首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《International Geology Review》2012,54(15):1839-1855
ABSTRACT

The Late Cretaceous accretionary complex of the ?zmir–Ankara–Erzincan suture zone, near Artova, is composed mainly of peridotites (variably serpentinized), amphibolite, garnet-micaschist, calc-schist, marble, basalt, sandstones, neritic limestones. The metamorphic rocks were interpreted as the metamorphic sole rocks occurring at the base of mantle tectonites, because: (i) amphibolites were observed together with the serpentinized peridotites suggesting their occurrences in the oceanic environment; (ii) foliation in amphibolites and serpentinized peridotites run subparallel to each other; (iii) all these metamorphic rocks and serpentinized peridotites are cross-cut by the unmetamorphosed dolerite dikes with island arc tholeiite-like chemistry. Geochemical characteristics of the amphibolites display enriched mid-ocean ridge basalt (E-MORB)- and ocean island basalt (OIB)-like signatures. The dolerite dikes, on the other hand, yield an island arc tholeiite-like composition. Geothermobarometric investigations of the metamorphic sole rocks suggest that the metamorphic temperature was ~650 ± 30°C and the pressure condition was less than 0.5 GPa. Dating of hornblende grains from amphibolite yielded age values ranging from 139 ± 11 to 157 ± 3.6 Ma (2σ). The oldest weighted average age value is regarded as approximating the timing of the intra-oceanic subduction. These cooling ages were interpreted to be the intra-oceanic subduction/thrusting time of the ?zmir–Ankara–Erzincan oceanic domain.  相似文献   

2.
《International Geology Review》2012,54(11):1395-1412
The Neyriz ophiolite along the northeast flank of the Zagros fold-thrust belt in southern Iran is an excellent example of a Late Cretaceous supra-subduction zone (SSZ)-related ophiolite on the north side of the Neotethys. The ophiolite comprises a mantle sequence including lherzolite, harzburgite, diabasic dikes, and cumulate to mylonitic gabbro lenses, and a crustal sequence comprising a sheeted dike complex and pillow lavas associated with pelagic limestone and radiolarite. Mantle harzburgites contain less CaO and Al2O3, are depleted in rare earth elements, and contain spinels that are more Cr-rich than lherzolites. Mineral compositions of peridotites are similar to those of both abyssal and SSZ- peridotites. Neyriz gabbroic rocks show boninitic (SSZ-related) affinities, while crustal rocks are similar to early arc tholeiites. Mineral compositions of gabbroic rocks resemble those of SSZ-related cumulates such as high forsterite olivine, anorthite-rich plagioclase, and high-Mg# clinopyroxene. Initial εNd(t) values range from +7.9 to +9.3 for the Neyriz magmatic rocks. Samples with radiogenic Nd overlap with least radiogenic mid-ocean ridge basalts and with Semail and other Late Cretaceous Tethyan ophiolitic rocks. Initial 87Sr/86Sr ranges from 0.7033 to 0.7044, suggesting modification due to seafloor alteration. Most Neyriz magmatic rocks are characterized by less radiogenic 207Pb/204Pb (near the northern hemisphere reference line), suggesting less involvement of sediments in their mantle source. Our results for Neyriz ophiolite and the similarity to other Iranian Zagros ophiolites support a subduction initiation setting for its generation.  相似文献   

3.
Base metal–Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu–Pb–Zn–Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E–W- and NE–SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07–18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE–SW-oriented faults into a chalcocite-dominated Cu–Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66–23.65; 207Pb/204Pb = 15.72–16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U–Th–Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu–Pb–Zn–Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb–206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu–Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.  相似文献   

4.
Lead isotopes are a powerful and versatile tool to elucidate fundamental geological problems related to the formation and evolution of continental crust. K-feldspar is a popular target for Pb isotope measurement as it is prevalent in many rock types and tends to capture the initial Pb isotope composition of its parental magma. We present data for a new Pb isotope reference material: Albany K-feldspar; as well as updated data for Shap K-feldspar. Results of Pb double-spike TIMS for Albany K-feldspar are 206Pb/204Pb = 16.7872 ± 0.0062, 207Pb/204Pb = 15.5640 ± 0.0056, and 208Pb/204Pb = 36.6600 ± 0.0168 (2s). TIMS measurement results for Shap K-feldspar indicate two isotopically distinct Pb populations. LA-MC-ICP-MS, with a spatial resolution as high as 15 μm, indicates a homogeneous Pb isotopic composition in Albany K-feldspar. In accord with previous studies, our results show that scatter in the measured Pb isotope ratios, related to the low natural isotopic abundance of 204Pb, along with the effect of isobaric 204Hg-204Pb interference, increases at lower count rates. However, the mean Pb isotope ratios measured via LA-MC-ICP-MS using a range of spot sizes are in excellent agreement with TIMS results thus highlighting the feasibility of Pb isotope determination via LA-MC-ICP-MS to access geological information preserved in small crystals, including mineral inclusions.  相似文献   

