首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
To improve the ecological environment in China, the Chinese government implemented a country-wide ecological protection and reforestation project (namely the “Grain for Green Project”) in 1999 to return cultivated land with slopes of 25° or more to perennial vegetation. Vegetation restoration reduces soil erosion mainly by changing the soil physical properties. Different vegetation restoration methods might produce different impacts on soil physical properties. In this study, two vegetation restoration methods (i.e., natural restoration and artificial restoration) were compared on abandoned farmland in the typically hilly and gullied areas of the Loess Plateau of Northwest China. In the natural restoration method, the farmland was abandoned to natural vegetation succession without irrigation, fertilization or other artificial disturbances. In the artificial restoration method, the farmland was planted with black locust (Robinia pseudoacacia L.) and watered and cultivated for the first two years. Three soil physical properties (i.e., soil moisture, bulk density and aggregation) were investigated under the two vegetation restoration methods. The results showed that the soil moisture and soil bulk density were higher under artificial restoration than under natural restoration within the first three years of vegetation restoration. By the fourth year, the soil moisture and soil bulk density were higher under natural restoration than under artificial restoration. For the stability of soil aggregates?>?0.25 mm, the soil aggregates in the 0-20 cm soil layer were more stable under artificial restoration than under natural restoration, while the results were the opposite for the 40-60 cm soil layer. Overall, the soil physical properties were continuously improved during the restoration of vegetation on abandoned farmland. In choosing between vegetation restoration methods, natural restoration is preferable to artificial restoration, but artificial intervention is needed during the first three years.  相似文献   

2.
为探明土地利用变化对黄土高原长期土壤水分平衡的影响,利用校验的Hydrus-1D模型模拟黄土高原北部神木六道沟小流域1981—2050年农耕地—苜蓿草地—天然草地情景下0~4 m土壤水分变化过程,量化土壤储水量、深层渗漏和蒸散发等水文变量的演变特征。结果显示:①农耕地期间年降水的88%为蒸散发消耗,11%为渗漏损失。②苜蓿草地种植后6 a内,蒸散发大幅增加至年降水的108%,土壤水分负平衡,0~4 m土壤储水量以52 mm/a的速率降低;至7~13 a,年降水几乎全部被蒸散发消耗。③苜蓿草地转变为天然草地后,蒸散发量下降31%,土壤水分以45 mm/a的速率逐渐补给,之后年降水量的92%用于蒸散发,8%为渗漏消耗,土壤水分处于相对稳定状态。研究表明不同土地利用方式下的土壤水分平衡模式具有显著差异,种植高耗水植被可造成土壤水分负平衡,导致土壤干燥化,进而对土壤水分补给产生负面效应,改变植被类型可使土壤干层得到有效改善。  相似文献   

3.
This study characterized and compared changes in vegetation condition in areas with different gradients during the past three decades across the entire Loess Plateau. For this purpose, changes in vegetation type and vegetation coverage at sites with 0 – 15° and >15° slope gradients were determined by analyzing land use data and Normalized Difference Vegetation Index (NDVI) data, respectively. The software Arc/Info 9.3, land use transformation matrix, linear regression analysis, and Mann–Kendall test were used for the data processing and analysis. Policy influences, human impacts, and climate variability were also taken into account to find the reasons for vegetation condition change. The results indicated that the “Grain-For-Green” project achieved initial success. Areas of farmland and grassland changed most extensively, and far greater areas of farmland were transformed into forest and grassland than vice versa. Moreover, the conversion of farmland to forest and grassland mainly occurred in areas where slopes exceeded 15°, while grassland was mainly changed to farmland in areas with gentle slopes. Vegetation coverage on the Loess Plateau exhibited overall increases after the implementation of “Grain-For-Green” project. Regions with sparse vegetation have declined sharply, mostly in steeply sloped areas. Vegetation coverage has increased significantly in most regions, particularly in the parts traversed by the principal sediment source of the Yellow River, which could help to control the severe soil and water losses. However, regions with sparse vegetation on the Loess Plateau still covered 71.1 % of the total area in 2010. Therefore, it is important to further increase vegetation coverage in the future.  相似文献   

