首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The instrumental seismicity that occurred in the Jordan Dead Sea transform region during the period 1900–2014 is compiled from all available sources. Some 492 phosphate mining explosions (M ≤ 3.9) are recognized and filtered from the data. Excluding these, it is found that 4448 earthquakes have occurred with magnitudes M ≥ 3.0. Only 572, 18 and 2 of these had magnitudes M ≥ 4, 5, and 6 in respective order. Average recurrence periods for the 5 and 6 magnitudes are 6.3 and 57 years. Much of these have occurred in sequences and swarms. The epicentral distribution of the compiled instrumental seismicity data shows very good correlation with the general tectonics of the study region. All tectonic elements are active in the present with a noticeable hazard. The regional strike-slip faults of the transform proper remain the major sources of this hazard. They account for not less than 99% of the seismic energy released from all instrumental data. The calculated a-parameter of the whole transform is 6.6. It varies for all its strike-slip faults mostly in the range 6.0–6.6. The b-value of the whole transform and some of its major segments is 1.0. Others show b-variations in the range of 1.1–1.3. Such a- and b-values imply recurrence periods of 38 years and 395 years for the 6 and 7 magnitude earthquakes. Such values, their variations and the seismic moment calculations clearly indicate an appreciable level of seismic hazard associated with all segments. This hazard appears to be highest for Al Ghab segment, followed by Beqa’a and Wadi Araba segments, respectively. The other three segments appear to be of lower hazard. The seismicity of this region is very shallow. More than 99% of the seismic energy has been released from the brittle granitic upper crust whose thickness is about 21 km and its Poisson’s ratio is 0.25. More than 93.6% of the energy was released from its upper 10 km. Very little energy is released from the underlying ductile basaltic crust whose Poisson’s ratio is 0.29. The calculated seismic slip rate along the Whole Jordan Dead Sea transform is 0.54 cm/year if the fault depth is assumed 10 km. It increases to 0.77 and 1.07 cm/year if the fault depth is reduced to 7 and 5 km, respectively. These slip rates are comparable with the long-term geologically deduced rate of 1 cm/year.  相似文献   

2.
The cause for prolific seismicity in the Koyna region is a geological enigma. Attempts have been made to link occurrence of these earthquakes with tectonic strain as well as the nearby reservoirs. With a view to providing reliable seismological database for studying the earth structure and the earthquake process in the Koyna region, a state of the art digital seismic network was deployed for twenty months during 1996–97. We present preliminary results from this experiment covering an area of 60 × 80 km2 with twenty seismic stations. Hypocentral locations of more than 400 earthquakes confined to 11×25 km2 reveal fragmentation in the seismicity pattern — a NE — SW segment has a dip towards NW at approximately 45°, whilst the other two segments show a near vertical trend. These seismic segments have a close linkage with the Western Ghat escarpment and the Warna fault. Ninety per cent of the seismicity is confined within the depth range of 3–10 km. The depth distribution of earthquakes delimits the seismogenic zone with its base at 10 km indicating a transition from an unstable to stable frictional sliding regime. The lack of shallow seismicity between 0 and 3 km indicates a mature fault system with well-developed gouge zones, which inhibit shallow earthquake nucleation. Local earthquake travel time inversion for P- and S-waves show ≈ 2% higher velocity in the seismogenic crust (0–10 km) beneath the epicentral tract relative to a lower velocity (2–3%) in the adjoining region. The high P- and S-wave velocity in the seismogenic crust argues against the presence of high pressure fluid zones and suggests its possible linkage with denser lithology. The zone of high velocity has been traced to deeper depths (≈ 70 km) through teleseismic tomography. The results reveal segmented and matured seismogenic fault systems in the Koyna region where seismicity is possibly controlled by strain build up due to competent lithology in the seismic zone with a deep crustal root.  相似文献   

