首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soil-gas survey was conducted at a gasoline service station and a former fire training facility to determine if surveying for hydrogen sulfide could be useful in locating nonaqueous phase hydrocarbon fuel in the subsurface. Relative; to total organic vapor, oxygen, and carbon dioxide distributions, detectable hydrogen sulfide concentrations were much more restricted to the suspected source vicinity at both sites. Appreciable levels of soil-gas hydrogen sulfide. up to 600 Vppb. were observed in areas characterized by anaerobic or microaerophilic conditions having bulk oxygen levels below 4 percent. Based on the hydrogen sulfide distribution, nonaqueous phase hydrocarbon fuel was located at each site. These results suggest that soil-gas surveying for hydrogen sulfide may help locale mobile or residual gasoline and other nonaqueous phase hydrocarbons in the subsurface.  相似文献   

2.
Monitoring of the vapor phase has emerged as a very convenient method for detecting volatile organic contaminants in the subsurface. It can provide a reliable way of placing ground water monitoring and recovery wells. The most common method uses a driveable ground probe (DGP) to extract a vapor-phase sample followed by direct injection of the vapor into a portable gas chromatograph (GC). However, many regional offices of regulatory agencies and consultants do not have ready access to such equipment. This research explores an alternative–the carbon adsorption method—in which the vapor is withdrawn by the DGP but concentrated on a small activated carbon trap (150mg). The carbon traps can be returned to a central laboratory for solvent extraction and GC analysis. This provides the advantages of increased sensitivity, reduction in field equipment and convenience of in-lab analyses (multiple GC injections are possible). A simple DGP and carbon trap system was constructed and tested at a field site. Vapor-phase concentrations of target compounds present in gasoline were mapped quite conveniently, ranging from 10,000μg/liter (vapor phase) to less than 10μg/L. These concentrations were also shown to decrease in the direction of the ground surface, as expected. Measurements of target compounds in soil showed that the vapor phase contributed a large fraction of the total contaminant burden where a non-aqueous-phase layer (NAPL) had been identified; as important, however, is the rather uniform contamination of the soil outside the NAPL region. Finally, the concentrations of target compounds in the vapor phase and ground water could be related in a manner roughly described by a simple equilibrium model, although exceptions were noted.  相似文献   

3.
A detailed seasonal study of soil vapor intrusion at a cold climate site with average yearly temperature of 1.9 °C was conducted at a house with a crawlspace that overlay a shallow dissolved‐phase petroleum hydrocarbon (gasoline) plume in North Battleford, Saskatchewan, Canada. This research was conducted primarily to assess if winter conditions, including snow/frost cover, and cold soil temperatures, influence aerobic biodegradation of petroleum vapors in soil and the potential for vapor intrusion. Continuous time‐series data for oxygen, pressure differentials, soil temperature, soil moisture, and weather conditions were collected from a high‐resolution monitoring network. Seasonal monitoring of groundwater, soil vapor, crawlspace air, and indoor air was also undertaken. Petroleum hydrocarbon vapor attenuation and biodegradation rates were not significantly reduced during low temperature winter months and there was no evidence for a significant capping effect of snow or frost cover that would limit oxygen ingress from the atmosphere. In the residual light nonaqueous phase liquid (LNAPL) source area adjacent to the house, evidence for biodegradation included rapid attenuation of hydrocarbon vapor concentrations over a vertical interval of approximately 0.9 m, and a corresponding decrease in oxygen to less than 1.5% v/v. In comparison, hydrocarbon vapor concentrations above the dissolved plume and below the house were much lower and decreased sharply within a few tens of centimeters above the groundwater source. Corresponding oxygen concentrations in soil gas were at least 10% v/v. A reactive transport model (MIN3P‐DUSTY) was initially calibrated to data from vertical profiles at the site to obtain biodegradation rates, and then used to simulate the observed soil vapor distribution. The calibrated model indicated that soil vapor transport was dominated by diffusion and aerobic biodegradation, and that crawlspace pressures and soil gas advection had little influence on soil vapor concentrations.  相似文献   

