confined systems result from mineral dissolution, ion exchange and methanogenesis of organic and evaporate lake sediments deposited in an ancient lake, herein designated as Lake Sipapu. Chemical evolutions along flow paths were modeled with NETPATH. Groundwater ages, and δ13C, δ2H and δ18O compositions and distributions, suggest that mountain front recharge is the principle recharge mechanism for the upper and lower confined aquifers with travel times in the northern valley of more than 20,000 and 30,000 14C years, respectively. Southern valley confined aquifer travel times are 5,000 14C years or less. The unconfined aquifer contains appreciable modern recharge water and the contribution of confined aquifer water to the unconfined aquifer does not exceed 20%.  相似文献   

14.
The hydrodynamic groundwater data and stable isotopes of water have been used jointly for better understanding of upward leakage and mixing processes in the Djerid aquifer system (southwestern Tunisia). The aquifer system is composed of the upper unconfined Plio-Quaternary (PQ) aquifer, the intermediate (semi-)confined Complex Terminal (CT) aquifer and the deeper confined Continental Intercalaire (CI) aquifer. A total of 41 groundwater samples from the CT and PQ aquifers were collected during June 2001. The stable isotope composition of waters establishes that the CT deep groundwater (depleted as compared to present Nefta local rainfall) is ancient water recharged during late Quaternary time. The relatively recent water in the shallow PQ aquifer is composed of mixed water resulting from upward leakage and sporadic meteoric recharge. In order to characterize the meteoric input signal for PQ in the study area, rainfall water samples were collected during 4 years (2000–2003) at the Nefta meteorological station. Weighted mean values of isotopic contents with respect to rainfall amounts have been computed. Despite the short collection period in the study area, results agree with those found in Beni Abbes (southwestern Algerian Sahara) by Fontes on 9 years of rainfall surveillance. Stable isotopic relationships provide clear evidence of shallow PQ aquifer replenishment by deep CT groundwater. The 18O/upward leakage rate allowed the identification of distinctive PQ waters related to CT aquifer configuration (confined in the western part of the study area, semi-permeable in the eastern part). These trends were confirmed by the relation 18O/TDS. The isotope balance model indicated a contribution of up to 75% of the deep CT groundwater to the upper PQ aquifer in the western study area, between Nefta and Hazoua.  相似文献   

15.
乌兰布和沙漠北部地下水资源的环境同位素探讨   总被引:8,自引:4,他引:8       下载免费PDF全文
工作范围在乌兰布和沙漠北部,面积共约4200km2.年平均降水量85~140mm,由西南向东递增,降水同位素组成δD~δ18O恰与Craig线一致,并与阿拉善地区相同.测得地下水中同位素含量范围,δ18O为-74‰~121‰,氚为0~190TU,14C为17~97pMC.由地下水同位素组成区别出与降水线平行或相交的6种类型.从所有地下水水点,以及可能有补给关系的其它水点的各类同位素关系,包括δ18O,T,δ13C和pMC,识别出两类承压水的各3个补给源和潜水的3个补给源,并区别出一组氚含量极低的潜水,对不同位置的承压水和潜水,由其同位素关系估算出了各补给源的组成和变幅.  相似文献   

16.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

17.
Huang  Xiangui  Ping  Jianhua  Leng  Wei  Yu  Yan  Zhang  Min  Zhu  Yaqiang 《Hydrogeology Journal》2021,29(6):2149-2170