4.
Soil aggregate stability has been known as one of the most important soil properties which is influenced by cultivation system. This study investigates the effect of different cultivation systems on aggregate stability indices in two statuses of dry (DSA?>?0.25 mm) and wet (WSA?>?0.25 mm). The study was done in six cultivation systems consisting wheat, barley, maize, alfalfa, fallow, and plowed farms. The results showed that aggregate stability indices affected significantly by the type of cultivation system. In contrast, no meaningful effect of soil depth (0–10 and 10–20 cm) on selected soil properties was observed. In addition, soil primary particles as well as organic carbon differed significantly between the cultivation systems. Wheat and alfalfa farms consisted of larger aggregates, while water-stable aggregate for wheat found to be in a greater degree. Moreover, wheat and barley showed the highest contents of organic carbon. The results of WSA?>?0.25 mm indicated that the correlation coefficients for sand, silt, clay, and organic carbon contents were ?0.67, 0.74, 0.12, and 0.70, respectively. Compared to the DSA?>?0.25 mm, the effect of soil organic carbon on the WSA?>?0.25 mm was arisen while the influence of clay fraction reduced.  相似文献   

5.
Urban soil nitrogen and phosphorus have significant implications for the soil and water quality in urban areas. The concentrations of total nitrogen (TN) and total phosphorus (TP) of soil samples collected from six types of land use, which included residential area (RA), business area (BA), classical garden (CG), culture and education area (CEA), public green space (PGS) and roadside area (RSA) of Beijing urban area, were investigated. Results showed that the geometric mean of TP (857 mg/kg) in urban soils was slightly higher than that (745 mg/kg) in rural soils of Beijing. The concentration of soil TP was higher in the center of the city, and showed an increasing trend with the age of the urban area. The TP concentrations in the six types of land use followed the sequence of CG > BA > RSA > RA > CEA > PGS, which were affected by the use and disposal of phosphorus-containing materials in each type of land use. However, the geometric mean of TN (753.8 mg/kg) in urban soils was much lower than that (1,933.3 mg/kg) in rural soils. TN level in urban soils of Beijing had no correlation with the city’s urbanization history, and was influenced by the coverage of natural vegetation and human activities in each type of land use. This study suggested that the city’s urbanization history and land use were the main factors affecting the distribution of nitrogen and phosphorus in urban soils.  相似文献   

6.
The Loess Plateau is well known to the world because of its thick loess and severe soil erosion. Loess is a highly erosion-prone soil that is considerably susceptible to water erosion. The Loess Plateau also has a long cultivation history, hence population growth, vegetation degeneration serious soil and water loss were obviously problems on Loess Plateau. This article analyzes several strategies of soil and water conservation on the Loess Plateau, such as terracing, planting trees, natural vegetation rehabilitation and construction of warp land dams. Different periods had different strategies of soil and water conservation and each strategy had its characteristics and effects. Finally, the research directions and future perspectives of the Loess Plateau were discussed, including the strategies of sustainable eco-environment of Loess Plateau in China.  相似文献   

7.
Large-scale vegetation restoration in China’s Loess Plateau has been initiated by the central government to control soil and water losses since 1999. Knowledge of the spatio-temporal distribution of soil water storage (SWS) is critical to fully understand hydrological and ecological processes. This study analysed the temporal stability of the SWS pattern during the rainy season on a hillslope covered with Chinese pine (Pinus tabulaeformis Carr.). The soil water content in eight soil layers was obtained at 21 locations during the rainy season in 2014 and 2015. The results showed that the SWS at the 21 locations followed a normal distribution, which indicated moderate variability with the coefficients of variation ranging from 14 to 33%. The mean SWS was lowest in the middle slope. The spatial pattern of SWS displayed strong temporal stability, and the Spearman correlation coefficient ranged from 0.42 to 0.99 (p < 0.05). There were significant differences in the temporal stability of SWS among different soil layers (p < 0.01). The spatial patterns of SWS distribution showed small differences in different periods. The best representative locations of SWS were found at different soil depths. The maximum RMSE and MAE at 0–1.6 m soil depth for the rainy season were 4.27 and 3.54 mm, respectively. The best representative locations determined during a short period (13 days) can be used to estimate the mean SWS well for the same rainy season, but not for the next rainy season. Samples of SWS collected over a fortnight during the rainy season were able to capture the spatial patterns of soil moisture. Roots were the main factor affecting the temporal stability of SWS. Rainfall increased the temporal stability of the soil water distribution pattern. In conclusion, the SWS during the rainy season had a strong temporal stability on the forestland hillslope.  相似文献   

