首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiance records of the Nimbus-7 and SMM satellites indicate a systematic downward trend of the solar constant of the order of a few hundredths of a percent and a slow variation of the solar constant on a time scale from days to weeks. The reason for the downward trend is not known as yet; it seems that the slow variation of the solar constant is linked with the solar rotation period via the effect of solar active regions. This paper deals with the connection between the solar constant variation and the age of the solar active regions. It seems that decreases in the solar constant took place when sunspot groups developing quickly in time and space with complex structure occurred on the solar disk. On the other hand, when the “older” groups with simple structure were dominant the value of the solar constant increased slightly or these groups could reduce the effects of “younger” groups.  相似文献   

2.
Based on the observational data of sunspots, the relation between the amplitude of solar cycle and the total area of all active regions occurred in a solar cycle has been investigated. The result shows that the amplitude of solar cycle has a good correlation with the total area of all active regions occurred in the solar cycle. The relation between the amplitude of solar cycle and the area of the largest active region during a solar cycle has also been investigated. The result shows that the amplitude of solar cycle has a poor correlation with the area of the largest active region during a solar cycle, and there is no fixed relation between the peak time of a solar cycle and the time when the largest active region occurred in the solar cycle.  相似文献   

3.
The Carte Synoptique catalogue of solar filaments from 1919 March to 1957 July, corresponding to complete cycles 16‐18, is utilized to show the latitudinal migrations of solar filaments at low (≤50°) and high (>50°) latitudes and the latitudinal distributions of solar filaments for all solar filaments, solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° and solar filaments whose maximum lengths during solar disk passage are larger than 70°. The results show the following. (1) The latitudinal migrations of all low‐latitude solar filaments and low‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° follow the Spörer sunspot law. However, the latitudinal migration of low‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70° do not follow the Spörer sunspot law: there is no equatorward and no poleward drift. The latitudinal migration of high‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70° is more significant than those of all high‐latitude solar filaments and high‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70°: there is a poleward migration from the latitude of about 50° to 70° and an equatorward migration from the latitude of about 70° to 50° of all high‐latitude solar filaments and high‐latitude solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° and there is a poleward migration from the latitude of about 50° to 80° and an equatorward migration from the latitude of about 80° to 50° of high‐latitude solar filaments whose maximum lengths during solar disk passage are larger than 70°. (2) The statistical characteristics of latitudinal distribution of solar filaments whose maximum lengths during solar disk passage are larger than 70° is different from those of all solar filaments and solar filaments whose maximum lengths during solar disk passage are less than or equal to 70° (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The giant planetary magnetospheres surrounding Jupiter and Saturn respond in quite different ways, compared to Earth, to changes in upstream solar wind conditions. Spacecraft have visited Jupiter and Saturn during both solar cycle minima and maxima. In this paper we explore the large-scale structure of the interplanetary magnetic field (IMF) upstream of Saturn and Jupiter as a function of solar cycle, deduced from solar wind observations by spacecraft and from models. We show the distributions of solar wind dynamic pressure and IMF azimuthal and meridional angles over the changing solar cycle conditions, detailing how they compare to Parker predictions and to our general understanding of expected heliospheric structure at 5 and 9 AU. We explore how Jupiter’s and Saturn’s magnetospheric dynamics respond to varying solar wind driving over a solar cycle under varying Mach number regimes, and consider how changing dayside coupling can have a direct effect on the nightside magnetospheric response. We also address how solar UV flux variability over a solar cycle influences the plasma and neutral tori in the inner magnetospheres of Jupiter and Saturn, and estimate the solar cycle effects on internally driven magnetospheric dynamics. We conclude by commenting on the effects of the solar cycle in the release of heavy ion plasma into the heliosphere, ultimately derived from the moons of Jupiter and Saturn.  相似文献   

5.
The form of the solar radiation pressure on a heliocentric orbiting solar sail is obtained for a finite angular sized and limb darkened solar disk by the use of the radiation pressure tensor. It is found that the usual inverse square variation of the solar radiation pressure is modified by the finite angular size, and to a lesser extent by the solar limb darkening. The actual magnitude of the modification is in itself small, except at close heliocentric distances. However, its existence has implications for the dynamical stability of solar sails both in parked and circular orbital configurations and for the accuracy of trajectory calculations, particularly for sails in the inner solar system.  相似文献   