3.
The pattern of local seismicity (110 events) and the source parameters of 26 local events (1.0?≤?Mw?≤?2.5) that occurred during May 2008 to April 2009 in Bilaspur region of Himachal Lesser Himalaya were determined. The digital records available from one station have been used to compute the source parameters and f max based on the Brune source model (1970) and a high-frequency diminution factor (Boore 1983) above f max. The epicentral distribution of events within 30 km of local network is broadly divided into three clusters of seismic activity: (1) a cluster located to the south of the Jamthal (JAMT) station and falls to the north of the Main Boundary Thrust (MBT) which seems to reflect the contemporary local seismicity of the segment of the MBT, (2) an elongated zone of local seismicity NE–SW trending, delineated NE of JAMT station that falls in the Lesser Himalaya between the MBT and the Main Central Thrust, and (3) NE–SW trending zone of local seismic activity located at about 10 km east of NHRI station and about 15 km northeast of NERI station and extending over a distance of about 20 km. Majority of events occur at shallow depths up to 20 km, and the maximum number of events occurs in the focal depth range between 10 and 15 km. The entire seismic activity is confined to the crust between 5 and 45 km. The average values of these source parameters range from 3.29?×?1017 to 3.73?×?1019?dyne-cm for seismic moment, 0.1 to 9.7 bars for stress drops, and 111.78 to 558.92 m for source radii. The average value of f max for these events varies from 7 to 18 Hz and seems to be source dependent.  相似文献   

4.
We present new constraints on an active low-angle normal fault system in the Città di Castello–Sansepolcro basin (CSB) of the northern Apennines of Italy. New field data from the geological survey of the Carta Geologica d'Italia (CARG project) define the surface geometry of the normal fault system and lead to an interpretation of the CROP 03 deep-crust seismic reflection profile (Castiglion Fiorentino–Urbania segment), with particular attention paid to the geometry of the Plio-Quaternary extensional structures. Surface and sub-surface geological data are integrated with instrumental and historical seismicity in order to define the seismotectonics of the area.Low-angle east-dipping reflectors are the seismic expression of the well-known Altotiberina Fault (AF), a regional extensional detachment on which both east- and west-dipping high-angle faults, bounding the CSB, sole out. The AF breakaway zone is located ~ 10 km west of the CSB. Within the extensional allochthon, synthetic east-dipping planes prevail. Displacement along the AF is ~ 4.5 km, which agrees with the cumulative offset due to its synthetic splays. The evolution of the CSB has mainly been controlled by the east-dipping fault system, at least since Early Pleistocene time; this system is still active and responsible for the seismicity of the area. A low level of seismic activity was recorded instrumentally within the CSB, but several damaging earthquakes have occurred in historical times. The instrumental seismicity and the intensity data points of the largest historical earthquakes (5 events with maximum MCS intensity of IX to IX–X) allow us to propose two main seismogenic structures: the Monte Santa Maria Tiberina (Mmax = 5.9) and Città di Castello (Mmax up to 6.5) normal faults. Both are synthetic splays of the AF detachment, dipping to the NE at moderate (45–50°) to low (25–30°) angles and cutting the upper crust up to the surface. This study suggests that low-angle normal faults (at least with dips of 25–30°) may be seismogenic.  相似文献   

5.
We relocate the 1990–1991 Potenza (Southern Apennines belt, Italy) sequences and calculate focal mechanisms. This seismicity clusters along an E–W, dextral strike–slip structure. Second-order clusters are also present and reflect the activation of minor shears. The depth distribution of earthquakes evidences a peak between 14 and 20 km, within the basement of the subducting Apulian plate. The analysed seismicity does not mirror that of Southern Apennines, which include NW–SE striking normal faults and earthquakes concentrated within the first 15 km of the crust. We suggest that the E–W faults affecting the foreland region of Apennine propagate up to 25 km of depth. The Potenza earthquakes reflect the reactivation of a deep, preexisting fault system. We conclude that the seismotectonic setting of Apennines is characterized by NW–SE normal faults affecting the upper 15 km of the crust, and by E–W deeper strike–slip faults cutting the crystalline basement of the chain.  相似文献   

6.
We applied a tomographic method to image an aseismic strike–slip fault in North Morocco and found that the occurrence of earthquakes is not only controlled by the state of tectonic stress but also by material heterogeneity in the crust. We have constructed an integrated model of seismic, electric, magnetic and heat flow properties across northeastern Morocco primarily based on a tomography inversion of local earthquake arrival times. The seismic images obtained show a pronounced low-velocity zone at 5 km depth parallels to the Nekor fault, coinciding with an anomalously high conductive and low gravity structure, which is interpreted as a fault gouge zone and/or a fluid-filled subsurface rock matrix. Below 10 km depth, a weak positive velocity zone indicates that the fault gouge is stable. The seismicity and the seismic velocity results for the Al-Hoceimas region show that the concentrations of earthquakes are confined in the high velocity area. This anomaly is interpreted to be a brittle and competent layer of the upper crust that sustains seismogenic stress. On the eastern coast line of Morocco, we infer that a high density, high velocity body exists in the shallowest layers of the upper crust, probably formed by Miocene volcanic rocks.  相似文献   