8.
A regional scale investigation was performed to study the contamination and transfer of Ni, Cr, Co, Al, Cd and Hg and their relations with Fe, V and Ti in the soil-rice system under actual field conditions from a typical developed industrial area. Thirty-two pairs of rice and soil samples were collected in Suzhou region, China. The results show that the transfer abilities of potentially toxic elements (PTEs) were generally in the order of Cd > Hg > Co > Ni > Cr > Al from soil to root, Hg > Cr > Al > Ni > Cd > Co from root to straw and Ni > Hg > Cr > Cd > Al > Co from straw to grain. Compared with the relevant criterion, the major pollutants in rice grains were Al and Ni. 18.8 and 12.5 % of grain samples were contaminated by Al and Ni, respectively. Besides the increased soil PTEs concentrations, the enhanced transfer of Ni and Al from rice root to grain via straw may play another crucial role in Ni and Al contamination of rice grain. The relatively weaker transfer ability of Co in the rice plant may be conducive to the rice grain keeping an uncontaminated level of Co. Additionally, Al, Ni, Cr and Co showed high correlations with each other, and they also had a close association with Fe, V and Ti in soil and rice. These correlations imply that Fe, V and Ti may play an important role in the transfer, accumulation and speciation of Al, Ni, Cr and Co in the soil-rice system.  相似文献   

9.
Soil crust and slope angle are of important factors affecting runoff production and sediment yield. In the hilly areas of the Loess Plateau, North China, slope lands are distributed extensively and subjected to soil crusting; therefore, the research on the responses of runoff and soil loss to soil crust and slope angle is essential to soil and water conservation. In the study, five pairs of 1 m × 5 m plots with slope angles of 5°, 10°, 15°, 20° and 25° respectively, were established in Wangjiagou watershed, which was located at the Loess Plateau, China. Based on the two simulated rainfall events, uncrusted surface prior to the first simulated rainfall event, and crusted surface prior to the second rainfall event were distinguished. The runoff production and soil loss were measured at intervals of 5 min during the simulated events. It indicated that both soil crust and slope angle played an important role in runoff production and soil loss. With the reference slope angle of 5°, the relative importance of soil crust and slope angle in runoff production was calculated. It showed that soil crust effect on the total runoff volume decreased from 100 to ~40%, while slope angle effect increased from 0 to ~60% with increasing slope angle because soil crust less developed on the steeper slopes. Furthermore, soil crust effect was associated with rainfall duration. At the same slope angle, the relative importance of soil crust decreased with rainfall duration because new crust was formed on the uncrusted surface. The critical slope of erosion was also discussed. Soil loss increased with slope angle when the slope angle was less than 20°. Generally speaking, soil crust effect decreased with slope angle and/or rainfall duration.  相似文献   

10.
黄土高原关键带全剖面土壤水分空间变异性   总被引:2,自引:0,他引:2       下载免费PDF全文
土壤水分是黄土高原关键带水循环、地下水补给和植被恢复的关键因素。为揭示黄土高原关键带黄土整个剖面的土壤水分空间变化特征,通过土芯钻探的方式获取了黄土高原关键带5个典型样点(杨凌、长武、富县、安塞和神木)从地表到基岩的土壤水分样品,采用经典统计学和地统计学相结合的方法分析了剖面土壤水分的分布规律、变异特征及空间结构。结果表明:黄土高原关键带剖面土壤水分从南往北,土壤平均含水量由高变低;5个样点的土壤水分均为中等变异,随着深度由40 m增加到200 m,土壤水分变异性变弱,且样点之间的土壤含水量差异降低;地统计学分析表明样点的半方差函数能被理论模型较好地拟合(杨凌除外),指数模型能够描述大部分样点深剖面的空间变异结构。相关结果有助于了解黄土高原深层土壤水分状况及分布规律,对于黄土高原土壤水资源估算和区域植被恢复具有重要价值。  相似文献   