Studies on groundwater recharge are essential for sustainable exploitation of groundwater resources, especially in areas of extensive groundwater exploitation such as the Anyanghe River alluvial fan (ARAF) in the North China Plain (NCP). However, the recharge sources and processes and the contribution of each recharge flow component remain unclear. This study used hydrochemistry, stable isotopes, and tritium to investigate sources and underlying processes of groundwater recharge, along with the steady flow Mixing Cell Model (MCMsf) to quantify the proportion of each source flow for the shallow confined groundwater system in the medial fan. The results showed that groundwater mainly originates from precipitation occurring on the eastern Taihang Mountain area with average elevation estimated at 700–1,000 m above sea level during the East Asia summer monsoon period since 1952. Recharge mechanisms are: (1) river water seepage for the unconfined aquifers of the proximal and medial fan; (2) lateral flow for the confined aquifers of the medial and distal fan; and (3) precipitation infiltration for the phreatic water system. The MCMsf simulation showed that the shallow confined groundwater system in the central zone of the medial fan mainly recharged by the lateral flow from the proximal fan, a constant and considerable recharge flow from the southwestern and southern hills, and river water seepage in the medial fan; the lateral recharge flow from the Zhanghe alluvial aquifer was insignificant by comparison. The results of this study can act as a valuable reference for sustainable groundwater management in the ARAF.

  相似文献   

18.
The characteristics of δD and δ18O in precipitation, groundwater and surface water have been used to understand the groundwater flow system in the Ordos Plateau, north-central China. The slope of the local meteoric water line (LMWL) is smaller than that of the global meteoric water line (GMWL), which signifies secondary evaporation during rainfall. The distribution of stable isotopes of precipitation is influenced by temperature and the amount of precipitation. The lake water is enriched isotopically due to evaporation and its isotopic composition is closely related to the source of recharge and location in the groundwater flow systems. River water is enriched isotopically, indicating that it suffers evaporation. The deep groundwater (more than 150?m) is depleted in heavy isotopes relative to the shallow groundwater (less than 150?m), suggesting that deep groundwater may have been recharged during the late Pleistocene and early Holocene, when the climate was wetter and colder than at present. All groundwater samples plot around the LMWL, implying groundwater is of meteoric origin. Shallow groundwater has undergone evaporation and the average evaporation loss is 53%. There are two recharge mechanisms: preferential flow, and the mixture of evaporated soil moisture and subsequent rain.  相似文献   

19.
Hydrogeochemistry and isotopes were used to understand the origin and geochemical evolution in the Habor Lake Basin, northwestern China. Groundwater samples were taken, and the isotopic compositions δD, δ18O and major ions were analyzed. The groundwater can be divided into three types: the Quaternary groundwater, the shallow Cretaceous groundwater and the deep Cretaceous groundwater. The groundwater chemistry is mainly controlled by the feldspar weathering and dolomite weathering, the dissolution of Glauber’s salt, and cation exchange. Chemistry of lake water is mainly controlled by evaporation and precipitation. The stable isotopes of oxygen and hydrogen in groundwater cluster along the local meteoric water line, indicating that groundwater is of meteoric origin. Comparing with shallow groundwater, deep groundwater is depleted in heavy isotopes indicating that deep groundwater was recharged during late Pleistocene and Holocene, during which the climate was more wetter and colder than today.  相似文献   

20.
This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount. Measured discharge temperatures of the cold waters range from 16.0 to 26.5 °C and the hot waters from 32.1 to 68.2 °C. All waters exhibited a near-neutral pH of 6.0–7.6. The thermal waters had a high total dissolved solids (TDS) content of up to 2527 mg/l, while the TDS for cold waters was 659.0–852.0 mg/l. Chemical analyses suggest that two main types of water exist: hot waters in the upflow area of the Ca–Na–SO4 type (Hammam Righa) and cold waters in the recharge zone of the Ca–Na–HCO3 type (Zaccar Mount). Reservoir temperatures were estimated using silica geothermometers and fluid/mineral equilibria at 78, 92, and 95 °C for HR4, HR2, and HR1, respectively. Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin. We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1–2.2 km. The hot waters then interact at depth with Triassic evaporites located in the hydrothermal conduit (fault), giving rise to the Ca–Na–SO4 water type. As they ascend to the surface, the thermal waters mix with shallower Mg-rich groundwater, resulting in waters that plot in the immature water field in the Na–K–Mg diagram. The mixing trend between cold groundwaters from the recharge zone area (Zaccar Mount) and hot waters in the upflow area (Hammam Righa) is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6 < R < 29.2 %. We summarize these results with a geothermal conceptual model of the Hammam Righa geothermal field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号