首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Landslide zonation studies emphasize on preparation of landslide hazard zonation maps considering major instability factors contributing to occurrence of landslides. This paper deals with geographic information system-based landslide hazard zonation in mid Himalayas of Himachal Pradesh from Mandi to Kullu by considering nine relevant instability factors to develop the hazard zonation map. Analytical hierarchy process was applied to assign relative weightages over all ranges of instability factors of the slopes in study area. To generate landslide hazard zonation map, layers in geographic information system were created corresponding to each instability factor. An inventory of existing major landslides in the study area was prepared and combined with the landslide hazard zonation map for validation purpose. The validation of the model was made using area under curve technique and reveals good agreement between the produced hazard map and previous landslide inventory with prediction accuracy of 79.08%. The landslide hazard zonation map was classified by natural break classifier into very low hazard, low hazard, moderate hazard, high hazard and very high landslide hazard classes in geographic information system depending upon the frequency of occurrence of landslides in each class. The resultant hazard zonation map shows that 14.30% of the area lies in very high hazard zone followed by 15.97% in high hazard zone. The proposed model provides the best-fit classification using hierarchical approach for the causative factors of landslides having complex structure. The developed hazard zonation map is useful for landslide preparedness, land-use planning, and social-economic and sustainable development of the region.  相似文献   

2.
Landslides and slope instabilities are major risks for human activities which often lead to economic losses and human fatalities all over the world. The main purpose of this study is to evaluate and compare the results of Landslide Nominal Risk Factor (LNRF), Frequency Ratio (FR), and Analytical Hierarchy Process (AHP) models in mapping Landslide Susceptibility Index (LSI). The study case, Nojian watershed with an area of 344.91 km2, is located in Lorestan province of Iran. The procedure was as follows: first, the effective factors of the landslide basin were prepared for each layer in the GIS software. Then, the layers and the landslides of the basin were also prepared using aerial photographs, satellite images, and fieldwork. Next, the effective factors of the layers were overlapped with the map of landslide distribution to specify the role of units in such distribution. Finally, nine factors including lithology, slope, aspect, altitude, distance from the fault, distance from river, fault land use, rainfall, and altitude were found to be effective elements in landslide occurrence of the basin. The final maps of LSI were prepared based on seven factors using LNRF, FR, and AHP models in GIS. The index of the quality sum (Qs) was also used to assess the accuracy of the LSI maps. The results of the three models with LNRF (40%), FR (39%), and AHP (44%) indicated that the whole study area was located in the classes of high to very high hazard. The Qs values for the three models above were also found to be 0.51, 0.70 and 0.70, respectively. In comparison, according to the amount of Qs, the results of AHP and FR models have slightly better performed than the LNRF model in determining the LSI maps in the study area. Finally, the study watershed was classified into five classes based on LSI as very low, low, moderate, high, and very high. The landslide susceptibility maps can be helpful to select sites and mitigate landslide hazards in the study area and the regions with similar conditions.  相似文献   

3.
滑坡灾害空间区划及GIS应用研究   总被引:76,自引:3,他引:76  
殷坤龙  朱良峰 《地学前缘》2001,8(2):279-284
滑坡灾害空间区划研究是当前国内外滑坡领域的重要研究方向之一。虽然滑坡灾害的发生具有随机性的特点 ,但其发生的区域性和重复性特点则是区域滑坡分布与发生的总体规律。从减灾与土地规划的角度 ,开展滑坡灾害空间区划研究具有十分重要的理论和实际意义。文中重点探讨了滑坡灾害空间区划的理论体系、灾害风险评估的基本术语定义及GIS制图的基本原理 ,采用MAPGIS软件为平台及其二次开发的滑坡灾害信息分析系统 ,在中国滑坡重灾害的汉江流域开展了灾害危险性空间区划应用研究。  相似文献   

4.
This paper presents a methodology for developing a landslide hazard zonation map by integration of global positioning system (GPS), geographic information system (GIS), and remote sensing (RS) for Western Himalayan Kaghan Valley of Pakistan. The landslides in the study area have been located and mapped by using GPS. Eleven causative factors such as landuse, elevation, geology, rainfall intensity, slope inclination, soil, slope aspect, distances from main road, distances from secondary roads, and distances from main river and those from trunk streams were analyzed for occurrence of landslides. These factors were used with a modified form of pixel-based information value model to obtain landslide hazard zones. The matrix analysis was performed in remote sensing to produce a landslide hazard zonation map. The causative factors with the highest effect of landslide occurrence were landuse, rainfall intensity, distances from main road, distances from secondary roads, and distances from main river and those from trunk streams. In conclusion, we found that landslide occurrence was only in moderate, high, or very high hazard zones, and no landslides were in low or very low hazard zones showing 100% accuracy of our results. The landslide hazard zonation map showed that the current main road of the valley was in the zones of high or very high hazard. Two new safe road routes were suggested by using the GIS technology.  相似文献   