5.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

6.
The western Anatolian volcanic province formed during Eocene to Recent times is one of the major volcanic belts in the Aegean–western Anatolian region. We present new chemical (whole-rock major and trace elements, and Sr, Nd, Pb and O isotopes) and new Ar/Ar age data from the Miocene volcanic rocks in the NE–SW-trending Neogene basins that formed on the northern part of the Menderes Massif during its exhumation as a core complex. The early-middle Miocene volcanic rocks are classified as high-K calc-alkaline (HKVR), shoshonitic (SHVR) and ultrapotassic (UKVR), with the Late Miocene basalts being transitional between the early-middle Miocene volcanics and the Na-alkaline Quaternary Kula volcanics (QKV). The early-middle Miocene volcanic rocks are strongly enriched in large ion lithophile elements (LILE), have high 87Sr/86Sr(i) (0.70631–0.71001), low 143Nd/144Nd(i) (0.512145–0.512488) and high Pb isotope ratios (206Pb/204Pb = 18.838–19.148; 207Pb/204Pb = 15.672–15.725; 208Pb/204Pb = 38.904–39.172). The high field strength element (HFSE) ratios of the most primitive early-middle Miocene volcanic rocks indicate that they were derived from a mantle source with a primitive mantle (PM)-like composition. The HFSE ratios of the late Miocene basalts and QKV, on the other hand, indicate an OIB-like mantle origin—a hypothesis that is supported by their trace element patterns and isotopic compositions. The HFSE ratios of the early-middle Miocene volcanic rocks also indicate that their mantle source was distinct from those of the Eocene volcanic rocks located further north, and of the other volcanic provinces in the region. The mantle source of the SHVR and UKVR was influenced by (1) trace element and isotopic enrichment by subduction-related metasomatic events and (2) trace element enrichment by “multi-stage melting and melt percolation” processes in the lithospheric mantle. The contemporaneous SHVR and UKVR show little effect of upper crustal contamination. Trace element ratios of the HKVR indicate that they were derived mainly from lower continental crustal melts which then mixed with mantle-derived lavas (~20–40%). The HKVR then underwent differentiation from andesites to rhyolites via nearly pure fractional crystallization processes in the upper crust, such that have undergone a two-stage petrogenetic evolution.  相似文献   

7.
Within the Belomorian eclogite province, near Gridino Village, rocks of different compositions (tonalite-trondhjemite-granodioritic gneisses, granites, mafic and ultramafic rocks) were metamorphosed. The metamorphism included subsidence with increasing pressure and temperature, an eclogite stage, decompression in the granulitic facies, and a retrograde stage in the amphibolitic facies. We attempted to characterize the succession and to date igneous and metamorphic events in the evolution of the Gridino eclogite association. For this purpose, we conducted the following studies: U–Pb isotope dating of zircon (conventional and SHRIMP II methods) from gneisses, a mafic dike, and a high-pressure granitic leucosome; U–Pb dating of rutile from mafic dikes; 40Ar/39Ar dating of amphibole and mica; and Sm–Nd studies of rocks and minerals. The Sm–Nd model ages of felsic (2.9–3.1 Ga) and mafic (3.0–3.4 Ga) rocks from the Gridino eclogite association and individual magmatic zircon grains with an age of ca. 3.0 Ga indicate the Mesoarchean age of the metamorphic-rock protoliths. The most reliable result is the upper age bound of eclogitic metamorphism (2.71 Ga), which reflects the time of the posteclogitic decompression melting of eclogitized rocks under high-pressure retrograde granulitic metamorphism. The mafic dikes formed from 2.82 Ga to 2.72 Ga, most probably, at 2.82 Ga, in accordance with the crystallization age of magmatic zircon from metagabbro. Superimposed amphibolitic metamorphism and the “final” exhumation of metamorphic complexes at 2.0–1.9 Ga are associated with the later Svecofennian tectonometamorphic stage. Successive cooling of the metamorphic associations to 300 °C at 1.9–1.7 Ga is shown by U–Pb rutile dating and 40Ar/39Ar mica dating.  相似文献   

