首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate a model for the excitation of high-order oscillations in roAp stars. In this model we assume that the strong concentration of magnetic field about the magnetic poles is enough to suppress convection. Thus the model considered is composed of two polar regions, in which convection is presumed to be suppressed totally, and an equatorial region, where the convection is unaffected. This model is generated by building pairs of locally spherically symmetrical equilibria to represent the polar and equatorial regions of the star, which are patched together below the base of the convection zone. Gravitational settling of heavy elements is taken into account by choosing appropriate chemical composition profiles for both the polar and equatorial regions. Our results indicate that the composite model is unstable against axisymmetric non-radial high-order modes of pulsation that are aligned with the magnetic poles. The oscillations are excited by the κ mechanism acting principally in the hydrogen ionization zones of the polar regions. The effect of the lateral inhomogeneity on the second frequency differences is also investigated; we find that the perturbation to them by the inhomogeneity is of the same order as the second differences themselves, thereby hindering potential attempts to use such differences to identify the degrees of the modes in a straightforward way.  相似文献   

2.
Thanks to their past history on the main-sequence phase, supergiant massive stars develop a convective shell around the helium core. This intermediate convective zone (ICZ) plays an essential role in governing which g-modes are excited. Indeed, a strong radiative damping occurs in the high-density radiative core but the ICZ acts as a barrier preventing the propagation of some g-modes into the core. These g-modes can thus be excited in supergiant stars by the κ-mechanism in the superficial layers due to the opacity bump of iron, at  log  T = 5.2  . However, massive stars are submitted to various complex phenomena such as rotation, magnetic fields, semiconvection, mass loss, overshooting. Each of these phenomena exerts a significant effect on the evolution and some of them could prevent the onset of the convective zone. We develop a numerical method which allows us to select the reflected, thus the potentially excited, modes only. We study different cases in order to show that mass loss and overshooting, in a large enough amount, reduce the extent of the ICZ and are unfavourable to the excitation of g-modes.  相似文献   

3.
It is shown that the radius of curvature of magnetic field lines in the polar region of a rotating magnetized neutron star can be significantly less than the usual radius of curvature of the dipole magnetic field. The magnetic field in the polar cap is distorted by toroidal electric currents flowing in the neutron star crust. These currents close up the magnetospheric currents driven by the electron–positron plasma generation process in the pulsar magnetosphere. Owing to the decrease in the radius of curvature, electron–positron plasma generation becomes possible even for slowly rotating neutron stars, with   PB −2/312 < 10 s  , where P is the period of star rotation and   B 12= B /1012 G  is the magnitude of the magnetic field on the star surface.  相似文献   

4.
We find numerical solutions of the coupled system of Einstein–Maxwell equations with a linear approach, in which the magnetic field acts as a perturbation of a spherical neutron star. In our study, magnetic fields having both poloidal and toroidal components are considered, and higher order multipoles are also included. We evaluate the deformations induced by different field configurations, paying special attention to those for which the star has a prolate shape. We also explore the dependence of the stellar deformation on the particular choice of the equation of state and on the mass of the star. Our results show that, for neutron stars with mass   M = 1.4 M  and surface magnetic fields of the order of 1015 G, a quadrupole ellipticity of the order of 10−6 to 10−5 should be expected. Low-mass neutron stars are in principle subject to larger deformations (quadrupole ellipticities up to 10−3 in the most extreme case). The effect of quadrupolar magnetic fields is comparable to that of dipolar components. A magnetic field permeating the whole star is normally needed to obtain negative quadrupole ellipticities, while fields confined to the crust typically produce positive quadrupole ellipticities.  相似文献   