4.
Soil-gas sampling and analysis is a common tool used in vapor intrusion assessments; however, sample collection becomes more difficult in fine-grained, low-permeability soils because of limitations on the flow rate that can be sustained during purging and sampling. This affects the time required to extract sufficient volume to satisfy purging and sampling requirements. The soil-gas probe tubing or pipe and sandpack around the probe screen should generally be purged prior to sampling. After purging, additional soil gas must be extracted for chemical analysis, which may include field screening, laboratory analysis, occasional duplicate samples, or analysis for more than one analytical method (e.g., volatile organic compounds and semivolatile organic compounds). At present, most regulatory guidance documents do not distinguish between soil-gas sampling methods that are appropriate for high- or low-permeability soils. This paper discusses permeability influences on soil-gas sample collection and reports data from a case study involving soil-gas sampling from silt and clay-rich soils with moderate to extremely low gas permeability to identify a sampling approach that yields reproducible samples with data quality appropriate for vapor intrusion investigations for a wide range of gas-permeability conditions.  相似文献   

5.
The quickflow responses of six subcatchment areas in a small hill country catchment in the Craigieburn Range, South Island, New Zealand, were compared for a range of storm sizes, rainfall intensities and antecedent wetness conditions. Topography and soil characteristics suggested that all subcatchments would receive subsurface stormflow input, but that some would receive larger saturation overland flow inputs than others. Quickflow yields and response ratios were positively correlated with storm size and antecedent wetness conditions in the subcatchment most suited to producing saturation overland flow. In subcatchments more likely to be dominated by subsurface flow, quickflow yields and response ratios were positively correlated with storm size, but were either not correlated, or negatively correlated, with antecedent wetness. Quickflow responses were either not significantly or negatively correlated with rainfall intensity variables. Quickflow from the subcatchment most suited to produce saturation overland flow providing an increasing proportion of total catchment quickflow in larger storms and as antecedent conditions became wetter. Subcatchment responses varied greatly in space and time and there was less pattern to the variation than had been expected. Where topographic and pedologic conditions permit substantial responses to storm rainfall by both saturation overland flow and subsurface stormflow, simple topographic and soil indicators may not be useful guides to the relative importance of runoff mechanisms, or to the identification of runoff-source areas.  相似文献   

6.
A model is presented for estimating vapor concentrations in buildings because of volatilization from soil contaminated by non- aqueous phase liquids (NAPL) or from dissolved contaminants in ground water. The model considers source depletion, diffusive- dispersive transport of the contaminant of concern (COC) and of oxygen and oxygen-limited COC biodecay. Diffusive-advective transport through foundations and vapor losses caused by foundation cross-flow are considered. Competitive oxygen use by various species is assumed to be proportional to the product of the average dissolved-phase species concentration and a biopreference factor. Laboratory and field data indicate the biopreference factor to be proportional to the organic carbon partition coefficient for the fuel hydrocarbons studied. Predicted indoor air concentrations were sensitive to soil type and subbase permeability. Lower concentrations were predicted for buildings with shallow foundations caused by flushing of contaminants by cross-flow. NAPL source depletion had a large impact on average exposure concentration. Barometric pumping had a minor effect on indoor air emissions for the conditions studied. Risk-based soil cleanup levels were much lower when biodecay was considered because of the existence of a threshold source concentration below which no emissions occur. Computed cleanup levels at NAPL-contaminated sites were strongly dependent on total petroleum hydrocarbon (TPH) content and COC soil concentration. The model was applied to two field sites with gasoline-contaminated ground water. Confidence limits of predicted indoor air concentrations spanned approximately two orders of magnitude considering uncertainty in model parameters. Measured contaminant concentrations in indoor air were within model-predicted confidence limits.  相似文献   

7.
1,4‐Dioxane is a volatile organic compound that is fully miscible in water, allowing it to sequester in vadose zone pore water and serve as a long‐term source of groundwater contamination. Conventional soil vapor extraction (SVE) removes 1,4‐dioxane; however, substantial 1,4‐dioxane can remain even after other colocated chlorinated solvents have been remediated. A field demonstration of “enhanced SVE” (XSVE) with focused extraction and heated injection was conducted at former McClellan AFB, CA, achieving 94% reduction in soil concentrations. A screening‐level tool, HypeVent XSVE, was created to assist in system design and data reduction and to anticipate how operating factors affect XSVE performance (e.g., cleanup level, remediation time, etc.). It assumes well‐mixed conditions, and combines an energy balance, mass balances for water and contaminant, and a temperature‐dependent 1,4‐dioxane Henry's Law constant. User inputs include the target treatment zone size, initial 1,4‐dioxane and soil moisture concentrations, and ambient site and injection/extraction conditions (temperature, humidity). Projections based on inputs representative of demonstration site conditions adequately anticipated the observed macroscopic field results. Sensitivity analyses show that removal increases with increasing heated air injection temperature and relative humidity and decreasing initial soil moisture content.  相似文献   