8.
Widespread Mesozoic Au and other hydrothermal polymetal (Zn–Pb–Cu–Mo–Ag–W–Fe–REE) deposits or smaller prospects occur in association with ancient mobile belts surrounding and cutting through the North China Carton (NCC). Among these, the gold ores of the Jiaodong Peninsula, Shandong Province, eastern NCC, represent the largest gold district in China. However, the genesis of these important gold mineralizations has remained controversial, notably their relationships to widespread mafic magmatism of alkaline affinity.The ore bodies of the Guocheng gold deposit on the Jiaodong Peninsula are fracture-controlled, sulfide-rich veins and disseminations, formed contemporaneously with abundant dolerite, lamprophyre and monzonite dikes at ca. 120 Ma. Dolerite dikes possess mantle-like major element compositions and alkaline affinity, associated with prominent subduction-type trace element enrichments. The dikes show petrographic and chemical evidence of magma mixing that triggered exsolution of magmatic sulfide and anhydrite crystallization, preserved as primary inclusions in phenocrysts. LA-ICP-MS analysis of magmatic sulfide inclusions demonstrates that metal abundance ratios (Ag, As, Au, Bi, Co, Cu, Mo, Ni, Pb, Sb, Zn) largely correspond to those of both unaltered bulk rock and bulk ore. Together with identical Pb isotope ratios of dolerite and bulk ore, this demonstrates that gold mineralization and dolerite dikes share a common source.Lead isotope signatures of the ore sulfides are much less radiogenic (17.08 < 206Pb/204Pb < 17.25, 15.41 <207Pb/204Pb < 15.45, 37.55 < 208Pb/204Pb < 37.93) relative to the Pb signature of Phanerozoic convecting mantle and plot to the left of the Geochron and above the MORB-source mantle Pb evolution line. Forward Monte Carlo simulations indicate three events for the U–Th–Pb isotope evolution: (1) late Archean formation of juvenile crust is followed by (2) subduction of this aged crust at ca. 1.85 Ga along with the assembly of Jiao–Liao–Ji mobile belt (suture within Columbia supercontinent). This late-Archean subducted crust released fluids with drastically reduced U/Pb that metasomatized the overlying depleted mantle, which formed cratonic lithospheric mantle. This metasomatized lithospheric mantle was (3) tapped in response to early Cretaceous extensional tectonics affecting notably the eastern margin of the NCC to generate mafic magmas and associated gold mineralization at Guocheng. Similarly non-radiogenic uranogenic Pb isotope data characterize the contemporaneous mafic dikes and gold deposits in the entire Jiaodong Peninsula, suggesting that our genetic model applies to the entire Jiaodong gold district.We propose that early Cretaceous melting of subcontinental lithospheric mantle metasomatized by subduction fluids during Paleoproterozoic amalgamation of terranes to the eastern NCC along with Columbia supercontinent assembly generated mafic magmatism and associated gold deposits. Given the conspicuous association of Phanerozoic hydrothermal ore deposits associated with reactivated Paleoproterozoic mobile belts, we envisage that our genetic model, which largely corresponds to that which is proposed for the Bingham porphyry-Cu–Au–Mo deposit, USA, may explain much of the magmatic-hydrothermal activity and associated ore formation all around the NCC.  相似文献   

9.
The Gondwana (Early Permian to Early Cretaceous) basins of eastern India have been intruded by ultramafic–ultrapotassic (minette, lamproite and orangeite) and mafic (dolerite) rocks. The Salma dike is the most prominent among mafic intrusives in the Raniganj basin. This dike is tholeiitic in composition; MgO varies from 5.4 to 6.3% and the mg number from 54 to 59. In general, the major and trace element abundances are uniform both along and across the strike. There is geochemical and mineralogical evidence for fractional crystallization. The chondrite normalized REE pattern of the Salma dike (La/Ybn=3.5) is similar to that of Deccan dikes of the Son–Narmada rift zone, western India. 87Sr/86Sr varies from 0.70552 to 0.70671 suggesting assimilation of crustal material. Some trace element abundances (e.g. Ti, Zr, Y) of the Salma dike are comparable to Group I Rajmahal basalts. The 40Ar–39Ar whole rock age of 65 Ma for the Salma dike is less than the ca. 114 Ma age for the Rajmahal basalt, but is similar to the generally accepted age for Deccan volcanic rocks. Despite geographical proximity with the Rajmahal basalt, the Salma dike is believed to be related to late phase of Deccan volcanic activity.  相似文献   