6.
Cosmic-ray intensity data for the period 1964–1985 covering two solar cycles are used to investigate the solar activity behaviour in relation to cosmic-ray modulation. A detailed statistical analysis of them shows a large time-lag of about one and half years between cosmic-ray intensity and solar activity (as indicated by sunspot number, solar flares and high-speed solar-wind streams) during the 21st solar cycle appearing for a first time. This lag indicates the very high activity level of this solar cycle estimating the size of the modulating region to the unambiguous value of 180 AU. The account of the solar-wind speed in the 11-year variation significantly decreases the modulation region of cosmic-rays to the value of 40 AU.A comparison with the behaviour of the previous solar cycle establishes a distinction between even and odd solar cycles. This is explained in terms of different contributions of drift, convection and diffusion to the whole modulation mechanism during even and odd solar cycles.  相似文献   

7.
Simultaneous solar total irradiance observations performed by absolute radiometers on board satellites during the quiet-Sun period between solar cycles 21 and 22 (1985–1987), are analyzed to determine the solar total irradiance at 1 AU for the solar minimum. During the quiet-Sun period the total solar irradiance, UV irradiance, and the various solar activity indices show very little fluctuation. However, the absolute value of the solar total irradiance derived from the observations differ within the accuracy of the radiometers used in the measurements. Therefore, the question often arises about a reference value of the solar total irradiance for use in climate models and for computation of geophysical, and atmospheric parameters. This research is conducted as a part of the Solar Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22). On the basis of the study we recommended a reference value of 1367.0 ± 0.04 W m-2 for the solar total irradiance at 1 AU for a truly quiet Sun. We also find that the total solar irradiance data for the quiet-Sun period reveals strong short-term irradiance variations.  相似文献   

8.
This paper presents the study of normalized north–south asymmetry, cumulative normalized north–south asymmetry and cumulative difference indices of sunspot areas, solar active prominences (at total, low (?40°) and high (?50°) latitudes) and Hα solar flares from 1964 to 2008 spanning the solar cycles 20–23. Three different statistical methods are used to obtain the asymmetric behavior of different solar activity features. Hemispherical distribution of activity features shows the dominance of activities in northern hemisphere for solar cycle 20 and in southern hemisphere for solar cycles 21–23 excluding solar active prominences at high latitudes. Cumulative difference index of solar activity features in each solar cycle is observed at the maximum of the respective solar cycle suggesting a cyclic behavior of approximately one solar cycle length. Asymmetric behavior of all activity features except solar active prominences at high latitudes hints at the long term periodic trend of eight solar cycles. North–south asymmetries of SAP (H) express the specific behavior of solar activity at high solar latitudes and its behavior in long-time scale is distinctly opposite to those of other activity features. Our results show that in most cases the asymmetry is statistically highly significant meaning thereby that the asymmetries are real features in the N–S distribution of solar activity features.  相似文献   

9.
日食为射电天文提供了一维高空间分辨率太阳射电观测机会.日食射电观测在太阳射电物理的发展上起过重要的作用.文中对日食射电观测的若干重要因素作了介绍和分析.日食射电观测在我国太阳射电天文发展上也起了重要作用.文中简要介绍了在我国组织观测的1958年、1968年、1980年及1987年的太阳射电日食观测及其主要结果.  相似文献   

10.
This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsible for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quiet Sun and coronal holes.  相似文献   

11.
The significant periods of total solar irradiance are 35 d and 26 d in the 23rd and 24th solar activity cycles, respectively. It is inferred that the solar quasi-rotation periods are also 35 d and 26 d in the 23rd and 24th solar activity cycles, respectively. The value of total solar irradiance around the 24th solar activity minimum may be close to the value of Maunder minimum. On the timescales from one solar rotation period to several months, sunspots are the main reason to cause the variation of total solar irradiance, but not the unique one, and the variation of total solar irradiance are not correlated with the Mg II index on the timescales from a few days to one solar rotation period.  相似文献   

12.
Yūki Kubo 《Solar physics》2008,248(1):85-98
This article discusses statistical models for the solar flare interval distribution in individual active regions. We analyzed solar flare data in 55 active regions that are listed in the Geosynchronous Operational Environmental Satellite (GOES) soft X-ray flare catalog for the years from 1981 to 2005. We discuss some problems with a conventional procedure to derive probability density functions from any data set and propose a new procedure, which uses the maximum likelihood method and Akaike Information Criterion (AIC) to objectively compare some competing probability density functions. Previous studies of the solar flare interval distribution in individual active regions only dealt with constant or time-dependent Poisson process models, and no other models were discussed. We examine three models – exponential, lognormal, and inverse Gaussian – as competing models for probability density functions in this study. We found that lognormal and inverse Gaussian models are more likely models than the exponential model for the solar flare interval distribution in individual active regions. The possible solar flare mechanisms for the distribution models are briefly mentioned. We also briefly investigated the time dependence of probability density functions of the solar flare interval distribution and found that some active regions show time dependence for lognormal and inverse Gaussian distribution functions. The results suggest that solar flares do not occur randomly in time; rather, solar flare intervals appear to be regulated by solar flare mechanisms. Determining a solar flare interval distribution is an essential step in probabilistic solar flare forecasting methods in space weather research. We briefly mention a probabilistic solar flare forecasting method as an application of a solar flare interval distribution analysis. The application of our distribution analysis to a probabilistic solar flare forecasting method is one of the main objectives of this study.  相似文献   