8.
Detailed site investigations to assess potential inhalation exposure and risk to human health associated with the migration of petroleum hydrocarbon vapors from the subsurface to indoor air are frequently undertaken at leaking underground storage tank (UST) sites, yet documented occurrences of petroleum vapor intrusion are extremely rare. Additional assessments are largely driven by low screening‐level concentrations derived from vapor transport modeling that does not consider biodegradation. To address this issue, screening criteria were developed from soil‐gas measurements at hundreds of petroleum UST sites spanning a range of environmental conditions, geographic regions, and a 16‐year time period (1995 to 2011). The data were evaluated to define vertical separation (screening) distances from the source, beyond which, the potential for vapor intrusion can be considered negligible. The screening distances were derived explicitly from benzene data using specified soil‐gas screening levels of 30, 50, and 100 µg/m3 and nonparametric Kaplan‐Meier statistics. Results indicate that more than 95% of benzene concentrations in soil gas are ≤30 µg/m3 at any distance above a dissolved‐phase hydrocarbon source. Dissolved‐phase petroleum hydrocarbon sources are therefore unlikely to pose a risk for vapor intrusion unless groundwater (including capillary fringe) comes in contact with a building foundation. For light nonaqueous‐phase liquid (LNAPL) hydrocarbon sources, more than 95% of benzene concentrations in soil gas are ≤30 µg/m3 for vertical screening distances of 13 ft (4 m) or greater. The screening distances derived from this analysis are markedly different from 30 to 100 ft (10 to 30 m) vertical distances commonly found cited in regulatory guidance, even with specific allowances to account for uncertainty in the hydrocarbon source depth or location. Consideration of these screening distances in vapor intrusion guidance would help eliminate unnecessary site characterization at petroleum UST sites and allow more effective and sustainable use of limited resources.  相似文献   

9.
The soil and ground water at a General Motors plant site were contaminated with petroleum products from leaking underground storage tanks. Based on the initial assessment, the site was complex from the standpoint of geology (clay layers), hydrology (a recharge zone with a perched water table), and contaminant (approximately 4800 gallons of mixed gasoline and oil). After a thorough study of remedial alternatives, a synergistic remedial approach was adopted including pump and treat, product removal, vapor extraction, and bioventing. The system was designed and implemented at the site through 22 dual-extraction wells. Over a 21-month period, 4400 gallons of gasoline and oil were removed from the system, including 59 percent by vapor extraction, 28 percent by bioventing, and 13 percent by pump and treat. Synergism between the various remedial methods was demonstrated clearly. Ground water pump and treat lowered the water table, allowing air to flow for vapor extraction. The vacuum applied for vapor extraction increased the ground water removal rate and the efficiency of pump and treat. The vapor extraction system also added oxygen to the soil to stimulate aerobic biodegradation.  相似文献   

10.
Vapor intrusion pathway evaluations commonly begin with a comparison of volatile organic chemical (VOC) concentrations in groundwater to generic, or Tier 1, screening levels. These screening levels are typically quite low reflecting both a desired level of conservatism in a generic risk screening process as well as limitations in understanding of physical and chemical processes that impact vapor migration in the subsurface. To study the latter issue, we have collected detailed soil gas and groundwater vertical concentration profiles and evaluated soil characteristics at seven different sites overlying chlorinated solvent contaminant plumes. The goal of the study was to evaluate soil characteristics and their impacts on VOC attenuation from groundwater to deep soil gas (i.e., soil gas in the unsaturated zone within 2 feet of the water table). The study results suggest that generic screening levels can be adjusted by a factor of 100× at sites with fine‐grained soils above the water table, as identified by visual observations or soil air permeability measurements. For these fine‐grained soil sites, the upward‐adjusted screening levels maintain a level of conservatism while potentially eliminating the need for vapor intrusion investigations at sites that may not meet generic screening criteria.  相似文献   

11.
The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic compounds (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 µg/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed.  相似文献   

