首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The summertime ozone valley over the Tibetan Plateau is formed by two influences,the Asian summer monsoon(ASM) and air column variations.Total ozone over the Tibetan Plateau in summer was ~33 Dobson units(DU) lower than zonal mean values over the ocean at the same latitudes during the study period 2005-2009.Satellite observations of ozone profiles show that ozone concentrations over the ASM region have lower values in the upper troposphere and lower stratosphere(UTLS) than over the non-ASM region.This is caused by frequent convective transport of low-ozone air from the lower troposphere to the UTLS region combined with trapping by the South Asian High.This offset contributes to a ~20-DU deficit in the ozone column over the ASM region.In addition,along the same latitude,total ozone changes identically with variations of the terrain height,showing a high correlation with terrain heights over the ASM region,which includes both the Tibetan and Iranian plateaus.This is confirmed by the fact that the Tibetan and Iranian plateaus have very similar vertical distributions of ozone in the UTLS,but they have different terrain heights and different total-column ozone levels.These two factors(lower UTLS ozone and higher terrain height) imply 40 DU in the lower-ozone column,but the Tibetan Plateau ozone column is only ~33 DU lower than that over the non-ASM region.This fact suggests that the lower troposphere has higher ozone concentrations over the ASM region than elsewhere at the same latitude,contributing ~7 DU of total ozone,which is consistent with ozonesonde and satellite observations.  相似文献   

2.
青藏高原夏季臭氧低谷形成的机理-臭氧输送和化学过程   总被引:6,自引:0,他引:6  
利用三维化学输送模式(OSLO CTM2)模拟青藏高原夏季臭氧低谷。结果表明:在青藏高原夏季臭氧低谷的形成和变化过程中,动力输送过程起着最主要作用,化学过程部分补偿了输送过程引起的臭氧减少。在动力输送过程中,水平输送在5月份是造成臭氧减少的主要原因,可在6月和7月成为使臭氧增加;垂直平流的作用不断增强,在6月和7月成为臭氧减少的主要因素;对流输送的作用在7月份大幅增加,其引起的臭氧减少可以与净的变化相比,其作用也不可忽视。气相的化学过程引起的臭氧增加的量值有时超过了臭氧的净变化的大小,因此它也起着重要作用。  相似文献   

3.
Total column ozone (TCO) over the Tibetan Plateau (TP) is lower than that over other regions at the same latitude, particularly in summer. This feature is known as the “TP ozone valley”. This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6 (CMIP6). The TP ozone valley consists of two low centers, one is located in the upper troposphere and lower stratosphere (UTLS), and the other is in the middle and upper stratosphere. Overall, the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley, with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2 (MSR2) TCO observations greater than 0.8 for all CMIP6 models. Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes. This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley. Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder (MLS) observations. However, the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley. Most CMIP6 models predict the TP ozone valley in summer will deepen in the future.  相似文献   

4.
In this work, the influence of South Asian biomass burning emissions on O3 and PM2.5 concentrations over the Tibetan Plateau (TP) is investigated by using the regional climate chemistry transport model WRF-Chem. The simulation is validated by comparing meteorological fields and pollutant concentrations against in situ observations and gridded datasets, providing a clear perspective on the spatiotemporal variations of O3 and PM2.5 concentrations across the Indian subcontinent, including the Tibetan Plateau. Further sensitivity simulations and analyses show that emissions from South Asian biomass burning mainly affect local O3 concentrations. For example, contribution ratios were up to 20% in the Indo-Gangetic Plain during the pre-monsoon season but below 1% over the TP throughout the year 2016. In contrast, South Asian biomass burning emissions contributed more than 60% of PM2.5 concentration over the TP during the pre-monsoon season via significant contribution of primary PM2.5 components (black carbon and organic carbon) in western India that were lofted to the TP by westerly winds. Therefore, it is suggested that cutting emissions from South Asian biomass burning is necessary to alleviate aerosol pollution over the TP, especially during the pre-monsoon season.  相似文献   

5.
Study on Ozone Change over the Tibetan Plateau   总被引:2,自引:0,他引:2       下载免费PDF全文
This paper reviewed the main results with respect to the discovery of low center of total column ozone (TCO) over the Tibetan Plateau (TP) in summer, and its formation mechanism. Some important advances are summarized as follows: The fact is discovered that there is a TCO low center over the TP in summer, and the features of the background circulation over the TP are analyzed; it is confirmed that the TP is a pathway of mass exchange between the troposphere and stratosphere, and it influences the TCO low center over the TP in summer; models reproduce the TCO low center over the TP in summer, and the formation mechanism is explored; in addition, the analyses and diagnoses of the observation data indicate that not only there is the TCO low center over the TP in summer, but also TCO decrease trend over the TP is one of the strong centers of TCO decrease trend in the same latitude; finally, the model predicts the future TCO change over the TP.  相似文献   