5.
Three-dimensional numerical magnetohydrodynamic (MHD) simulations are performed to investigate how a magnetically confined mountain on an accreting neutron star relaxes resistively. No evidence is found for non-ideal MHD instabilities on a short time-scale, such as the resistive ballooning mode or the tearing mode. Instead, the mountain relaxes gradually as matter is transported across magnetic surfaces on the diffusion time-scale, which evaluates to  τI∼ 105–108 yr  (depending on the conductivity of the neutron star crust) for an accreted mass of   M a= 1.2 × 10−4 M  . The magnetic dipole moment simultaneously re-emerges as the screening currents dissipate over  τI  . For non-axisymmetric mountains, ohmic dissipation tends to restore axisymmetry by magnetic reconnection at a filamentary neutral sheet in the equatorial plane. Ideal-MHD oscillations on the Alfvén time-scale, which can be excited by external influences, such as variations in the accretion torque, compress the magnetic field and hence decrease  τI  by one order of magnitude relative to its standard value (as computed for the static configuration). The implications of long-lived mountains for gravitational wave emission from low-mass X-ray binaries are briefly explored.  相似文献   

6.
熊大闰  邓李才 《天文学报》2006,47(3):256-267
利用一种非定常的恒星非局部对流理论,对球状星团中低光度的红巨星进行了线性非绝热脉动理论计算.结果表明,对所有温度高于约5400 K模型的基音到4阶泛音都是脉动稳定的.随着恒星光度的增大,低阶泛音也变得脉动不稳定.对中低光度的红巨星,脉动稳定性非常低,接近中性稳定.因此他们将是不变星或非常小振幅的短周期变星(P<2天).  相似文献   

7.
Rapidly oscillating Ap stars constitute a unique class of pulsators with which to study non-radial oscillations under some — even for stars — unusual physical conditions. These stars are chemically peculiar, they have strong magnetic fields and they often pulsate in several high-order acoustic modes simultaneously. We discuss here an excitation mechanism for short-period oscillation modes based on the classical κ mechanism. We particularly stress the conditions that must be fulfilled for successful driving. Specifically, we discuss the roles of the chemical peculiarity and strong magnetic field on the oscillation modes and what separates these pulsators from δ Scuti and Am-type stars.  相似文献   

8.
RX J0720.4–3125 has recently been identified as a pulsating soft X-ray source in the ROSAT all-sky survey with a period of 8.391 s. Its spectrum is well characterized by a blackbody with a temperature of 8 × 105 K. We propose that the radiation from this object is thermal emission from a cooling neutron star. For this blackbody temperature we can obtain a robust estimate of the object's age of ∼ 3 × 105 yr, yielding a polar field ∼ 1014 G for magnetic dipole spin-down and a value of P compatible with current observations.  相似文献   

9.
We consider the evolution of magnetic fields under the influence of Hall drift and Ohmic decay. The governing equation is solved numerically, in a spherical shell with   r i / r o = 0.75  . Starting with simple free-decay modes as initial conditions, we then consider the subsequent evolution. The Hall effect induces so-called helicoidal oscillations, in which energy is redistributed among the different modes. We find that the amplitude of these oscillations can be quite substantial, with some of the higher harmonics becoming comparable with the original field. Nevertheless, this transfer of energy to the higher harmonics is not sufficient to accelerate significantly the decay of the original field, at least not at the   R B = O (100)  parameter values accessible to us, where this Hall parameter   R B   measures the ratio of the Ohmic time-scale to the Hall time-scale. We do find clear evidence though of increasingly fine structures developing for increasingly large   R B   , suggesting that perhaps this Hall-induced cascade to ever-shorter length-scales is eventually sufficiently vigorous to enhance the decay of the original field. Finally, the implications for the evolution of neutron star magnetic fields are discussed.  相似文献   