12.
Several regulatory agencies recommend screening petroleum vapor intrusion (PVI) sites based on vertical screening distance between a petroleum hydrocarbon source in soil or groundwater and a building foundation. U.S. Environmental Protection Agency (U.S. EPA) indicate the risk of PVI is minimal at buildings that are separated by more than 6 feet (1.8 m) from a dissolved-phase source and 15 feet (4.6 m) from a light nonaqueous phase liquid (LNAPL) source. This vertical screening distance method is not, however, recommended at sites with leaded gasoline sources containing ethylene dibromide (EDB) because of a lack of field data to document EDB attenuation in the vadose zone. To help address this gap, depth-discrete soil-gas samples were collected at a leaded gasoline release site in Sobieski, Minnesota (USA). The maximum concentration of EDB in groundwater (175 μg/L) at the site was high relative to those observed at other leaded gasoline release sites. Soil gas was analyzed for EDB using a modification of U.S. EPA Method TO-14A that achieved analytical detection limits below the U.S. EPA Vapor Intrusion Screening Level (VISL) for EDB based on a 10−6 cancer risk (<0.16 μg/m3). Concentrations of EDB in soil gas above LNAPL reached as high as 960 μg/m3 and decreased below the VISL within a source-separation distance of 7 feet. This result coupled with BioVapor model predictions of EDB concentrations indicate that vertical screening distances recommended by regulatory agencies at PVI sites are generally applicable for EDB over the range of anticipated source concentrations and soil types at most sites.  相似文献   

13.
Measurement of the vapor flux from volatile organic compounds (VOCs) provides a rapid means for screening large areas of potential contamination. The vapor flux is determined from the rate of VOC concentration buildup inside a 3.1L accumulator device that is sealed to the surface of the contaminated soil. After the VOC concentrations are allowed to increase for a few minutes, they are analyzed with a portable gas chromatograph or a total organic vapor analyzer.
The measurement approach was evaluated at a field site in an area where the ground water and soil had been impacted with Jet Fuel No. 4 (JP-4). An indication of the areal extent of impact was determined by mapping the surface VOC vapor flux. The pattern revealed by the flux measurements was found to coincide, in rough outline, with the known extent of toluene concentrations in the ground water and with conventional soil-gas survey results. In addition, a mathematical model describing VOC diffusion into the accumulator device was verified by performing laboratory measurements of the surface VOC vapor flux on a sandbox designed to simulate a hazardous waste site.  相似文献   

14.
从系统工程方法论的角度出发,以物理-事理-人理(WSR)方法论为指导,从粗粒土的物理属性、外界因素、试验操作等3个方面全方位多角度地分析总结了压实试验中影响干密度的因素,建立了基于WSR方法的振动压实试验中粗粒土干密度影响因素指标体系,并运用解释结构模型化(ISM)技术构建了粗粒土干密度影响因素的解释结构模型;通过系统分析,将基于WSR方法考虑到的11个影响压实试验中干密度的因素按照其影响程度分成了5个层次等级,并与在试验中的实践经验进行了对比。研究结果表明,在压实试验中,试验仪器的精确度、激振力、压重和激振时间对于粗粒土干密度的大小起着直接的作用,与笔者的实践经验是相似的。  相似文献   

15.
白军红  邓伟  张玉霞 《湖泊科学》2002,14(2):145-151
本文以乌兰泡湿地为研究对象,对该区环带状植被区湿地土壤有机质有全氮的空间分布规律进行了初步研究,结果表明不同植被区养发含量分异趋势一致,但水平分异显著,沿土壤水分梯度变化而变化,表现为蓼区>香蒲区>芦苇区,反映出距泡心越远含量越低的规律;各植被区土壤碳氮比都相对较低(在5-12之间),表层土壤碳氮经值也沿土吉水分梯度变化,表现为芦苇区>香莆区>蓼区;泡沼湿地土壤与草原土壤的碳氮比对水分条件及有机质和全氮的含量的响应差异显著;水分和植被是影响其水平分异的关键因子,而湿地土壤pH值并不是影响土壤有机质及全氮分异的主要因子。  相似文献   

16.
The adsorption of water vapor by soil is one of the crucial contributors to non-rainfall water on land surface, particularly over semi-arid regions where its contribution can be equivalent to precipitation and can have a major impact on dry agriculture and the ecological environment in these regions. However, due to difficulties in the observation of the adsorption of water vapor,research in this area is limited. This study focused on establishing a method for estimating the quantitative observation of soil water vapor adsorption(WVA), and exploring the effects of meteorological elements(e.g., wind, temperature, and humidity) and soil environmental elements(e.g., soil temperature, soil moisture, and the available energy of soil) on WVA by soil over the semi-arid region, Dingxi, by combining use of the L-G large-scale weighing lysimeter and meteorological observation. In addition, this study also analyzed the diurnal and annual variations of WVA amount, frequency, and intensity by soil, how they changed with weather conditions, and the contribution of WVA by soil to the land surface water budget. Results showed that WVA by soil was co-affected by various meteorological and soil environmental elements, which were more likely to occur under conditions of relative humidity of 6.50% and the diurnal variation of relative humidity was large, inversion humidity, wind velocity of 3.4 m/s,lower soil water content, low surface temperature and slightly unstable atmospheric conditions. There was a negative feedback loop between soil moisture and the adsorption of water vapor, and, moreover, the diurnal and annual variations of WVA amount and frequency were evident—WVA by soil mainly occurred in the afternoon, and the annual peak appeared in December and the valley in June, with obvious regional characteristics. Furthermore, the contribution of WVA by soil to the land surface water budget obviously exceeded that of precipitation in the dry season.  相似文献   