6.
In this study, by using the ECMWF ERA-Interim reanalysis data from 1979 to 2010, the spatial distribution and transport of total atmospheric moisture over the Tibetan Plateau(TP) are analyzed, together with the associated impacts of the South Asian summer monsoon(SASM). Acting as a moisture sink in summer, the TP has a net moisture flux of 2.59× 107kg s 1during 1979–2010, with moisture supplies mainly from the southern boundary along the latitude belts over the Bay of Bengal and the Arabian Sea. The total atmospheric moisture over the TP exhibits significant diferences in both spatial distribution and transport between the monsoon active and break periods and between strong and weak monsoon years. Large positive(negative) moisture anomalies occur over the southwest edge of the TP and the Arabian Sea, mainly due to transport of easterly(westerly) anomalies during the monsoon active(break) period. For the whole TP region, the total moisture supply is more strengthened than the climatological mean during the monsoon active period, which is mainly contributed by the transport of moisture from the south edge of the TP. During the monsoon break period, however, the total moisture supply to the TP is slightly weakened. In addition, the TP moisture sink is also strengthened(weakened) in the strong(weak) monsoon years, mainly attributed by the moisture transport in the west-east directions. Our results suggest that the SASM has exerted great impacts on the total atmospheric moisture and its transport over the TP through adjusting the moisture spatial distribution.  相似文献   

7.
青藏高原大气臭氧研究   总被引:3,自引:0,他引:3  
除多 《气象》2001,27(4):3-6
总结了国内外有关青藏高原大气臭氧方面开展的研究工作,并简要地介绍了1996-1999年利用NILUV观测仪器在拉萨地区进行臭氧和紫外辐射观测的初步结论。  相似文献   

8.
南亚高压上下高原时间及其与高原季风建立早晚的关系   总被引:2,自引:3,他引:2  
本文利用1948—2013年NCEP/NCAR逐日再分析资料,定义了南亚高压动态特征指数,讨论了南亚高压上下高原的时间以及与高原季风建立早晚的关系。研究表明,南亚高压北界位置在4月初开始北移,5月迅速北抬,最北可达到55°N,9月开始南撤,西伸脊点在5—10月移动较稳定,5—7月向西移动到青藏高原上空,8—10月向东移动撤离高原,11月—次年4月东西摆动剧烈。南亚高压初上高原大致为6月第3候(33候),而撤离约为10月第4候(58候)。南亚高压移上高原的时间较高原夏季风建立晚73 d左右。南亚高压撤离高原时间较高原冬季风建立约早5 d。高原夏季风的建立和南亚高压初上高原是青藏高原热力作用在不同阶段的结果,反映在了高原的高低层上。  相似文献   

9.
周任君  陈月娟 《大气科学》2007,31(3):479-485
利用NCEP/NCAR再分析资料、GPCP降水资料以及我国160个台站的降水资料, 研究了青藏高原臭氧低值中心偏强年和偏弱年的气候差异。结果表明,5~7月平均的青藏高原臭氧总量变化与我国当年夏季、冬季以及第二年春季的气温和降水等有明显的相关关系:在臭氧低值中心偏强年夏季, 中国绝大部分地区地面气温比多年平均偏高, 长江以南地区降水偏多, 长江以北大部分地区降水偏少, 尤其是长江中下游和黄河中下游之间的地面降水偏少特别明显。在臭氧低值中心偏强年冬季和次年春季, 中国大部分地区冬季风比多年平均弱, 使得绝大部分地区地面气温偏高。臭氧低值中心偏弱年的情况基本上与偏强年相反。因此, 青藏高原上空臭氧低值中心的变化在气候预测中是一个值得重视的因子。  相似文献   

10.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SMMR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvions in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   

11.
青藏高原热状况对南亚高压活动的影响   总被引:4,自引:1,他引:4  
任广成 《大气科学》1991,15(1):28-32
本文分析了青藏高原下垫面与高原上空热状况变化的异同及其二者与南亚高压的关系。指出青藏高原下垫面热状况与高原上空热状况年际变化的一致性及月际变化的差异——青藏高原下垫面从2月就开始大幅度增温,而高原上空5月才开始突发性增温。高原下垫面降温幅度最大的月份出现在11月,高原上空则出现在10月。分析还指出,青藏高原下垫面热状况与南亚高压南北振荡,青藏高原上空热状况与南亚高压东西振荡有密切关系。并且前期青藏高原上空热状况较高原下垫面热状况对南亚高压的预报更具有指示意义。  相似文献   