5.
6.
High incidences of slope movement are observed throughout Cuyahoga River watershed in northeast Ohio, USA. The major type of slope failure involves rotational movement in steep stream walls where erosion of the banks creates over-steepened slopes. The occurrence of landslides in the area depends on a complex interaction of natural as well as human induced factors, including: rock and soil strength, slope geometry, permeability, precipitation, presence of old landslides, proximity to streams and flood-prone areas, land use patterns, excavation of lower slopes and/or increasing the load on upper slopes, alteration of surface and subsurface drainage. These factors were used to evaluate the landslide-induced hazard in Cuyahoga River watershed using logistic regression analysis, and a landslide susceptibility map was produced in ArcGIS. The map classified land into four categories of landslide susceptibility: low, moderate, high, and very high. The susceptibility map was validated using known landslide locations within the watershed area. The landslide susceptibility map produced by the logistic regression model can be efficiently used to monitor potential landslide-related problems, and, in turn, can help to reduce hazards associated with landslides.  相似文献   

7.
A Luoi is a Vietnamese–Laotian border district situated in the western part of Thua Thien Hue province, central Vietnam, where landslides occur frequently and seriously affect local living conditions. This study focuses on the spatial analysis of landslide susceptibility in this 263-km2 area. To analyze landslide manifestation in the study area, causative factor maps are derived of slope angle, weathering, land use, geomorphology, fault density, geology, drainage distance, elevation, and precipitation. The analytical hierarchical process approach is used to combine these maps for landslide susceptibility mapping. A landslide susceptibility zonation map with four landslide susceptibility classes, i.e. low, moderate, high, and very high susceptibility for landsliding, is derived based on the correspondence with an inventory of observed landslides. The final map indicates that about 37% of the area is very highly susceptible for landsliding and about 22% is highly susceptible, which means that more than half of the area should be considered prone to landsliding.  相似文献   

8.
Generally, pixels are the basic unit for assessment of landslide susceptibility. However, even if the results facilitate the comparison, a pixel-based analysis does not clearly illustrate the distribution relationships. To eliminate this deficiency, the concept of the Landslide Response Unit (LRU) is proposed in this study, for which adjacent pixels that have similar properties are combined as a basic unit for susceptibility assessment. The Subao River basin, seriously impacted by the Wenchuan Earthquake, was selected as the study area, and three factors including slope gradient, slope aspect, and slope shape, which have a significant impact on landslides, were chosen to divide the basin into 25,984 LRUs. Then topographic, geologic, and distance factors were applied for the landslide susceptibility evaluation. The logistic regression method was used to establish the susceptibility assessing model by analyzing 2,000 susceptible LRUs and 2,000 un-susceptible LRUs. The model accuracy was defined in terms of the ROC curve value and the κ value, 0.531 and 0.84, respectively. The susceptibility of landslides was divided into low, moderate, high, and very high in Subao River basin, and 73% of historical landslides and all four new landslides are in the highly susceptible zone and very highly susceptible zones. Finally, the LRUs with houses, farmlands, and roads prone to sliding and burial hazard were assessed separately. On the basis of considering the potential movement directions of the LRUs, the result found that 1,001 and 835 LRUs probably would be destroyed by slope sliding and landslide burial, respectively.  相似文献   

9.
Landslide susceptibility zonation mapping is a fundamental procedure for geo-disaster management in tropical and sub-tropical regions. Recently, various landslide susceptibility zonation models have been introduced in Nepal with diverse approaches of assessment. However, validation is still a problem. Additionally, the role of various predisposing causative parameters for landslide activity is still not well understood in the Nepal Himalaya. To address these issues of susceptibility zonation and landslide activity, about 4,000 km2 area of central Nepal was selected for regional-scale assessment of landslide activity and susceptibility zonation mapping. In total, 655 new landslides and 9,229 old landslides were identified with the study area with the help of satellite images, aerial photographs, field data and available reports. The old landslide inventory was “blind landslide database” and could not explain the particular rainfall event responsible for the particular landslide. But considering size of the landslide, blind landslide inventory was reclassified into two databases: short-duration high-intensity rainfall-induced landslide inventory and long-duration low-intensity rainfall-induced landslide inventory. These landslide inventory maps were considered as proxy maps of multiple rainfall event-based landslide inventories. Similarly, all 9,884 landslides were considered for the activity assessment of predisposing causative parameters. For the Nepal Himalaya, slope, slope aspect, geology and road construction activity (anthropogenic cause) were identified as most affective predisposing causative parameters for landslide activity. For susceptibility zonation, multivariate approach was considered and two proxy rainfall event-based landslide databases were used for the logistic regression modelling, while a relatively recent landslide database was used in validation. Two event-based susceptibility zonation maps were merged and rectified to prepare the final susceptibility zonation map and its prediction rate was found to be more than 82 %. From this work, it is concluded that rectification of susceptibility zonation map is very appropriate and reliable. The results of this research contribute to a significant improvement in landslide inventory preparation procedure, susceptibility zonation mapping approaches as well as role of various predisposing causative parameters for the landslide activity.  相似文献   