11.
Groundwater is a vital source for domestic and irrigation purposes in the loess area of Northwest China where climate is arid. However, the quality of groundwater in this area is deteriorating due to intensive industrial and agricultural activities, and this has a great adverse impact on human health. In order to better understand the pollution status of groundwater and the health risks to local residents, comprehensive water quality index was applied to assess the quality of drinking water in Yulin City, Northwest China, and sodium adsorption ratio, sodium percentage, residual sodium carbonate and permeability index were used to evaluate the quality of irrigation water. Moreover, the health risks caused by ingestion of groundwater were evaluated using the model proposed by the Ministry of Environmental Protection of the PR China. The results show that all groundwater samples for irrigation will not induce soil salinization, but more than half of them are not suitable for drinking, and Fe, Mn, TH, Mg2+ and NO3–N are the common contaminants which are mainly from natural processes, industrial and agricultural activities. The health risk assessment indicates that children face greater non-carcinogenic risk than adults. The order of contribution of contaminants to non-carcinogenic risk is NO3 ? > As > F? > Fe > Mn > Ba2+ > Cr6+ > Zn > NO2 ?. The average carcinogenic risk of carcinogens (Cr6+ and As) is 1.17 × 10?4 and 1.37 × 10?4 for adults and children, respectively, which surpasses the permissible level (1 × 10?6) stipulated by the Ministry of Environmental Protection of the PR China. Hence, effective measures are highly demanded to manage groundwater pollution and reduce the risks to human health.  相似文献   

12.
Understanding of the landscape response to agricultural practices mainly in relation to soil trace metals requires particular attention. Consistent with this, the trend and possible pollution of total and DTPA fraction of Mn, Zn, Cu, and Cd in the agricultural soils developed on different landscape positions involving piedmont alluvial plain (PAP), river alluvial plain (RAP), plateau (PL), and lowland (LL) were investigated. The content of the metal in different soil profiles, grouped by landscape positions, varied in the following orders: total and DTPA-Mn as LL > PAP > RAP > PL, total Zn and Cu as PAP > RAP > LL > PL, total Cd as RAP > PAP > PL > LL, DTPA-Zn as RAP > PAP > PL > LL, and DTPA-Cu as RAP > LL > PL > PAP. A wide variation in the total fraction of Mn (89–985 mg kg?1), Zn (24–152 mg kg?1), Cu (8–27 mg kg?1), and Cd (0.6–1.7 mg kg?1) and in the DTPA fraction of Mn (1.2–11 mg kg?1), Zn (0.3–4.4 mg kg?1), Cu (0.3–3 mg kg?1), Cd (0.03–0.09 mg kg?1) observed as a result of the effects of agricultural practices and landscape properties. The values of both total and DTPA-extractable Mn, Zn, and Cu were enriched in the AP horizon probably due to anthropogenic activities particularly successive use of agrochemical compounds and manure during numerous years. Using soil pollution indices [single pollution (PI) and comprehensive pollution (PIN)], the study soils were categorized mainly as low to moderate pollution and Zn was identified as the major element affecting on the yield of these indices.  相似文献   