13.
We found an evidence that the solar cycle luminosity modulation of the Sun deduced from the total irradiance modulation which was measured by the Earth Radiation Budget (ERB) experiment on board of Nimbus 7 from November 16, 1978 to December 13, 1993 was not in phase with the solar cycle magnetic oscillation when we used the sunspot relative number as its index. The modulation was delayed in time behind the solar cycle magnetic oscillation by an amount of about 10.3 years on the order of length of one solar cycle. In order to quantitatively evaluate the correlation between the two quantities, we devised a method to extract characteristics which were proper to a particular solar cycle by defining a new index of the correlation called multiplied correlation index (MCI). We found that the characteristics of the ERB data time profile between solar cycles 21 and 22 were more similar to those of the solar cycle magnetic oscillation between solar cycles 20 and 21 than those between solar cycles 21 and 22 and thus the time profile of the luminosity modulation from the maximum phase of solar cycle 21 to the declining phase of the solar cycle 22 corresponded to the solar cycle magnetic oscillation from the maximum phase of solar cycle 20 to the declining phase of solar cycle 21. We interpret this phenomenon as an evidence that main features of the modulation is not caused by dark sunspots and bright faculae and plages on the surface of the Sun that should instantaneously affect the luminosity modulation but is caused by time-delayed modulation of global convection by the Lorentz force of the magnetic field of the solar cycle. The delay time of about 10.3 years is the time needed for the force to modify the flows of the convection and to modulate heat flow. Thus the delay time is a function of the strength of the magnetic field oscillation of the solar cycle which is represented by amplitude of the solar cycle. Accordingly, the delay time for other time intervals of the solar cycle magnetic oscillation with different amplitudes can be different from 10.3 years for the interval of the present analysis.  相似文献   

14.
The Pioneer Venus Orbiter (PVO) had on board the electron temperature probe experiment which measured temperature and concentration of electrons in the ionosphere of Venus. When the probe was outside the Venus ionosphere and was in the solar wind, the probe current was entirely due to solar photons striking the probe surface. This probe thus measured integrated solar EUV flux (Ipe) over a 13-year period from January 1979 to December 1991, thereby covering the declining phase of solar cycle 21 and the rising phase of solar cycle 22. In this paper, we examine the behavior of Ipe translated to the solar longitude of Earth (to be called EIpe) during the two solar cycles. We find that total EUV flux changed by about 60% during solar cycle 21 and by about 100% in solar cycle 22. We also compare this flux with other solar activity indicators such as F_10.7 , Lα, and the solar magnetic field. We find that while the daily values of EIpe are highly correlated with F_10.7 (correlation coefficient 0.87), there is a large scatter in EIpe for any value of this Earth-based index. A comparison of EIpe with SME and UARS SOLSTICE Lα measurements taken during the same period shows that EIpe tracks Lα quite faithfully with a correlation coefficient of 0.94. Similar comparison with the solar magnetic field (Bs) shows that EIpe correlates better with Bs than with F_10.7 . We also compare EIpe with total solar irradiance measured during the same period.  相似文献   

15.
Data of sunspot groups at high latitude (35°), from the year 1874 to the present (2000 January), are collected to show their evolutional behaviour and to investigate features of the yearly number of sunspot groups at high latitude. Subsequently, an evolutional pattern of sunspot group number at high latitude is given in this paper. Results obtained show that the number of sunspot groups of a solar cycle at high latitude rises to a maximum value about 1 yr earlier than the time of the maximum of sunspot relative numbers of the solar cycle, and then falls to zero more rapidly. The results also show that, at the moment, solar activity described by the sunspot relative numbers has not yet reached its minimum. In general, sunspot groups at high latitude have not appeared on the solar disc during the last 3 yr of a Wolf solar cycle. The asymmetry of the high latitude sunspot group number of a Wolf solar cycle can reflect the asymmetry of solar activity in the Wolf solar cycle, and it is suggested that one could further use the high latitude sunspot group number during the rising time of a Wolf solar cycle, maximum year included, to judge the asymmetry of solar activity over the whole solar cycle.  相似文献   