10.
The Yinchanggou Pb-Zn deposit, located in southwestern Sichuan Province, western Yangtze Block, is stratigraphically controlled by late Ediacaran Dengying Formation and contains >0.3 Mt of metal reserves with 11 wt% Pb + Zn. A principal feature is that this deposit is structurally controlled by normal faults, whereas other typical deposits nearby (e.g. Maozu) are controlled by reverse faults. The origin of the Yinchanggou deposit is still controversial. Ore genetic models, based on conventional whole-rock isotope tracers, favor either sedimentary basin brine, magmatic water or metamorphic fluid sources. Here we use in situ Pb and bulk Sr isotope features of sulfide minerals to constrain the origin and evolution of hydrothermal fluids. The Pb isotope compositions of galena determined by femtosecond LA-MC-ICPMS are as follows: 206Pb/204Pb = 18.17–18.24, 207Pb/204Pb = 15.69–15.71, 208Pb/204Pb = 38.51–38.63. These in situ Pb isotope data overlap with bulk-chemistry Pb isotope compositions of sulfide minerals (206Pb/204Pb = 18.11–18.40, 207Pb/204Pb = 15.66–15.76, 208Pb/204Pb = 38.25–38.88), and both sets of data plotting above the Pb evolution curve of average upper continental crust. Such Pb isotope signatures suggest an upper crustal source of Pb. In addition, the coarse-grained galena in massive ore collected from the deep part has higher 206Pb/204Pb ratios (18.18–18.24) than the fine-grained galena in stockwork ore sampled from the shallow part (206Pb/204Pb = 18.17–18.19), whereas the latter has higher 208Pb/204Pb ratios (38.59–38.63) than the former (208Pb/204Pb = 38.51–38.59). However, both types of galena have the same 207Pb/204Pb ratios (15.69–15.71). This implies two independent Pb sources, and the metal Pb derived from the basement metamorphic rocks was dominant during the early phase of ore formation in the deep part, whereas the ore-hosting sedimentary rocks supplied the majority of metal Pb at the late phase in the shallow part. In addition, sphalerite separated from different levels has initial 87Sr/86Sr ratios ranging from 0.7101 to 0.7130, which are higher than the ore formation age-corrected 87Sr/86Sr ratios of country sedimentary rocks (87Sr/86Sr200 Ma = 0.7083–0.7096), but are significantly lower than those of the ore formation age-corrected basement rocks (87Sr/86Sr200 Ma = 0.7243–0.7288). Again, such Sr isotope signatures suggest that the above two Pb sources were involved in ore formation. Hence, the gradually mixing process of mineralizing elements and associated fluids plays a key role in the precipitation of sulfide minerals at the Yinchanggou ore district. Integrating all the evidence, we interpret the Yinchanggou deposit as a strata-bound, normal fault-controlled epigenetic deposit that formed during the late Indosinian. We also propose that the massive ore is formed earlier than the stockwork ore, and the temporal-spatial variations of Pb and Sr isotopes suggest a certain potential of ore prospecting in the deep mining area.  相似文献   

11.
The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6–90.0 mol.% Fo, 1,722–3,915 ppm Ni, 1,085–1,552 ppm Mn, 1,222–3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr–Nd–Pb isotope compositions (87Sr/86Sr = 0.70315–0.70331, 143Nd/144Nd = 0.51288–0.51292, 206Pb/204Pb = 19.55–19.93, 207Pb/204Pb = 15.60–15.63, 208Pb/204Pb = 39.31–39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al. in: Science 316:412–417, 2007) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al. EPSL 277:514–524, 2009), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.  相似文献   

12.
The large tonnage Maoling gold deposit (25 t @ 3.2 g/t) is located in the southwest Liaodong Peninsula, North China Craton. The deposit is hosted in the Paleoproterozoic metamorphic rocks. Four stages of mineralization were identified in the deposit: (stage I) quartz-arsenopyrite ± pyrite, (stage II) quartz-gold- arsenopyrite-pyrrhotite, (stage III) quartz-gold- polymetallic sulfide, and (stage IV) quartz-calcite-pyrrhotite. In this paper, we present fluid inclusion, C-H-O-S-Pb-He-Ar isotope data, zircon U-Pb, and gold-bearing sulfide (i.e. arsenopyrite and pyrrhotite) Rb-Sr age of the Maoling gold deposit to constrain its genesis and ore-forming mechanism. Three types of fluid inclusions were distinguished in quartz-bearing veins, including liquid-rich two-phase (WL type), gas-rich two-phase (GL type), and daughter mineral-bearing fluid inclusions (S type). Fluid inclusions data show that the homogenization at temperatures 197 to 372 °C for stage I, 126 to 319 °C for stage II, 119 to 189 °C for stage III, and 115 to 183 °C for stage IV, with corresponding salinities of 3.7 to 22.6 wt.%, 4.7 to 23.2 wt.%, 5.3 to 23.2 wt.%, and 1.7 to 14.9 wt.% NaCl equiv., respectively. Fluid boiling was the critical factor controlling the gold and associated sulfide precipitation at Maoling. Hydrogen and oxygen stable isotopic analyses for quartz yielded δ18O = ?5.0‰ to 9.8‰ and δ D = ?133.5‰ to ?77.0‰. Carbon stable isotopic analyses for calcite and ankerite yielded δ13C = ?2.3‰ to ?1.2‰ and O = 7.9‰ to 14.1‰. The C-H-O isotope data show that the ore-forming fluids were originated from magmatic water with meteoric water input during mineralization. Hydrothermal inclusions in arsenopyrite have 3He/4He ratios of 0.002 Ra to 0.054 Ra, and 40Ar/36Ar rations of 1225 to 3930, indicating that the ore-forming fluids were dominantly derived from crustal sources almost no mantle input. Sulfur isotopic values of Maoling fine-grained granite range from 6.‰1 to 9.8‰, with a mean of 7.7‰, δ34S values of arsenopyrite from the mineralized phyllite (host rock) range from 8.9‰ to 10.6‰, with a mean of 10.0‰, by contrast, δ34S values of sulfides from ore vary between 4.3‰ and 10.6‰, with a mean of 6.8‰, suggesting that sulfur was mainly originated from both the host rock and magma. Lead radioactive isotopic analyses for sulfides yielded 206Pb/204Pb = 15.830–17.103, 207Pb/204Pb = 13.397–15.548, 208Pb/204Pb = 35.478–36.683, and for Maoling fine-grained granite yielded 206Pb/204Pb = 18.757–19.053, 207Pb/204Pb = 15.596–15.612, and 208Pb/204Pb = 38.184–39.309, also suggesting that the ore-forming materials were mainly originated from the host rocks and magma. Zircon U-Pb dating demonstrates that the Maoling fine-grained granite was emplaced at 192.7 ± 1.8 Ma, and the host rock (mineralized phyllite) was emplaced at some time after 2065.0 ± 27.0 Ma. Arsenopyrite and pyrrhotite give Rb–Sr isochron age of 188.7 ± 4.5 Ma, indicating that both magmatism and mineralization occurred during the Early Jurassic. Geochronological and geochemical data, together with the regional geological history, indicate that Early Jurassic magmatism and mineralization of the Maoling gold deposit occurred during the subducting Paleo-Pacific Plate beneath Eurasia, and the Maoling gold deposit is of the intrusion-related gold deposit type.  相似文献   