13.
Ma  J. Y.  Li  Z. B.  Ma  B. 《Natural Hazards》2020,104(1):51-72

Gully slope is one of the most active areas of soil erosion in small watershed of the Chinese Loess hilly–gully region. Although its soil erosion has been effectively controlled with the implementation of the “Grain-for-Green Program” in this region, the soil water storage and distribution have been also impacted. In particular, unreasonable revegetation model has aggravated the water shortage, which may in turn threaten the health of ecosystems. However, yet little is known about the effect mechanism of vegetation on soil water in the gully slope. In this study, we examined the relationship between two revegetation modes, including afforestation (i.e. black locust forest) and natural revegetation (i.e. the grassland), and soil water in a depth of 0–120 cm of the gully slope, during the rainy season. The results showed that the effect of the vegetation to the soil water was smaller than that of the precipitation. Furthermore, the response of soil water to the environmental factors was higher in afforestation vegetation due to its lower soil water content, resulting in higher space dependence for soil water, compared to the natural revegetation. The lower soil water content of the black locust forest was mainly caused by its higher recession rate, not its supply. The soil water was deficient for a long time, caused by afforestation, with a shallower formation depth of the dried soil layer and stronger desiccation degree. However, this deficient could not be effectively relieved until in wet year. In comparison with the ridge slope, the effect of vegetation to soil water in gully slope was stronger, with greater water consumption in afforestation vegetation and the higher water storage in natural revegetation. From the aspect of water resources conservation on the water scale, the natural revegetation was the optimal revegetation mode in the gully slope of the loess hilly region.

  相似文献   

14.
黄土高原土壤干层研究进展与展望   总被引:23,自引:0,他引:23  
土壤干层发生机理及其生态环境效应是土壤物理学和生态学及其交叉领域的重要科学问题,也是我国黄土高原开展生态文明建设,实现可持续发展面临的重大生态环境问题之一。通过回顾土壤干层研究取得的重要进展,包括土壤干层的概念与特征、评价指标、形成原因与危害、不同尺度时空分异特征及调控对策等,针对黄土高原水资源短缺和植被退化现状,提出土壤干层研究面临的机遇和挑战,包括建立统一的土壤干层动力学量化指标、干层内土壤水分对植物生长的有效性、土壤干层强度对土壤—植被—大气传输体(SVATs)中水分运移的影响、土壤干层发生发展过程和时空演变规律、土壤干层预测模型及其调控机制。此外,土壤干层的研究应结合当前植被恢复与生态文明建设的国家需求。在气候变化和剧烈人类活动背景下,开展黄土高原土壤干燥化与土壤水资源影响及其调控对策研究,将是水科学与生态学领域长期面临的科学问题之一。  相似文献   

15.
Undulating landscapes of Chhotanagpur plateau of the Indian state of Jharkhand suffer from soil erosion vulnerability of varying degrees. An investigation was undertaken in some sections of the Upper Subarnarekha River Basin falling within this state. An empirical equation known as Universal Soil Loss Equation (USLE) was utilized for estimating the soil loss. Analysis of remote sensing satellite data, digital elevation model (DEM) and geographical information system (GIS)–based geospatial approach together with USLE led to the soil erosion assessment. Erosion vulnerability assessment was performed by analyzing raster grids of topography acquired from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM data. LANDSAT TM and ETM+ satellite data of March 2001 and March 2011 were used for inferring the land use–land cover characteristics of the watershed for these years, respectively. USLE equation was computed within the GIS framework to derive annual soil erosion rates and also the areas with varying degrees of erosion vulnerability. Erosion vulnerability units thus identified covered five severity classes of erosion ranging from very low (0–5 ton ha?1 yr?1) to very severe (> 40 ton ha?1 yr?1). Results indicated an overall increase of erosion in the year 2011 as compared to the erosion computed for the year 2001. Maximum soil erosion rate during the year 2001 was found up to 40 ton ha?1 yr?1, whereas this went up to 49.80 ton ha?1 yr?1 for the year 2011. Factors for the increase in overall erosion could be variation in rainfall, decrease in vegetation or protective land covers and most important but not limited to the increase in built-up or impervious areas as well.  相似文献   