7.
Gulf of Aqaba is recognized as an active seismic zone where many destructive earthquakes have occurred. The estimation of source parameters and coda Q attenuation are the main target of this work. Fifty digital seismic events in eight short-period seismic stations with magnitude 2.5–5.2 are used. Most of these events occurred at hypocentral depths in the range of 7–20 km, indicating that the activity was restricted in the upper crust. Seismic moment, M o, source radius, r, and stress drop, Δσ, are estimated from P- and S-wave spectra using the Brune’s seismic source model. The average seismic moment generated by the whole sequence of events was estimated to be 4.6E?+?22 dyne/cm. The earthquakes with higher stress drop occur at 10-km depth. The scaling relation between the seismic moment and the stress drop indicates a tendency of increasing seismic moment with stress drop. The seismic moment increases with increasing the source radius. Coda waves are sensitive to changes in the subsurface due to the wide scattering effects generating these waves. Single scattering model of local earthquakes is used to the coda Q calculation. The coda with lapse times 10, 20, and 30 s at six central frequencies 1.5, 3, 6, 12, 18, 24 Hz are calculated. The Q c values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [ $ {Q_c}(f) = {Q_o}{(f/{f_o})^\eta } $ ]. The average of Q c values increases from 53?±?10 at 1.5 Hz to 700?±?120 at 24 Hz. The average of Q o values ranges from 13?±?1 at 1.5 Hz to 39?±?4 at 24 Hz. The frequency exponent parameter η ranges between 1.3?±?0.008 and 0.9?±?0.001.  相似文献   

8.
《Tectonophysics》1987,138(1):79-92
Analysis of the space-time patterns of seismicity in the Himalaya plate boundary has established the existence of three seismic gaps:
  • 1.(1) The “Kashmir gap” lying west of the 1905 Kangra earthquake;
  • 2.(2) the “Central gap”, situated between the 1905 Kangra and the 1934 Bihar earthquakes;
  • 3.(3) the “Assam gap” between the 1897 and 1950 Assam earthquakes.
This study has shown that the above great earthquakes were preceded as well as followed by long periods (⩾ 19 years) of decreased levels of seismic activity in the epicentral regions. Remarkable decrease in the seismicity following the year 1970 has been observed in the western half of the Central gap as well as in the Assam gap. Local seismic investigation in the Assam gap confirms this feature and the seismicity suggests the existence there of an asperity.The local seismic investigations in Garhwal Himalaya have shown that the small earthquakes are confined to the upper 6–8 km of the crust and may have strike-slip motions. These earthquakes occur in a region where teleseismically recorded events were few.  相似文献   

9.
Slowness and azimuthal anomalies provide valuable information about lateral inhomogeneities within the crust and mantle of the earth. Over 300 earthquakes (distance range 14°–36° and azimuth 0°–360°) recorded at Gauribidanur seismic array (GBA) in southern India, were analysed using adaptive processing techniques. Slowness anomalies upto 1·3 sec/deg and azimuthal anomalies upto 8° have been observed in the present analysis. Slowness anomaly patterns for Java trench, Mid-Indian oceanic ridge earthquakes are more consistent as compared to the events originating in the Himalayan and Hindukush regions. A significant feature of the azimuthal anomaly pattern was the distinct absence of any positive anomalies from earthquakes occurring in mid-oceanic ridge. These anomalies have also been analysed as a function of epicentral distance and are mainly attributed to the transition zones occurring between 400–700 km depth ranges in the Indian upper mantle regions. Relative residuals between the stations of GBA have very little dependence on azimuth and distance. An anomalous structure beneath the array in the direction of the Java trench region (azimuth 116–126°) has been postulated on the basis of large systematic slowness vectors observed.  相似文献   

10.
Chander, R., 1991. On the possibility of reservoir-induced seismicity in the Garhwal Himalaya. Eng. Geol., 30: 393–399.