12.
青藏高原积雪与亚洲季风环流年代际变化的关系   总被引:12,自引:1,他引:12  
利用高原测站的月平均雪深资料和NCEP/NCAR再分析资料,分析了20世纪70年代末以来,青藏高原积雪的显著增多与亚洲季风环流转变的联系。研究表明,高原南侧冬春季西风的增强及西风扰动的活跃是造成青藏高原冬春积雪显著增多的主要原因,高原积雪的增多与亚洲夏季风的减弱均是亚洲季风环流转变的结果;20世纪70年代末以来,夏季华东降水的增多、华南降水的减少及华北的干旱化与青藏高原冬春积雪增多及东亚夏季风的减弱是基本同步的,高原冬春积雪与华东夏季降水的正相关、与华北及华南夏季降水的负相关主要是建立在年代际时间尺度上,因此,高原积雪与我国夏季降水关系的研究应以亚洲季风环流的年代际变化为背景。  相似文献   

13.
1998年青藏高原臭氧低值中心异常及其背景环流场的分析   总被引:3,自引:1,他引:3  
采用TOMS和SAGE II臭氧卫星观测资料,对1998年青藏高原臭氧低值中心异常变化的过程和垂直结构进行了分析。为了探讨1998年这个低值中心出现异常的原因,利用NCEP/NCAR再分析资料,通过1998年高原附近上空位势场和位温的变化,分析了1998年臭氧低值中心异常期间高原上空对流层上层到平流层下层的流场和垂直运动的变化特征。结果表明,1998年11月,青藏高原上空对流顶比正常年份高,无论是对流层上层还是平流层下层,上升运动都比正常年份强。同时高原上空南亚高压也比正常年份强,于是使得1998年高原上空的强臭氧低值中心一直维持到11月。  相似文献   

14.
利用O3监测仪(Ozone Monitoring Instrument,OMI)卫星O3廓线资料和NCEP/NCAR再分析资料,研究了2006年夏季南亚高压偏西型和偏东型条件下青藏高原地区O3垂直结构和变化特征差异.结果表明,夏季南亚高压东西振荡与青藏高原O3分布存在密切的关系,在西(东)部型南亚高压条件下,夏季青藏高...  相似文献   

15.
青藏高原地面热源对亚洲季风爆发的热力影响   总被引:23,自引:4,他引:23  
利用多年NCEP/NCAR再分析全球逐候平均气象场资料和逐旬感热、潜热资料,对亚洲夏季风爆发期间青藏高原及其邻近地区地面加热场的特征进行分析。着重讨论了高原和邻近地区感热加热对亚洲夏季风爆发的影响,具体分析了高原感热加热对亚洲夏季风推进的影响机制,以及对热带低层西风气流的作用。结果发现,中纬度主原的感热加热所造成的经、纬向热力差异是导致亚洲夏季风爆发的原因。亚洲夏季风建立区域和时间的差异与高原感热加热的区域性有关。高原感热加热在南海夏季风爆发前后对南海地区低层西风所流所起的作用不同,在季风爆发前是加速低层西风,在季风爆发后起削弱西风气流的作用。对亚洲夏季风爆发早年和晚年的感热加热进行了对比分析,发现亚洲夏季风爆发时间的年际变化与热源的年际变化有关。  相似文献   

16.
青藏高原和亚洲夏季风动力学研究的新进展   总被引:3,自引:1,他引:3  
亚洲夏季风环流受海陆和伊朗高原—青藏高原大地形的热力作用调控.亚洲季风所释放的巨大潜热又对大气环流形成反馈.这种相互反馈过程十分复杂,揭示其物理过程对理解气候变化格局的形成和变化以及提高天气预报及气候预测的准确率十分重要.夏季北半球副热带对流层上层环流的主要特征是存在庞大的南亚高压(SAH)以及强大的对流层上层温度暖中心(UTTM).本文介绍了温度—加热垂直梯度(T-QZ)理论的发展,并用以揭示SAH和UTTM的形成机制.指出沿副热带欧亚大陆东部的季风对流潜热加热及其中西部的表面感热加热和高层长波辐射冷却是导致SAH和UTTM在南亚上空发展的原因.文中还介绍了Gill模型用于上部对流层研究的局限性及解决的办法.  相似文献   

17.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SNINIR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvious in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   