10.
We study the possibility of the excitation of non-radial oscillations in classical pulsating stars. The stability of an RR Lyrae model is examined through non-adiabatic non-radial calculations. We also explore stability in the presence of non-linear coupling between radial and non-radial modes of nearly identical frequency.   In our model, a large number of unstable low-degree (ℓ = 1,2) modes have frequencies in the vicinity of unstable radial mode frequencies. The growth rates of such modes, however, are considerably smaller than those of the radial modes. We also recover an earlier result that at higher degrees (ℓ = 6–12) there are modes trapped in the envelope with growth rates similar to those of radial modes.   Subsequently, monomode radial pulsation of this model is considered. The destabilizing effect of the 1:1 resonance between the radial mode and nearby non-radial modes of low degrees is studied, with the assumption that the excited radial mode saturates the linear instability of all other modes. The instability depends on the radial mode amplitude, the frequency difference, the damping rate of the non-radial mode, and the strength of the non-linear coupling between the modes considered. At the pulsation amplitudes typical for RR Lyrae stars, the instability of the monomode radial pulsation and the concomitant resonant excitation of some non-radial oscillation modes is found to be very likely.  相似文献   

11.
We study torsional Alfvén oscillations of magnetars, that is neutron stars with a strong magnetic field. We consider the poloidal and toroidal components of the magnetic field and a wide range of equilibrium stellar models. We use a new coordinate system  ( X , Y )  , where     and     and a 1 is the radial component of the magnetic field. In this coordinate system, the one+two-dimensional evolution equation describing the quasi-periodic oscillations (QPOs), see Sotani et al., is reduced to a one+one-dimensional equation where the perturbations propagate only along the y -axis. We solve the one+one-dimensional equation for different boundary conditions and the open magnetic field lines, that is magnetic field lines that reach the surface and there match up with the exterior dipole magnetic field as well as closed magnetic lines, i.e. magnetic lines that never reach the stellar surface. For the open field lines, we find two families of QPO frequencies: a family of 'lower' QPO frequencies which is located near the x -axis and a family of 'upper' frequencies located near the y -axis. According to Levin, the fundamental frequencies of these two families can be interpreted as the turning point of the continuous spectrum. We find that the upper frequencies are multiples of the lower ones by a constant equalling  2 n + 1  . For the closed lines, the corresponding factor is   n + 1  . By using these relations, we can explain both the lower and the higher observed frequencies in SGR 1806−20 and SGR 1900+14.  相似文献   

12.
Stellar dynamos are governed by non-linear partial differential equations (PDEs) which admit solutions with dipole, quadrupole or mixed symmetry (i.e. with different parities). These PDEs possess periodic solutions that describe magnetic cycles, and numerical studies reveal two different types of modulation. For modulations of Type 1 there are parity changes without significant changes of amplitude, while for Type 2 there are amplitude changes without significant changes in parity. In stars like the Sun, cyclic magnetic activity is interrupted by grand minima that correspond to Type 2 modulation. Although the Sun's magnetic field has maintained dipole symmetry for almost 300 yr, there was a significant parity change at the end of the Maunder Minimum. We infer that the solar field may have flipped from dipole to quadrupole polarity (and back) after deep minima in the past and may do so again in the future. Other stars, with different masses or rotation rates, may exhibit cyclic activity with dipole, quadrupole or mixed parity. The origins of such behaviour can be understood by relating the PDE results to solutions of appropriate low-order systems of ordinary differential equations (ODEs). Type 1 modulation is reproduced in a fourth-order system while Type 2 modulation occurs in a third-order system. Here we construct a new sixth-order system that describes both types of modulation and clarifies the interactions between symmetry-breaking and modulation of activity. Solutions of these non-linear ODEs reproduce the qualitative behaviour found for the PDEs, including flipping of polarity after a prolonged grand minimum. Thus we can be confident that these patterns of behaviour are robust, and will apply to stars that are similar to the Sun.  相似文献   

13.
A spectroscopic analysis of Sloan Digital Sky Survey (SDSS) J160043.6+074802.9, a binary system containing a pulsating subdwarf-O (sdO) star with a late-type companion, yields   T eff= 70 000 ± 5000 K  and  log  g = 5.25 ± 0.30  , together with a most likely type of K3 V for the secondary star. We compare our results with atmospheric parameters derived by Fontaine et al. and in the context of existing evolution models for sdO stars. New and more extensive photometry is also presented which recovers most, but not all, frequencies found in an earlier paper. Therefore, it seems probable that some pulsation modes have variable amplitudes. A non-adiabatic pulsation analysis of uniform metallicity sdO models show those having  log  g > 5.3  to be more likely to be unstable and capable of driving pulsation in the observed frequency range.  相似文献   