10.
证据权法在区域滑坡危险性评价中的应用以贵州省为例   总被引:3,自引:0,他引:3  
以GIS为技术平台,采用证据权法对研究区进行了滑坡地质灾害危险性分析。综合分析历史滑坡数据及其环境因素和触发因素,数据源主要有地形图、DEM、地质图,选取地层岩性、构造、高程、坡度、坡向、地形起伏度、道路、水系作为危险性评价因子。首先应用ArcGIS软件对数据源进行处理,提取各个评价因子图层,并对每个图层进行分级、缓冲区分析等处理,建立若干证据层。然后将历史灾害点与评价因子进行空间关联分析,计算每个评价因子等级的权重,最后计算出评价单元的危险性指数,并将危险性分为极高危险区、高危险区、中等危险区、低危险区。采用成功率曲线法对证据权法评价精度进行验证,结果表明本次评价的精度为71%。利用历史滑坡数据对评价结果进行验证,结果显示评价结果与实际情况较为吻合,说明证据权可以客观定量地评价各影响因子对滑坡的影响程度,该方法应用于区域地质灾害危险性评价比较有效。  相似文献   

11.
The Yushu County, Qinghai Province, China, April 14, 2010, earthquake triggered thousands of landslides in a zone between 96°20′32.9″E and 97°10′8.9″E, and 32°52′6.7″N and 33°19′47.9″N. This study examines the use of geographic information system (GIS) technology and Bayesian statistics in creating a suitable landslide hazard-zone map of good predictive power. A total of 2,036 landslides were interpreted from high-resolution aerial photographs and multi-source satellite images pre- and post-earthquake, and verified by selected field checking before a final landslide-inventory map of the study area could be established using GIS software. The 2,036 landslides were randomly partitioned into two subsets: a training dataset, which contains 80 % (1,628 landslides), for training the model; and a testing dataset 20 % (408 landslides). Twelve earthquake triggered landslide associated controlling parameters, such as elevation, slope gradient, slope aspect, slope curvature, topographic position, distance from main surface ruptures, peak ground acceleration, distance from roads, normalized difference vegetation index, distance from drainages, lithology, and distance from all faults were obtained from variety of data sources. Landslide hazard indices were calculated using the weight of evidence model. The landslide hazard map was compared with training data and testing data to obtain the success rate and predictive rate of the model, respectively. The validation results showed satisfactory agreement between the hazard map and the existing landslide distribution data. The success rate is 80.607 %, and the predictive rate is 78.855 %. The resulting landslide hazard map showed five classes of landslide hazard, i.e., very high, high, moderate, low and very low. The landslide hazard evaluation map should be useful for environmental recovery planning and reconstruction work.  相似文献   

12.
Landslide is one of the natural disasters which causes a lot of annual damage directly or indirectly in the world. Many planned areas, especially in hilly regions, are prone to different types of landslides; therefore, landslide susceptibility maps become an urgent issue, so that landslide damages and impact can be minimized. The best method for studying landslides, which has long been of interest to researchers, is hazard zonation. In this method, due to the affecting factors in landslide occurrence, study areas are classified into areas with low to very high risk. Different methods have been developed for this purpose. In this paper, the four bivariate statistical methods namely information value, density area, LNRF, and frequency ratio are used to investigate the hazard zonation of landslide in Miandarband located north of the Kermanshah Province. The density ratio (D r) and Qs values for information value, density area, frequency ratio, and LNRF methods used in this study were calculated to be 2.245312, 0.98146; 2.857816, 1.071185; 2.858085, 0.783945; and 2.418375, 1.070928, respectively. The results indicate that although there are minor differences, the frequency ratio method compared to the density area method that was used for the study of landslide zonation presents better results.  相似文献   