13.
Zijinshan is a large porphyry–epithermal Cu–Au–Mo–Ag ore system located in the Zijinshan mineral field (ZMF) of southwestern Fujian Province, China. Although it is commonly accepted that the early Cretaceous magmatism and the metallogenesis of the mineral field are closely related, the tectonic setting for the ore-forming event(s) has been controversial and regarded as either extensional or subduction-related. New U–Pb zircon geochronology, Sr–Nd–Pb isotopic systematics, and geochemical data presented here from granites and volcanic rocks in the mineral field help to clarify this uncertainty.LA–MC–ICP-MS U–Pb zircon analyses yield weighted mean ages of between ca. 165 and 157 for the monzogranite, ca. 112 Ma for granodiorite, and between ca. 111 and 102 Ma for nine samples of volcanic units in the study area. These dates, integrated with previous geochronological data, indicate that there were two magmatic events in the area during the Middle to Late Jurassic and the Early Cretaceous. Major and trace element geochemistry indicates that these rocks are high-K, calc-alkaline granites, are enriched in LREE and Th, U, Ta, Nd, Sm and Yb, and depleted in Ba, K, Sr, P, Ti and Y. These features are characteristic of volcanic-arc granites or active-continental margin granites. The Middle to Late Jurassic monzogranitic plutons in the region have initial 87Sr/86Sr ratios of 0.7096 to 0.7173, εNdT values of − 10.1 to − 7.6, 206Pb/204Pb isotope ratios of 18.51–18.86, 207Pb/204Pb isotope ratios of 15.64–15.73, and 208Pb/204Pb isotope ratios of 38.76–39.18. The Early Cretaceous granodiorite and volcanic rocks are distinctly different with initial 87Sr/86Sr ratios of 0.7055–0.7116, εNdT values of − 8 to 0.5, 206Pb/204Pb ratios ranging between 18.49 and 19.77, 207Pb/204Pb ratios of 15.63–15.71, and 208Pb/204Pb ratios of 38.71–40.62. These characteristics suggest that the source for the Middle to Late Jurassic monzogranitic plutons is a partially melted Mesoproterozoic substrate, with a minor component from Paleozoic material, whereas the Early Cretaceous granodiorite and volcanic rocks may represent mixing of crustal and mantle-derived melts. It is therefore suggested that the Middle to Late Jurassic monzogranitic plutons, and the Early Cretaceous granodiorite and volcanic rocks in the ZMF are the result of an active continental-margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. Given that the mineralization and the early Cretaceous granodiorite and volcanic rocks in the area are genetically related, the Zijinshan porphyry–epithermal ore system formed in the subduction-related tectonic setting.  相似文献   