14.
OH maser emission from the circumstellar envelope of the M-type supergiant VX Sagittarii has been mapped at 1612 MHz in both hands of circular polarization using MERLIN, with an angular resolution of 0.4 arcsec and a velocity resolution of 0.3 km s−1. Four likely Zeeman pairs of maser components are identified, each with a similar Zeeman splitting. The inferred magnetic field strength is approximately −1 mG in each case, with the field directed towards us. The Zeeman components lie ∼ 1400 au from the star. The data lend support to the dipole magnetic field model which has recently been suggested for this circumstellar envelope.  相似文献   

15.
A model for the angular momentum transfer within the convection zone of a rapidly rotating star is introduced and applied to the analysis of recent observations of temporal fluctuations of the differential rotation on the young late-type stars AB Doradus (AB Dor) and LQ Hydrae (LQ Hya). Under the hypothesis that the mean magnetic field produced by the stellar dynamo rules the angular momentum exchanges and that the angular velocity depends only on the distance s from the rotation axis and the time, the minimum azimuthal Maxwell stress  | BsB φ|  , averaged over the convection zone, is found to range from ∼0.04 to  ∼0.14 T2  . If the poloidal mean magnetic field   B s   is of the order of 0.01 T, as indicated by the Zeeman–Doppler imaging maps of those stars, then the azimuthal mean field   B φ  can reach an intensity of several teslas, which significantly exceeds equipartition with the turbulent kinetic energy. Such strong fields can account also for the orbital period modulation observed in cataclysmic variables and RS Canum Venaticorum systems with a main-sequence secondary component. Moreover, the model allows us to compute the kinetic energy dissipation rate during the maintenance of the differential rotation. Only in the case of the largest surface shear observed on LQ Hya may the dissipated power exceed the stellar luminosity, but the lack of a sufficient statistic on the occurrence of such episodes of large shear does not allow us to estimate their impact on the energy budget of the convection zone.  相似文献   

16.
The accretion-induced neutron star (NS) magnetic field evolution is studied through considering the accretion flow to drag the field lines aside and dilute the polar-field strength, and as a result the equatorial field strength increases, which is buried inside the crust on account of the accretion-induced global compression of star crust. The main conclusions of model are as follows: (i) the polar field decays with increase in the accreted mass; (ii) the bottom magnetic field strength of about 108 G can occur when the NS magnetosphere radius approaches the star radius, and it depends on the accretion rate as     ; and (iii) the NS magnetosphere radius decreases with accretion until it reaches the star radius, and its evolution is little influenced by the initial field and the accretion rate after accreting  ∼0.01 M  , which implies that the magnetosphere radii of NSs in low-mass X-ray binaries would be homogeneous if they accreted the comparable masses. As an extension, the physical effects of the possible strong magnetic zone in the X-ray NSs and recycled pulsars are discussed. Moreover, the strong magnetic fields in the binary pulsars PSR 1831−00 and PSR 1718−19 after accreting about  0.5 M  in the binary-accretion phase,  8.7 × 1010  and  1.28 × 1012 G  , respectively, can be explained through considering the incomplete frozen flow in the polar zone. As an expectation of the model, the existence of the low magnetic field  (∼3 × 107 G)  NSs or millisecond pulsars is suggested.  相似文献   

17.
RX J1856.5−3754 is one of the brightest nearby isolated neutron stars (INSs), and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5−3754, within the uncertainties. In our simplest model, the best-fitting parameters are an interstellar column density   N H≈ 1 × 1020 cm−2  and an emitting area with   R ≈ 17 km  (assuming a distance to RX J1856.5−3754 of 140 pc), temperature   T ≈ 4.3 × 105 K  , gravitational redshift   z g ∼ 0.22  , atmospheric hydrogen column   y H≈ 1 g cm−2  , and magnetic field   B ≈ (3–4) × 1012 G  ; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the NS surface as well as general relativistic effects, to determine pulsations; we find that there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5−3754.  相似文献   