18.
The current progresses in the study of impacts of the Tibetan Plateau on Asian summer climate in the last decade are reviewed. By analyzing evolution of the transitional zone between westerly to the north and easterly to the south (WEB), it is shown that due to the strong heating over the Tibetan Plateau in spring, the overturning in the prevailing wind direction from easterly in winter to westerly in summer occurs firstly over the eastern Bay of Bengal (BOB), accompanied with vigorous convective precipitation to its east. The area between eastern BOB and western Indo-China Peninsula thus becomes the area with the earliest onset of Asian monsoon, which may be referred as BOB monsoon in short. It is shown that the summertime circulations triggered by the thermal forcing of the Iranian Plateau and the Tibetan Plateau are embedded in phase with the continental-scale circulation forced by the diabatic heating over the Eurasian Continent. As a result, the East Asian summer monsoon is intensified and the drought climate over the western and central Asian areas is enhanced. Together with perturbations triggered by the Tibetan Plateau, the above scenarios and the associated heating have important influences on the climate patterns over Asia. Furthermore, the characteristics of the Tibetan mode of the summertime South Asian high are compared with those of Iranian mode. Results demonstrate that corresponding to each of the bimodality of the South Asian high, the rainfall anomaly distributions over Asia exhibit different patterns.  相似文献   

19.
Using radiosonde and satellite observations, we investigated the trends of air temperature changes over the Tibetan Plateau (TP) in comparison with those over other regions in the same latitudes from 1979 to 2002. It is shown that Over the TP, the trends of air temperature changes in the upper troposphere to lower stratosphere were out of phase with those in the lower to middle troposphere. Air temperature decreased and a decreasing trend appeared in the upper troposphere to lower stratosphere. The amplitude of the annual or seasonal mean temperature decreases over the TP was larger than that over the whole globe. In the lower to middle troposphere over the TP, temperature increased, and the increasing trend was stronger than that over the non-plateau regions in the same latitudes in the eastern part of China. Meanwhile, an analysis of the satellite observed ozone data in the same period of 1979-2002 shows that over the TP, the total ozone amount declined in all seasons, and the ozone depleted the most compared with the situations in other regions in the same latitudes. It is proposed that the difference between the ozone depletion over the TP and that over other regions in the same latitudes may lead to the difference in air temperature changes. Because of the aggravated depletion of ozone over the TP, less (more) ultraviolet radiation was absorbed in the upper troposphere to lower stratosphere (lower to middle troposphere) over the TP, which favored a stronger cooling in the upper troposphere to lower stratosphere, and an intenser heating in the lower to middle troposphere over the TP. Therefore, the comparatively more depletion of ozone over the TP is possibly a reason for the difference between the air temperature changes over the TP and those over other regions in the same latitudes.  相似文献   

20.
利用1979—2016年ERA-interim逐日再分析资料,定义了青藏高原臭氧谷(Ozone Valley over the Tibetan Plateau,OVTP)极端和普通强(弱)事件,并讨论了其特征。结果表明:1) OVTP极端强事件在夏秋季节多发,10月最多,频率达2. 0%; OVTP普通强事件在春夏季多发,7月最多,频率达1. 7%。OVTP极端弱事件在秋冬季多发,12月最多,频率达3. 8%; OVTP普通弱事件在冬季多发,1月最多,频率达2. 0%。2) OVTP极端强事件出现频率显著增加(0. 004%·a~(-1)),极端弱事件出现频率显著减少(-0. 015%·a~(-1))。OVTP普通事件的变化均不显著。3) OVTP极端强事件的面积和强度均在秋季最大,10月达到最大值,面积为4. 3×10~5km~2,强度为1. 5×10~5t; OVTP普通强事件的面积和强度均在夏季最大,7月达到峰值,面积为1. 7×105km~2,强度为4. 1×10~3t。OVTP极端弱事件的面积和强度在春夏较小,4月达到最小值,面积为3. 2×10~4km~2,强度为1. 1×10~2t; OVTP普通弱事件的面积和强度在春夏秋均较小,4月和10月达到极小值,4月面积为2. 5×10~4km~2,强度为68 t,10月面积为2. 2×10~4km~2,强度为97t。4) OVTP极端和普通强事件的面积(强度)均呈显著增大(增强)趋势,极端强事件的面积达2. 5×10~2km~2·a~(-1),强度达2. 5×10~2t·a~(-1),普通强事件的面积达4. 5×10~2km~2·a~(-1),强度达4. 5 t·a~(-1)。极端和普通弱事件的面积(强度)均呈显著减小(减弱)趋势,极端弱事件的面积达-1. 7×10~4km~2·a~(-1),强度达-7. 0×10~3t·a~(-1),普通弱事件的面积达-2. 3×10~3km~2·a~(-1),强度达-2. 7×102t·a~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号