It is argued from a brief review of available evidence that the possibility of reservoir-induced seismicity (RIS) in the Himalaya as a whole cannot be ruled out at the present time. On the other hand, a review of recent local investigations of small earthquakes ( mb less than 5) and teleseismic investigations of moderate earthquakes (mb between 5 and 6, mainly) occurring in the Garhwal segment of the Alpide-Himalayan seismic belt provides evidence that RIS in the region can be anticipated. While their epicentral belts coincide geographically, the estimated focal depths of small and moderate earthquakes of the Garhwal Himalaya are in the ranges of 0–14 and 10–20 km, respectively. Small earthquakes occur by reactivation of strike-slip and reverse faults and moderate earthquakes occur on thrust faults. Elsewhere in the world, RIS has been observed most often in the crust at the depths where small earthquakes have been observed in the Garhwal Himalaya. In addition, RIS has been experienced during the impoundment of reservoirs in strike-slip and reverse fault environments, while theoretical analyses indicate that, if suitably located in relation to the reservoir, even a thrust fault may be destabilised by impoundment.  相似文献   


11.
Variations of seismic mode in the region of the Avachinsky Gulf (Kamchatka, Russia) are considered. Observed anomalies (seismic quiescence, the ring seismicity, reduction of the slope of the earthquake recurrence diagram) provide a basis to consider this region as a place of strong earthquake preparation. The Kamchatka regional catalogues of earthquakes between 1962–1995 were used in the analysis. A reduced seismicity rate is observed during 10 years in an area of 150 km × 60 km in size. During the last five years, in the vicinity of the area considered, earthquakes with M > 5 occurred three times more often than the average over thirty years. It is interpreted as ring seismicity. The block of 220 km × 220~km in size, including the quiescence zone, is characterized by a continuous decrease of the recurrence diagram slope, which has reached a minimum value for the last 33 years in this region.  相似文献   

12.
At the continental margin of north Costa Rica and Nicaragua, the strongly hydrated Cocos Plate subducts beneath the Caribbean Plate. From the downgoing Cocos plate fluids are released through extensional fractures in the overriding plate. At the seafloor, they form fluid seeps, mounds and other types of fluid expulsion. Using an offshore temporary seismic network, we investigated seismicity possibly related to these processes and observed several swarms of earthquakes located on the continental slope trenchward of the seismogenic zone of S Nicaragua. The seismicity occurred within the downgoing plate, near the plate interface and in the overriding plate. We interpret these swarm events as an expression of pore pressure propagation under critical stress conditions driven by fluid release from the downgoing plate. In order to estimate hydraulic diffusivity and permeability values, we applied a theory developed for injection test interpretation to the spatio-temporal development of the swarms. The resulting diffusivity and permeability values are in the ranges of 28–305 m²/s and 3.2 × 10?14 m²–35.1 × 10?14 m², respectively, applying to the continental and oceanic crust near the plate interface. These values are somewhat larger than observed in drill logs on the margin wedge off north Costa Rica, but of comparable magnitude to values estimated for the Antofagasta 1995 earthquake aftershock sequence.  相似文献   

13.
On December 9, 2007, a 4.9 mb earthquake occurred in the middle of the São Francisco Craton, in a region with no known previous activity larger than 4 mb. This event reached intensity VII MM (Modified Mercalli) causing the first fatal victim in Brazil. The activity had started in May 25, 2007 with a 3.5 magnitude event and continued for several months, motivating the deployment of a local 6-station network. A three week seismic quiescence was observed before the mainshock. Initial absolute hypocenters were calculated with best fitting velocity models and then relative locations were determined with hypoDD. The aftershock distribution indicates a 3 km long rupture for the mainshock. The fault plane solution, based on P-wave polarities and hypocentral trend, indicates a reverse faulting mechanism on a N30°Ε striking plane dipping about 40° to the SE. The rupture depth extends from about 0.3 to 1.2 km only. Despite the shallow depth of the mainshock, no surface feature could be correlated with the fault plane. Aeromagnetic data in the epicentral area show short-wavelength lineaments trending NNE–SSW to NE–SW which we interpret as faults and fractures in the craton basement beneath the surface limestone layer. We propose that the Caraíbas–Itacarambi seismicity is probably associated with reactivation of these basement fractures and faults under the present E–W compressional stress field in this region of the South American Plate.  相似文献   

14.
Transition from subduction of normal to thickened oceanic crust occurs in the central portion of the Costa Rican margin, where large interplate earthquakes (M ~ 7) and abundant interseismic seismicity have been associated with subduction of bathymetric highs. We relocated ~1,300 earthquakes recorded for 6 months by a combined on- and offshore seismological network using probabilistic earthquake relocation in a 3D P-wave velocity model. Most of the seismicity originated at the seismogenic zone of the plate boundary, appearing as an 18° dipping, planar cluster from 15 to 25–30 km depth, beneath the continental shelf. Several reverse focal mechanisms were resolved within the cluster. The upper limit of this interseismic interplate seismicity seems to be controlled primarily by the overlying-plate thickness and coherency, which in turn is governed by the erosional processes and fluid release and escape at temperatures lower than ~100 to 120 °C along the plate boundary. The downdip limit of the stick–slip behaviour collocates with relative low temperatures of ~150 to 200 °C, suggesting that it is controlled by serpentinization of the mantle wedge. The distribution of the interseismic interplate seismicity is locally modified by the presence of subducted seamounts at different depths. Unlike in northern Costa Rica, rupture of large earthquakes in the last two decades seems to coincide with the area defined by the interseismic interplate seismicity.  相似文献   