16.
The goal of this study was to evaluate the soil properties and their modifications within the rhizosphere of spontaneous vegetation as key factors to assess the phytomanagement of a salt marsh polluted by mining wastes. A field survey was performed based on a plot sampling design. The results provided by the analyses of rhizospheric soil (pH, electrical conductivity (EC), organic carbon, total nitrogen, etc.) and metal(loid)s’ phytoavailability (assessed by EDTA) were discussed and related to plant metal uptake. The averages of pH and EC values of the bulk soil and rhizospheric samples were in the range of neutral to slightly alkaline (pH 7–8) to saline (>2 dS m?1), respectively. Heavy metal and As concentrations (e.g. ~600 mg kg?1 As, ~50 mg kg?1 Cd, ~11,000 mg kg?1 Pb) were higher in the rhizosphere for both total and EDTA-extractable fraction. Phragmites australis uptaked the highest concentrations in roots (e.g. ~66 mg kg?1 As, ~1,770 mg kg?1 Zn) but not in shoots, for which most of plant species showed low values for Zn (<300 mg kg?1) but not for Cd (>0.5 mg kg?1) or Pb (~20–40 mg kg?1). Vegetation distribution in the studied salt marsh looked to be more affected by salinity than by metal pollution. The free availability of water for plants and the incoming nutrient-enriched effluents which flow through the salt marsh may have hindered the metal(loid)s’ phytotoxicity. The phytomanagement of these polluted areas employing the spontaneous vegetation is a good option in order to improve the ecological indicators and to prevent the transport of pollutants to nearby areas.  相似文献   

17.
Thermokarst lake is a significant indicator of permafrost degradation. However, the evaluation of thermokarst lake development is very difficult through physical mechanism analysis because the development is influenced by many factors. In the present study, the factors influencing thermokarst lake development were investigated from the perspective of frozen soil and the geographical environment. The influences of six factors on thermokarst lake development in Beiluhe basin, located in the hinterland of the Qinghai–Tibet Plateau, were analyzed: permafrost type, ground temperature, vegetation type, soil type, hydrogeological type, and slope. Sensitivity coefficients were calculated for these factors using statistical methods. The results show that thermokarst lake development was influenced by the analyzed factors as follows: permafrost > soil type > ground temperature > hydrogeological type. Furthermore, 80.1% of the study area was highly sensitive to thermokarst lake development. Overall, thermokarst lake development in the Beiluhe basin was thoroughly evaluated based on sensitivity factors and an established statistical evaluation method. The method detailed in this paper provides a reference for evaluating the likelihood and severity of thermokarst lake development.  相似文献   

18.
The increased rate of annual temperature in the Qinghai-Tibetan Plateau exceeded all other areas of the same latitude in recent decades. The influence of the warming climate on the alpine ecosystem of the plateau was distinct. An analysis of alpine vegetation under changes in climatic conditions was conducted in this study. This was done through an examination of vegetation greenness and its relationship with climate variability using the Advanced Very High Resolution Radiometer satellite imagery and climate datasets. Vegetation in the plateau experienced a positive trend in greenness, with 18.0 % of the vegetated areas exhibiting significantly positive trends, which were primarily located in the eastern and southwestern parts of the plateau. In grasslands, 25.8 % of meadows and 14.1 % of steppes exhibited significant upward trends. In contrast, the broadleaf forests experienced a trend of degradation. Temperature, particularly summer temperature, was the primary factor promoting the vegetation growth in the plateau. The wetter and warmer climate in the east contributed to the favorable conditions for vegetation. The alpine meadow was mostly sensitive to temperature, while the steppes were sensitive to both temperature and precipitation. Although a warming climate was expected to be beneficial to vegetation growth in the alpine region, the rising temperature coupled with reduced precipitation in the south did not favor vegetation growth due to low humidity and poor soil moisture conditions.  相似文献   