14.
Bima Formation volcanic rocks, which record the history of Neo-Tethyan subduction, are found within the central and eastern segments of the southern Lhasa subterrane, Tibetan Plateau. Zircon UPb dating, whole-rock major and trace element analysis, and Sr–Nd–Pb–Hf isotopic compositions of Bima Formation volcanic rocks from the central segment of the southern Lhasa subterrane were used to constrain the magmatic and tectonic evolution of the Lhasa terrane during the early Mesozoic. Zircon UPb dating of five samples yielded consistent ages of 184.3 ± 2.4 to 176.8 ± 3.5 Ma. The dominant volcanic rock types within the Bima Formation are basalts, basaltic andesites, andesites, and dacites, which are enriched in the large-ion lithophile elements (e.g., Rb, Sr, and Ba) and depleted in high-field-strength elements (e.g., Nb, Ta, and Ti). (87Sr/86Sr)t ratios are low (0.702900–0.704146), εNd(t) and εHf(t) values are high and positive (+4.4 to +6.9 and + 9.6 to +15.7, respectively), and Pb isotope ratios are homogeneous (initial 206Pb/204Pb = 18.28–18.40; 207Pb/204Pb = 15.53–15.56; 208Pb/204Pb = 38.21–38.38). Combining the new data with those from a previous study of Bima Formation volcanic rocks from the eastern segment of the southern Lhasa subterrane indicates that the Bima Formation formed between the Middle Triassic and Early Jurassic. It suggests that more widespread early Mesozoic volcanic rocks in the southern margin of the Lhasa terrane. The basaltic rocks of the Bima Formation were generated by partial melting of a depleted mantle wedge metasomatized by slab-derived fluids, and subsequently experienced fractional crystallization without significant crustal contamination. The andesitic and dacitic rocks were formed by fractional crystallization of the basaltic magma. Our study indicates that the Bima Formation volcanic rocks were generated within a continental island arc setting related to northward subduction of the Neo-Tethyan oceanic slab during the early Mesozoic.  相似文献   

15.
《International Geology Review》2012,54(11):1313-1339
ABSTRACT

The nature, magmatic evolution, and geodynamic setting of both inner and outer Makran ophiolites, in SE Iran, are enigmatic. Here, we report mineral chemistry, whole-rock geochemistry, and Sr–Nd–Pb isotope composition of mantle peridotites and igneous rocks from the Eastern Makran Ophiolite (EMO) to assess the origin and tectono-magmatic evolution of the Makran oceanic realm. The EMO includes mantle peridotites (both harzburgites and impregnated lherzolites), isotropic gabbros, diabase dikes, and basaltic to andesitic pillow and massive lava flows. The Late Cretaceous pelagic limestones are found as covers of lava flows and/or interlayers between them. All ophiolite components are somehow sheared and fragmented, probably in Cenozoic time, during the emplacement of ophiolite. This event has produced a considerable extent of tectonic melange. Tectonic slices of trachy-basaltic lavas with oceanic island basalt (OIB)-like signature seal the tectonic melange. Our new geochemical data indicate a magmatic evolution from fore-arc basalt (FAB) to island-arc tholeiite (IAT)-like signatures for the Late Cretaceous EMO lavas. EMO extrusive rocks have high εNd(t) (+8 to +8.9) and isotopically are similar to the Oman lavas. This isotopic signature indicates a depleted mid-ocean ridge basalt (MORB) mantle source for the genesis of these rocks, except isotopic gabbros containing lower εNd(t) (+5.1 to +5.7) and thus show higher contribution of subducted slab components in their mantle source. High 207Pb/204Pb and 208Pb/204Pb isotopic ratios for the EMO igneous rocks also suggest considerable involvement of slab-derived components into the mantle source of these rocks. The variable geochemical signatures of the EMO lavas are mostly similar to Zagros and Oman ophiolite magmatic rocks, although the Pb isotopic composition shows similarity to the isotopic characteristic of inner Zagros ophiolite belt. This study postulates that the EMO formed during the early stages of Neo-Tethyan subduction initiation beneath the Lut block in a proto-forearc basin. We suggest subduction initiation caused asthenospheric upwelling and thereafter melting to generate the MORB-like melts. This event left the harzburgitic residues and the MORB-like melts interacted with the surrounding peridotites to generate the impregnated lherzolites, which are quite abundant in the EMO. Therefore, these lherzolites formed due to the refertilization of mantle rocks through porous flows of MORB-like melts. The inception of subduction caused mantle wedge to be enriched slightly by the slab components. Melting of these metasomatized mantle generated isotropic gabbros and basaltic to andesitic lavas with FAB-like signature. At the later stage, higher contribution of the slab-derived components into the overlying mantle wedge causes formation of diabase dikes with supra-subduction zone – or IAT-like signatures. Trachy-basalts were probably the result of late-stage magmatism fed by the melts originated from an OIB source asthenospheric mantle due to slab break-off. This occurred after emplacement of EMO and the formation of tectonic melange.  相似文献   