13.
Landslide susceptibility mapping and spatial prediction have been carried out for the headwater region of Manimala river basin in the Western Ghats of Kerala, India, through geographic information technology and bayesian statistics, Weights of Evidence (WofE) model. The variables such as geomorphology, slope, relative relief, terrain curvature, slope length and steepness, soil type and land use/land cover are considered as factors that translate the terrain susceptible to landsliding. The quantitative relationship between landslides and the causative factors were statistically weighted using the ArcSDM extension of ArcGIS software. The posterior probability map, produced on the basis of predictive weights for each variable by combining the weighted layers in GIS, shows a high posterior probability value of 0.1 (highly possible) with a standard deviation of 0.0025. The discrete susceptibility classes in the reclassified posterior probability map reveals that the high and moderate landslide susceptibility classes cover 0.78 and 14.93% respectively of the total study area. The result was validated using the Area Under Curve (AUC) method with a separate set of landslide locations and the validation demonstrates high prediction accuracy with a prediction rate of 81.32%.  相似文献   

14.
Landslide hazard evaluation and zonation mapping in mountainous terrain   总被引:33,自引:0,他引:33  
Landslide hazard zonation (LHZ) maps are of great help to planners and field engineers for selecting suitable locations to implement development schemes in mountainous terrain, as well as, for adopting appropriate mitigation measures in unstable hazard-prone areas. A new quantitative approach has been evolved, based on major causative factors of slope instability. A case study of landslide hazard zonation in the Himalaya, adopting a landslide- hazard evaluation factor (LHEF) rating scheme, has been presented.  相似文献   

15.
The influence of slope aspect on the distribution of landslides was studied in the Milia and Roglio basins in Tuscany, Italy. For each basin, the new Tuscany region landslide inventory that was initiated in 2010 was used. The landslides were split into separate datasets based on their prevailing movement typology. To assess the results that were obtained from the different slope aspect values, maps of the lithology, slope angle, distances to streams, and distances to tectonic lineaments were included in the bivariate statistical analysis as comparison terms. For each basin, all of the geo-environmental factor maps were compared with the different landslide typologies with GIS software. Pearson's Chi2 (χ2) coefficient was used to test the degree of spatial association between each predictor variable and landslide type. In addition, Cramer's V test was used to quantify the strength of the degree of association. Next, a conditional analysis was applied to all of the possible combinations that occurred between the slope aspect and other landslide-predisposing factors. Overall, the slope aspect significantly affected the distribution of superficial landslide types, but apparently not that of other landslide types.  相似文献   

16.
Landslide magnitude–frequency curves allow for the probabilistic characterization of regional landslide hazard. There is evidence that landslides exhibit self-organized criticality including the tendency to follow a power law over part of the magnitude–frequency distribution. Landslide distributions, however, also typically exhibit poor agreement with the power law at smaller sizes in a flattening of the slope known as rollover. Understanding the basis for this difference is critical if we are to accurately predict landslide hazard, risk or landscape denudation over large areas. One possible argument is that the magnitude–frequency distribution is dominated by physiographic controls whereby landslides tend to a larger size, and larger landslides are landscape limited according to a power law. We explore the physiographic argument using first a simple deterministic model and then a cellular automata model for watersheds in coastal British Columbia. The results compare favorably to actual landslide data: modeled landslides bifurcate at local elevation highs, deposit mass preferentially where the local slopes decrease, find routes in confined valley or channel networks, and, when sufficiently large, overwhelm the local topography. The magnitude–frequency distribution of both the actual landslides and the cellular automata model follow a power law for magnitudes higher than 10,000–20,000 m2 and show a flattening of the slope for smaller magnitudes. Based on the results of both models, we argue that magnitude–frequency distributions, including both the rollover and the power law components, are a result of actual physiographic limitations related to slope, slope distance, and the distribution of mass within landslides. The cellular automata model uses simple empirically based rules that can be gathered for regions worldwide.  相似文献   