19.
Soil samples from 0 to 100 cm depth were collected in four sampling sites (Sites A, B, C and D) along a 250-m length of sampling zone from the Yellow River channel to a tidal creek in a seasonal flooding wetland of the Yellow River Delta of China in fall of 2007 and spring of 2008 to investigate spatial and seasonal distribution patterns of total phosphorous (TP) and available phosphorus (AP) and their influencing factors. Our results showed that TP contents in spring and AP contents in both seasons in surface soils increased with increasing distances away from the Yellow River channel. TP contents in surface soils (0–10 cm) followed the order Site A (698.6 mg/kg) > Site B (688.0 mg/kg) > Site C (638.8 mg/kg) > Site D (599.2 mg/kg) in fall, while Site C (699.6 mg/kg) > Site D (651.7 mg/kg) > Site B (593.6 mg/kg) > Site A (577.5 mg/kg) in spring. Generally, lower TP content (630.6 mg/kg) and higher AP level (6.2 mg/kg) in surface soils were observed in spring compared to fall (656.2 mg/kg for TP and 5.2 mg/kg for AP). Both TP and AP exhibited similar profile distribution patterns and decreased with depth along soil profiles with one or two accumulation peaks at the depth of 40–80 cm. Although the mean TP content in soil profiles was slightly higher in spring (635.7 mg/kg) than that in fall (628.0 mg/kg), the mean TP stock was obviously lower in spring (959.9 g/m2) with an obvious accumulation at the 60–80 cm soil depth compared to fall (1124.6 g/m2). Topsoil concentration factors also indicated that TP and AP had shallower distribution in soil profiles. Correlation analysis showed that AP had significant and positive correlation with these soil properties such as soil organic matter, salinity, total nitrogen and Al (p < 0.01), but TP was just significantly correlated with TN and Al (p < 0.05).  相似文献   

20.
Acid rain has long been a great concern because of environmental and ecological problems; however, the effect of acid rain on soil acidification, loss of rare earth elements (REEs) via the leaching process, and transformation are rarely reported in rare earth mining areas. Through a simulated acid rain leaching experience, the effect of acid rain was studied on soil acidification and REEs leaching loss. The results showed that the tested soil had certain buffering capacity against nearly neutral rainwater. However, simulated acid rain of low and very low pH (pH ≤ 3.5) had a greater impact on soil acidification. After eluviating by simulated acid rain of pH 3.5 for 36 h, the pH of tailings, garden soil, paddy soil, and alluvial soil decreased by 20.41, 32.03, 13.60, 16.88, and 15.83 %, respectively, from the original values. For simulated acid rain of pH 2.5, it was 31.89, 44.76, 31.26, 29.87, and 29.15 %, respectively. After simulated acid rain eluviations of low and very low pH (pH ≤ 3.5), the order of the leaching rate of REEs in the tested soil was as follows: garden soil > tailings > paddy soil > alluvial soil. For nearly neutral rainwater (pH 4.5 simulated acid rain and pH 5.6 deionized water), the order was tailings > garden soil > paddy soil > alluvial soil. For simulated acid rain of the same pH, the leaching amounts of REEs in tailings and garden soil were higher than those in paddy soil and alluvial soil. After leaching by low and very low pH-simulated acid rain (pH ≤ 3.5), the peak value of the leaching amount of REEs in all tested soil appeared at 2 h, and then gradually reduced and reached a stable leaching state 20 h after leaching. On leaching by simulated acid rain of pH 2.5, the maximum REEs contents of leachate in tailings, garden soil, paddy soil, and alluvial soil were 156.35, 145.82, 99.88, and 85.97 mg/L, respectively. For pH 3.5 of simulated acid rain, it was 130.49, 110.49, 80.57, and 62.73 mg/L, respectively. On leaching by simulated acid rain of pH 4.5, the maximum contents of REEs in the leachate were 53.46 and 29.82 mg/L, respectively, which were observed after leaching for 6 h in tailings and garden soil that became stable 12 h after leaching. The contents of leached REEs in paddy soil and alluvial soil were always in a lower and stable state. After eluviations with deionized water of pH 5.6, the contents of leached REEs in other soils were lower, except for the slight fluctuations in tailings. The maximum content in the leachate of REEs was in the water-soluble and exchangeable fraction. When bound to carbonate fractions, REEs were not detected in the leachate. REEs bound to iron-manganese (Fe–Mn) oxides fraction and to organic matter fraction in the leachate possibly came from the tested soil or from the REEs transformation during the migration process. The content of residual fraction REEs in the leachate was very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号