16.
We have carried out a Pb double-spike and Lu-Hf isotope study of clinopyroxenes from spinel-facies mantle xenoliths entrained in Cenozoic intraplate continental volcanism of the French Massif Central (FMC). U-Th-Pb and Lu-Hf isotope systematics verify the existence of different lithospheric domains beneath the northern and southern FMC. Northern FMC clinopyroxenes have extreme Lu/Hf ratios and ultra-radiogenic Hf (εHf = +39.6 to +2586) that reflect ∼15-25% partial melting in Variscan times (depleted mantle model ages ∼360 Ma). Zr, Hf and Th abundances in these clinopyroxenes are low and unaffected by hydrous/carbonatitic metasomatism that overprinted LILE and light REE abundances and caused decoupling of Lu/Hf-Sm/Nd ratios and Nd-Hf isotopes (εNd = +2.1 to +91.2). Pb isotopes of northern FMC clinopyroxenes are radiogenic (206Pb/204Pb > 19), and typically more so than the host intraplate volcanic rocks. 238U/204Pb ratios range from 17 to 68, and most samples have distinctively low 232Th/238U (<1) and 232Th/204Pb (3-22). Clinopyroxenes from southern FMC lherzolites are generally marked by overall incompatible trace element enrichment including Zr, Hf and Th abundances, and have Pb isotopes that are similar to or less radiogenic than the host volcanic rocks. Hf isotope ratios are less radiogenic (εHf = +5.4 to +41.5) than northern FMC mantle and have been overprinted by silicate-melt-dominated metasomatism that affected this part of FMC mantle. Major element and Lu concentrations of clinopyroxenes from southern FMC harzburgites are broadly similar to northern FMC clinopyroxenes and suggest they experienced similar degrees of melt extraction as northern FMC mantle. 238U/204Pb (53-111) and 232Th/204Pb ratios (157-355) of enriched clinopyroxenes from the southern FMC are extreme and significantly higher than the intraplate volcanic rocks. In summary, mantle peridotites from different parts of the FMC record depletion at ∼360 Ma during Variscan subduction, followed by differing styles of enrichment. Northern FMC mantle was overprinted by a fluid/carbonatitic metasomatic agent that carried elements like U, Pb, Sr and light REE. In contrast, much of the southern FMC mantle was metasomatised by a small-degree partial silicate melt resulting in enrichment of all incompatible trace elements. The extreme mantle 238U/204Pb (northern and southern FMC), 232Th/238U (northern FMC) and 232Th/204Pb ratios (southern FMC), coupled with unremarkable present-day Pb isotope ratios, constrain the timing of enrichment. Mantle metasomatism is a young feature related to melting of the upwelling mantle responsible for Cenozoic FMC volcanism, rather than subduction-related metasomatism intimately associated with mantle depletion during the Variscan orogeny. The varying metasomatic styles relate to pre-existing variations in the thickness of the continental lithospheric lid, which controlled the extent to which upwelling mantle could ascend and melt. In the northern FMC, a thicker and more refractory lithospheric lid (?80 km) only allowed incipient degrees of melting resulting in fluid/carbonatitic metasomatism of the overlying sub-continental lithospheric mantle. The thinner lithospheric lid of the southern FMC (?70 km) allowed larger degrees of melting and resulted in silicate-melt-dominated metasomatism, and also focused the location of the volcanic fields of the FMC above this region.  相似文献   

17.
The strata-bound Cu−Pb−Zn polymetallic sulfide deposits occur in metamorphic rocks of greenschist phase of the middle-upper Proterozoic Langshan Group in central Inner Mongolia. δ34S values for sulfides range from −3.1‰ to +37.3‰, and an apparent difference is noticed between vein sulfides and those in bedded rocks. For example, δ34S values for bedded pyrite range from +10.6‰ to +20.0‰, while those for vein pyrite vary from −3.1‰ to +14.1‰. δ34S of bedded pyrrhotite is in the range +7.9‰–+23.5‰ in comparison with +6.5‰–+17.1‰ for vein pyrrhotite. The wide scatter of δ34S and the enrichment of heavier sulfur indicate that sulfur may have been derived from H2S as a result of bacterial reduction of sulfates in the sea water. Sulfur isotopic composition also differs from deposit to deposit in this area because of the difference in environment in which they were formed. The mobilization of bedded sulfides in response to regional metamorphism and magmatic intrusion led to the formation of vein sulfides. δ18O and δ13C of ore-bearing rocks and wall rocks are within the range typical of ordinary marine facies, with the exception of lower values for ore-bearing marble at Huogeqi probably due to diopsidization and tremalitization of carbonate rocks. Pb isotopic composition is relatively stable and characterized by lower radio-genetic lead. The age of basement rocks was calculated to be about 23.9 Ma and ore-forming age 7.8 Ma.207Pb/204Pb−206Pb/204Pb and208Pb/204Pb−206Pb/204Pb plots indicate that Pb may probably be derived from the lower crust or upper mantle. It is believed that the deposits in this region are related to submarine volcanic exhalation superimposed by later regional metamorphism and magmatic intrusion.  相似文献   