15.
The Gulf of Patti and its onshore sector represent one of the most seismically active regions of the Italian Peninsula. Over the period 1984–2014, about 1800 earthquakes with small-to-moderate magnitude and a maximum hypocentral depth of 40 km occurred in this area. Historical catalogues reveal that the same area was affected by several strong earthquakes such as the Mw = 6.1 event in April 1978 and the Mw = 6.2 one in March 1786 which have caused severe damages in the surrounding localities. The main seismotectonic feature affecting this area is represented by a NNW–SSE trending right-lateral strike-slip fault system called “Aeolian–Tindari–Letojanni” (ATLFS) which has been interpreted as a lithospheric transfer zone extending from the Aeolian Islands to the Ionian coast of Sicily. Although the large-scale role of the ATLFS is widely accepted, several issues about its structural architecture (i.e. distribution, attitude and slip of fault segments) and the active deformation pattern are poorly constrained, particularly in the offshore. An integrated analysis of field structural geology with marine geophysical and seismological data has allowed to better understand the structural fabric of the ATLFS which, in the study area, is expressed by two major NW–SE trending, en-echelon arranged fault segments. Minor NNE–SSW oriented extensional structures mainly occur in the overlap region between major faults, forming a dilatational stepover. Most faults display evidence of active deformation and appear to control the main morphobathymetric features. This aspect, together with diffused continental slope instability, must be considered for the revaluation of the seismic and geomorphological hazard of this sector of southern Tyrrhenian Sea.  相似文献   

16.
Detecting the paleoseismological specifications as well as seismic capability of faults has specific importance in estimating the earthquake hazard in any region. The geomorphic indices are used as indirect procedures in the mountainous area. They are appropriate and applicable methods in recognizing the specifications of active tectonics and evaluating fault seismicity in the mountainous areas. In this regard, giant landslides can be pointed out as proper indices. These landslides are usually related to tectonics and triggered by earthquakes in many cases. In this research, giant landslides existed in Noor valley (central Alborz) have been considered as geomorphological indices for recognizing the seismicity of the region and the seismic capability of its faults. There are four giant landslides in this region (Baladeh, Razan, Vakamar, and Iva) used for the mentioned purpose. No historical earthquake has been reported around Noor valley. However, the existence of giant and old landslides, related to earthquake, indicates the occurrence of numerous prehistoric earthquakes. In this research, three different age classes have been determined (Late Holocene, Early Holocene, and Late Pleistocene) for landslides. By the way, the possibility of identifying multiple earthquakes is provided in this area. The magnitudes of earthquakes are estimated as 7.7 ± 0.49 to 7.9 ± 0.49 based on their relations with maximum volume of displaced material. Regarding the distribution of landslides and other evidences, the eastern segment of Baladeh fault has probably been the main cause of the earthquakes.  相似文献   

17.
The thickness of the seismogenic layer is a key parameter for seismic hazard, since it can be used to constrain the maximum depth of faulting and the potential magnitude. In this study, we compute the seismogenic thickness in the Italian region by defining the lower seismicity cut‐off, using high‐quality hypocentral locations of earthquakes that occurred in the past decade. Along the eastern Alps, the seismogenic thickness is about 12–14 km, laterally homogeneous along the entire south‐verging thrust front. In the Apennines extensional belt, lateral changes in seismogenic thickness are evident, and correlate with changes in the seismic energy released by past earthquakes. The potential magnitude is larger in the southern Apennines where the seismogenic thickness is greater (16–18 km) than in the northern Apennines where it is less (6–10 km) and seismic energy is partially released by the creeping of faults.  相似文献   

18.
Cultrera  F.  Barreca  G.  Burrato  P.  Ferranti  L.  Monaco  C.  Passaro  S.  Pepe  F.  Scarf&#;  L. 《Natural Hazards》2016,86(2):253-272