16.
A radiative-convective climate model was used to explore the response of the mean global vertical temperature structure to a variation in the solar UV flux over the solar cycle. The model predicted a cooling of the troposphere and a warming of the stratosphere from solar minimum to solar maximum. The response of the atmospheric temperature to solar UV variations was found to be moderated by a concomitant change in the mean global stratospheric ozone content.  相似文献   

17.
The solar extreme ultraviolet (EUV) irradiance, the dominant global energy source for Earth's atmosphere above 100 km, is not known accurately enough for many studies of the upper atmosphere. During the absence of direct solar EUV irradiance measurements from satellites, the solar EUV irradiance is often estimated at the 30–50% uncertainty level using both proxies of the solar irradiance and earlier solar EUV irradiance measurements, primarily from the Air Force Geophysics Laboratory (now Phillips Laboratory) rockets and Atmospheric Explorer (AE) instruments. Our sounding rocket measurements during solar cycle 22 include solar EUV irradiances below 120 nm with 0.2 nm spectral resolution, far ultraviolet (FUV) airglow spectra below 160 nm, and solar soft X-ray (XUV) images at 17.5 nm. Compared to the earlier observations, these rocket experiments provide a more accurate absolute measurement of the solar EUV irradiance, because these instruments are calibrated at the National Institute of Standards and Technology (NIST) with a radiometric uncertainty of about 8%. These more accurate sounding-rocket measurements suggest revisions of the previous reference AE–E spectra by as much as a factor of 2 at some wavelengths. Our sounding-rocket flights during the past several years (1988–1994) also provide information about solar EUV variability during solar cycle 22.  相似文献   

18.
Comparing Solar Minimum 23/24 with Historical Solar Wind Records at 1 AU   总被引:1,自引:0,他引:1  
Based on the variations of sunspot numbers, we choose a 1-year interval at each solar minimum from the beginning of the acquisition of solar wind measurements in the ecliptic plane and at 1 AU. We take the period of July 2008??C?June 2009 to represent the solar minimum between Solar Cycles 23 and 24. In comparison with the previous three minima, this solar minimum has the slowest, least dense, and coolest solar wind, and the weakest magnetic field. As a result, the solar wind dynamic pressure, dawn?Cdusk electric field, and geomagnetic activity during this minimum are the weakest among the four minima. The weakening trend had already appeared during solar minimum 22/23, and it may continue into the next solar minimum. During this minimum, the galactic cosmic ray intensity reached the highest level in the space age, while the number of solar energetic proton events and the ground level enhancement events were the least. Using solar wind measurements near the Earth over 1995??C?2009, we have surveyed and characterized the large-scale solar wind structures, including fast-slow stream interaction regions (SIRs), interplanetary coronal mass ejections (ICMEs), and interplanetary shocks. Their solar cycle variations over the 15 years are studied comprehensively. In contrast with the previous minimum, we find that there are more SIRs and they recur more often during this minimum, probably because more low- and mid-latitude coronal holes and active regions emerged due to the weaker solar polar field than during the previous minimum. There are more shocks during this solar minimum, probably caused by the slower fast magnetosonic speed of the solar wind. The SIRs, ICMEs, and shocks during this minimum are generally weaker than during the previous minimum, but did not change as much as did the properties of the undisturbed solar wind.  相似文献   

19.
By introducing a hitherto ignored 6Li producing process, due to accelerated 3He reactions with 4He, we show that accelerated particle interactions in solar flares produce much more 6Li than 7Li. By normalizing our calculations to gamma-ray data, we demonstrate that the 6Li produced in solar flares, combined with photospheric 7Li, can account for the recently determined solar wind lithium isotopic ratio, obtained from measurements in lunar soil, provided that the bulk of the flare-produced lithium is evacuated by the solar wind. Further research in this area could provide unique information on a variety of problems, including solar atmospheric transport and mixing, solar convection and the lithium depletion issue, and solar wind and solar particle acceleration.  相似文献   

20.
We have used data from five neutron monitor stations with primary rigidity (Rm) ranging from 16 GeV to 33 GeV to study the diurnal variations of cosmic rays over the period: 1965–1986 covering one 22-year solar magnetic cycle. The heliosphere interplanetary magnetic field (IMF) and plasma hourly measurements taken near Earth orbit, by a variety of spacecraft, are also used to compare with the results of solar diurnal variation. The local time of maximum of solar diurnal diurnal variations displays a 22-year cycle due to the solar polar magnetic field polarities. In general, the annual mean of solar diurnal amplitudes, magnitude of IMF and plasma parameters are found to show separte solar cycle variations. Moreover, during the declining period of the twenty and twenty-ne solar cycles, large solar diurnal amplitudes are observed which associated with high values of solar wind speed, plasma temperature and interplanetary magnetic field magnitude B3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号