18.
Early Proterozoic volcanic and sedimentary rocks of the Rappen district in northern Sweden were deposited at a destructive plate margin to the south of the Archaean craton of the western Baltic Shield. The volcano-sedimentary suite was intruded by two generations of early Proterozoic granites at ca. 1.89–1.85 Ga and ca.1.82–1.78 Ga, respectively, and metamorphosed at upper amphibolite facies conditions. Small stratabound iron, copper, and zinc deposits occur in felsic to mafic tuffs and arkosic sediments. Small deposits of molybdenum, tungsten, and uranium formed during the emplacement of the younger granites. The lead isotopic compositions of sulfide trace lead from the various deposits are highly heterogeneous. In the 206Pb/204Pb–207Pb/204Pb diagram they fall on mixing arrays between little evolved early Proterozoic lead and highly radiogenic Caledonian lead. The least radiogenic lead isotopic compositions from the various deposits have a wide range of 207Pb/204Pb ratios and thus indicate variable involvement of Archaean crustal lead in the Proterozoic deposits. Deposits hosted by siliciclastic rocks have higher 207Pb/204Pb ratios than deposits hosted in mafic to felsic tuffites. The lead isotopic heterogeneity suggests that the lead in the various deposits was locally derived and, furthermore, that the sedimentary rocks in part originated from the Archaean craton to the north. Lead mixing arrays in the 206Pb/204Pb–207Pb/204Pb diagram demonstrate that in Paleozoic time radiogenic lead was mobilized and transported in the basement. Source ages calculated from the mixing arrays (ca.1.9 Ga and ca.1.8 Ga) correspond to the age of the Early Proterozoic volcanism and metamorphism respectively. One group of deposits includes lead from at least three sources and illustrates that radiogenic lead was multiply mobilized and transported in the Proterozoic basement. It occurs in deposits that occur in zones that became permeable during the reactivations of the basement.  相似文献   

19.
Mesozoic mafic dikes in the Gan-Hang tectonic belt (GHTB) provide an opportunity to explore both the nature of their mantle source(s) and the secular evolution of the underlying Mesozoic lithospheric mantle in the region. The geochronology and primary geochemical and Sr–Nd–Pb isotopic compositions of Group 1 (middle section of GHTB) and Group 2 (the rest of the section) dolerite dikes spanning the GHTB were investigated. K–Ar ages indicate that dikes of both groups were emplaced during the Cretaceous (131–69 Ma). The dikes are doleritic in composition and are enriched in both large ion lithophile elements (LILEs; e.g. Rb, Ba, and Pb) and light rare earth elements (LREEs), with a wide range of Eu anomalies, but are depleted in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti) and heavy rare earth elements (HREEs). Dikes sampled in the middle section of the GHTB (Group 1) show more pronounced REE differentiation and a greater contribution from crustal material than those from the east and west sections (Group 2) and are similar to GHTB volcanic rocks in exhibiting a slight enrichment in LREEs. The dolerites are further characterized by a wide range in 87Sr/86Sr i ?=?0.7041–0.7110, 143Nd/144Nd i ?=?0.511951–0.512758, ?Nd t ?=?–10.4 to?+5.6, and Pb isotopic ratios (206Pb/204Pb i ?=?18.1–18.3, 207Pb/204Pb i ≈ 15.6, and 208Pb/204Pb i ?=?38.2–38.7). The dikes have undergone fractional crystallization of olivine, clinopyroxene, plagioclase, and Ti-bearing phases, except for dikes from the Anding area, which possibly experienced fractionation of plagioclase. Geochemically, all the dike samples originated from mantle sources ranging in composition from depleted to enriched that contained a component of foundered lower crust; crustal contamination during the ascent of these magmas was negligible. In the context of the late Mesozoic lithospheric extension across South China, mafic dike magmatism was likely triggered by the reactivation of deep faults, which promoted foundering of the lower crust and subsequent mantle upwelling in the GHTB.  相似文献   

20.
《International Geology Review》2012,54(12):1389-1400
Post-orogenic mafic dikes are widespread across eastern Shandong Province, North China Craton, eastern China. We here report new U–Pb zircon ages and bulk-rock geochemical and Sr–Nd–Pb isotopic data for representative samples of these rocks. LA-ICP-MS U–Pb zircon analysis of two mafic dike samples yields consistent ages of 118.7 ± 0.25 million years and 122.4 ± 0.21 million years. These Mesozoic mafic dikes are characterized by high (87Sr/86Sr) i ranging from 0.7082 to 0.7087, low ?Nd(t) values from??17.0 to??17.5, 206Pb/204Pb from 17.14 to 17.18, 207Pb/204Pb from 15.44 to 15.55, and 208Pb/204Pb from 37.47 to 38.20. Our results suggest that the parental magmas of these dikes were derived from an ancient, enriched lithospheric mantle source that was metasomatized by foundered lower crustal eclogitic materials prior to magma generation. The mafic dikes underwent minor fractionation during ascent and negligible crustal contamination. Combined with previous studies, these findings provide additional evidence that intense lithospheric thinning beneath eastern Shandong occurred at ~120 Ma, and that this condition was caused by the removal/foundering of the lithospheric mantle and lower crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号