The Gulf of Patti and its onshore sector represent one of the most seismically active regions of the Italian Peninsula. Over the period 1984–2014, about 1800 earthquakes with small-to-moderate magnitude and a maximum hypocentral depth of 40 km occurred in this area. Historical catalogues reveal that the same area was affected by several strong earthquakes such as the Mw = 6.1 event in April 1978 and the Mw = 6.2 one in March 1786 which have caused severe damages in the surrounding localities. The main seismotectonic feature affecting this area is represented by a NNW–SSE trending right-lateral strike-slip fault system called “Aeolian–Tindari–Letojanni” (ATLFS) which has been interpreted as a lithospheric transfer zone extending from the Aeolian Islands to the Ionian coast of Sicily. Although the large-scale role of the ATLFS is widely accepted, several issues about its structural architecture (i.e. distribution, attitude and slip of fault segments) and the active deformation pattern are poorly constrained, particularly in the offshore. An integrated analysis of field structural geology with marine geophysical and seismological data has allowed to better understand the structural fabric of the ATLFS which, in the study area, is expressed by two major NW–SE trending, en-echelon arranged fault segments. Minor NNE–SSW oriented extensional structures mainly occur in the overlap region between major faults, forming a dilatational stepover. Most faults display evidence of active deformation and appear to control the main morphobathymetric features. This aspect, together with diffused continental slope instability, must be considered for the revaluation of the seismic and geomorphological hazard of this sector of southern Tyrrhenian Sea.

  相似文献   

19.
Seismicity of Sinai Peninsula, Egypt   总被引:1,自引:1,他引:0  
The Sinai Peninsula has a triangular shape between the African and Arabian Plates and is bounded from the western and eastern borders by the Gulf of Suez and Gulf of Aqaba–Dead Sea rift systems, respectively. It is affected by strong and destructive earthquakes (e.g., March 31, 1969 and November 22, 1995) and moderate earthquakes (m b?>?5) throughout its history. After the installation of the Egyptian National Seismic Network (ENSN), a great number of earthquakes has been recorded within and around Sinai. Consequently, the seismogenic source zones and seismotectonic behavior can be clearly identified. Available data, including both historical and instrumental (1900–1997), have been collected from national and international data centers. While the data from 1998 till December 2007 are gathered from ENSN bulletins. The seismogenic source zones that might affect Sinai Peninsula are defined more precisely in this work depending on the distribution of earthquakes, seismicity rate (a value), b value, and fault plane solution of the major earthquakes. In addition, the type of faults prevailed and characterized these zones. It is concluded that the Gulf of Aqaba zone–Dead Sea transform zone, Gulf of Suez rift zone, Cairo–Suez District zone, and Eastern Mediterranean dislocation zone represent the major effective zones for Sinai. Furthermore, there are two local seismic zones passing through Sinai contributing to the earthquake activities of Sinai, these are the Negev shear zone and Central Sinai fault (Themed fault) zone. The source parameters, a and b values, and the maximum expected moment magnitude have been determined for each of these zones. These results will contribute to a great extent in the seismic hazard assessment and risk mitigation studies for Sinai Peninsula to protect the developmental projects.  相似文献   

20.
In the southern South–North Seismic Zone, China, seismic activity in the Yingjiang area of western Yunnan increased from December 2010, and eventually a destructive earthquake of Ms5.9 occurred near Yingjiang town on 10 March 2011. The focal mechanism and hypocenter location of the mainshock suggest that the Dayingjiang Fault was the site of the mainshock rupture. However, most of foreshocks and all aftershocks recorded by a portable seismic array located close to the mainshock occurred along the N–S-striking Sudian Fault, indicating that this fault had an important influence on these shocks. Coulomb stress calculations show that three strong(magnitude ≥5.0) earthquakes that occurred in the study region in 2008 increased the coulomb stress along the plane parallel to the Dayingjiang Fault. This supports the Dayingjiang Fault, and not the Sudian Fault, as the seismogenic fault of the 2011 Ms5.9 Yingjiang earthquake. The strong earthquakes in 2008 also increased the Coulomb stress at depths of ≤5 km along the entire Sudian Fault, and by doing so increased the shallow seismic activity along the fault. This explains why the foreshocks and aftershocks of the 2011 Yingjiang earthquake were located mostly on the Sudian Fault where it cuts the shallow crust. The earthquakes at the intersection of the Sudian and Dayingjiang faults are distributed mainly along a belt that dips to the southeast at ~40°, suggesting that the Dayingjiang Fault in the mainshock area also dips to the southeast at ~40°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号