17.
Subslab soil gas sampling and analysis is a common line of evidence for assessing human health risks associated with subsurface vapor intrusion to indoor air for volatile organic compounds; however, conventional subslab sampling methods have generated data that show substantial spatial and temporal variability, which often makes the interpretation difficult. A new method of monitoring has been developed and tested that is based on a concept of integrating samples over a large volume of soil gas extracted from beneath the floor slab of a building to provide a spatially averaged subslab concentration. Regular field screening is also conducted to assess the trend of concentration as a function of the volume removed to provide insight into the spatial distribution of vapors at progressive distances away from the point of extraction. This approach minimizes the risk of failing to identify the areas of elevated soil vapor concentrations that may exist between discrete sample locations, and can provide information covering large buildings with fewer holes drilled through the floor. The new method also involves monitoring the extraction flow rate and transient vacuum response for mathematical analysis to help interpret the vapor concentration data and to support an optimal design for any subslab venting system that may be needed.  相似文献   

18.
Dry saline soils are common in the arid and hyper‐arid basins located in the Chilean Altiplano, where evaporation from shallow groundwater is typically the major component of the water balance. Thus, a good understanding of evaporation processes is necessary for improving water resource planning and management in these regions. In this study, we conducted laboratory experiments with a natural saline soil column to estimate evaporation rates and assess the liquid and water vapor fluxes under different water table levels. Water content, electrical conductivity and temperature at different depths were utilized to assess the liquid and water vapor fluxes in the soil column. We observed movement of water that dissolves salts from the soil and transports them to areas in the column where they accumulate. Isothermal liquid flux was predominant, while thermal and isothermal liquid and thermal water vapor fluxes were negligible, except for deep water table levels where isothermal and thermal water vapor fluxes had similar magnitude but opposite directions. Differences observed in total fluxes for all water table levels were due to different upward and downward fluxes, which depend on changes in water content and temperature within the soil profile. Both the vapor flux magnitude and direction were found to be very sensitive to the choice of empirical parameters used in flux quantification, such as tortuosity and the enhancement factor for local temperature gradients in the air phase within the column. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
《Advances in water resources》2005,28(11):1254-1266
A detailed model was formulated to describe the non-isothermal transport of water in the unsaturated soil zone. The model consists of the coupled equations of mass conservation for the liquid phase, gas phase and water vapor and the energy conservation equation. The water transport mechanisms considered are convection in the liquid phase, and convection, diffusion and dispersion of vapor in the gas phase. The boundary conditions at the soil–atmosphere interface include dynamical mass flux and energy flux that accounts for radiation transport. Comparison of numerical simulations results with published experimental data demonstrated that the present model is able to describe water and energy transport dynamics, including situations of low and moderate soil moisture contents. Analysis of field studies on soil drying suggests that that dispersion flux of the water vapor near the soil surface, which is seldom considered in soil drying models, can make a significant contribution to the total water flux.  相似文献   

20.
At a utility service center, gasoline from an underground storage tank had leaked into subsurface vadose zone soils for several years. To remediate the site, a soil vapor extraction (SVE) system was installed and operated. At the completion of the SVE operation, gasoline-containing residues in several confirmation soil borings exceeded agency-mandated cleanup levels. Rather than continue with SVE, a risk-based approach was developed to evaluate what levels of gasoline-containing residues could be left in the soil and still protect human health. The risk-based approach consisted of simulating the fate of chemical residues through the vadose zone and then into both the ground water and atmosphere. Receptor point concentrations were predicted, and health risks were assessed. The risk assessment concluded that ingestion of contaminated ground water and inhalation of air while showering were the largest potential contributors to risk, and that risks associated with inhalation of vapor-containing ambient air are small. However, all predicted risks are below the acceptable risk levels of 10−6 individual cancer risk probability and 1.0 hazard index. Therefore, the lead agency accepted the recommendation that the site requires no further remediation. The service center continues normal operations today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号