17.
Dramatic effects resulting from landslides on human life and economy of many nations are observed sometimes throughout the world. Landslide inventory and susceptibility mapping studies are accepted as the first stage of landslide hazard mitigation efforts. Generally, these landslide inventory studies include identification and location of landslides. The main benefit is to provide a basis for statistical susceptibility zoning studies. In the present study, a landslide susceptibility zoning near Yenice (NW Turkey) is carried out using the factor analysis approach. The study area is approximately 64 km2 and 57 landslides were identified in this area. The area is covered completely by Ulus Formation that has a flysh-like character. Slope angle, elevation, slope aspect, land-use, weathering depth and water conditions were considered as the main conditioning factors while the heavy precipitation is the main trigger for landsliding. According to the results of factor analysis, the importance weights for slope angle, land-use, elevation, dip direction, water conditions and weathering depth were determined as 45.2%, 22.4%, 12.5%, 8.8%, 8.1% and 3.0% respectively. Also, using these weights and the membership values of each conditioning factor, the membership value for landslide susceptibility was introduced. In the study area, the lowest membership value for landslide susceptibility was calculated as 0.20. Consequently, combining all results, a landslide susceptibility map was obtained. Compared with the obtained map, a great majority of the landslides (86 %) identified in the field were found to be located in susceptible and highly susceptible zones.  相似文献   

18.
Landslide hazard and risk assessment on the northern slope of Mt. Changbai, a well-known tourist attraction near the North Korean-Chinese border, are assessed. This study is divided into two parts, namely, landslide hazard zonation and risk assessment. The 1992 Anbalagan and Singh method of landslide hazard zonation (LHZ) was modified and used in this area. In this way, an Associative Analysis Method was used in representative areas to get a measure for controlling factors (slope gradient, relative relief, vegetation, geology, discontinuity development, weak layer thickness and ground water). For the membership degree of factor to slope failure, the middle range of limited values was used to calculate LHZ. Based on an estimation of the potential damage from slope failure, a reasonable risk assessment map was obtained using the relationship of potential damage and probable hazard to aid future planning and prediction and to avert loss of life.  相似文献   

19.
基于证据权法构建滑坡地质灾害评价模型,进行杭州市滑坡地质灾害危险性区划研究。主要数据源包括1930-2009年杭州市域采集到的1 905个地质灾害个例以及杭州市地质图、土地利用数据及数字高程模型(DEM)等。利用Arcgis空间分析及信息提取功能,筛选强降水、地层岩性、坡度、坡向、坡高、河网与道路缓冲等证据因子,并运用证据权法客观确定各因子权重, 最后通过Arc-WofE扩展模块对多种优选因子的叠加,计算任意格网单元的滑坡发生概率,实现对潜在滑坡点位的空间预测。经分离样本法验证,区划准确率为88.3%,分析结果与现有滑坡的分布情况比较吻合。据此表明证据权法在多指标评价及其权重确定等方面具有普适性,值得在滑坡地质灾害危险性区划等方面推广应用。  相似文献   

20.
Seismic and multi-beam bathymetric data from the northern shelf and slope of the Cinarcik Basin, which is generated by the North Anatolian Fault Zone (NAFZ) located in the easternmost basin in the Marmara Sea, were re-interpreted to better understand the future sub-marine landslide susceptibility. Seismic data indicate that upper surface of the sub-marine extension of the Paleozoic rocks has an NNE–SSW oriented basin and a ridge type morphology controlled by the secondary faults of the NAFZ. Basins are fulfilled by Plio-Quaternary sediments, which are cut by strike-slip faults on the shelf and slope. The thickness of basin deposits reaches up to 130 m toward the linear northern slope of the Cinarcik Basin. A relatively recent sub-marine landslide, the Tuzla Landslide, cuts the slope of the Cinarcik Basin. The detailed morphological investigation indicates that the Tuzla Landslide is a deep-seated rotational landslide, which was likely triggered by activity of the NAFZ. Morphological analyses also indicate that the thick Plio-Quaternary deposits on the Paleozoic basement slid during the Tuzla Landslide event. This landslide is considered as a key event to understand the dynamics of the potential landslides on the northern shelf and slope of the Cinarcik Basin. Two areas locating on the eastern and the western sides of the Tuzla Landslide are considered as the potential areas for future sliding due to similarities of geological and geomorphological features with the Tuzla Landslide such as similar thick Plio-Quaternary deposits, similar slope morphology, and similar fault activity cutting the sediments. Considering this information, the purposes of the present study are to determine the dynamics of the possible landslide areas and to discuss their effects on the sub-marine morphology. In the light of the interpretations, the amounts of possible displaced material are obtained. Three different landslide scenarios due to possible slide surfaces for future landslides are developed and assessed. The first scenario is sliding of the sediments at the shelf break. The third scenario is a mass movement of almost whole basin deposits on the Paleozoic rocks. The latter one is evaluated as less important because of the volume of the displaced material, and the latter one is accepted as lowest possible event. Among the scenarios, the second scenario is accepted as the most critical and possible because of the amount of the slipped material and existence of faults rupture, which is considered as further sliding surfaces. These landslides will result in important changes in shelf, slope and basin floor in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号