18.
The pulsating DA white dwarfs are the coolest degenerate stars that undergo self-driven oscillations. Understanding their interior structure will help us to understand the previous evolution of the star. To this end, we report the analysis of more than 200 h of time-resolved CCD photometry of the pulsating DA white dwarf star EC 14012−1446 acquired during four observing epochs in three different years, including a coordinated three-site campaign. A total of 19 independent frequencies in the star's light variations together with 148 combination signals up to fifth order could be detected. We are unable to obtain the period spacing of the normal modes and therefore a mass estimate of the star, but we infer a fairly short rotation period of  0.61 ±0.03 d  , assuming the rotationally split modes are  ℓ= 1  . The pulsation modes of the star undergo amplitude and frequency variations, in the sense that modes with higher radial overtone show more pronounced variability and that amplitude changes are always accompanied by frequency variations. Most of the second-order combination frequencies detected have amplitudes that are a function of their parent mode amplitudes, but we found a few cases of possible resonantly excited modes. We point out the complications in the analysis and interpretation of data sets of pulsating white dwarfs that are affected by combination frequencies of the form   f A + f B − f C   intruding into the frequency range of the independent modes.  相似文献   

19.
The theory of polar magnetic burial in accreting neutron stars predicts that a mountain of accreted material accumulates at the magnetic poles of the star, and that, as the mountain spreads equatorward, it is confined by, and compresses, the equatorial magnetic field. Here, we extend previous, axisymmetric, Grad–Shafranov calculations of the hydromagnetic structure of a magnetic mountain up to accreted masses as high as   M a= 6 × 10−4 M  , by importing the output from previous calculations (which were limited by numerical problems and the formation of closed bubbles to   M a < 10−4 M  ) into the time-dependent, ideal-magnetohydrodynamic code zeus-3d and loading additional mass on to the star dynamically. The rise of buoyant magnetic bubbles through the accreted layer is observed in these experiments. We also investigate the stability of the resulting hydromagnetic equilibria by perturbing them in zeus-3d . Surprisingly, it is observed that the equilibria are marginally stable for all   M a≤ 6 × 10−4 M  ; the mountain oscillates persistently when perturbed, in a combination of Alfvén and acoustic modes, without appreciable damping or growth, and is therefore not disrupted (apart from a transient Parker instability initially, which expels <1 per cent of the mass and magnetic flux).  相似文献   

20.
Recent spectropolarimetric observations of Ap and Bp stars with improved sensitivity have suggested that most Ap and Bp stars are magnetic with dipolar fields of at least a few hundred gauss. These new estimates suggest that the range of magnetic fluxes found for the majority of magnetic white dwarfs is similar to that of main-sequence Ap–Bp stars, thus strengthening the empirical evidence for an evolutionary link between magnetism on the main sequence and magnetism in white dwarfs. We draw parallels between the magnetic white dwarfs and the magnetic neutron stars and argue that the observed range of magnetic fields in isolated neutron stars  ( Bp ∼ 1011–1015 G)  could also be explained if their mainly O-type progenitors have effective dipolar fields in the range of a few gauss to a few kilogauss, assuming approximate magnetic flux conservation with the upper limit being consistent with the recent measurement of a field of   Bp ∼ 1100 G  for θ Orion C.
In the magnetic field–rotation diagram, the magnetic white dwarfs can be divided into three groups of different origin: a significant group of strongly magnetized slow rotators  ( P rot∼ 50 –100 yr)  that have originated from single-star evolution, a group of strongly magnetized fast rotators  ( P rot∼ 700 s)  , typified by EUVE J0317–853, that have originated from a merger, and a group of modest rotators ( P rot∼ hours–days) of mixed origin (single-star and CV-type binary evolution). We propose that the neutron stars may similarly divide into distinct classes at birth , and suggest that the magnetars may be the counterparts of the slowly rotating high-field magnetic white dwarfs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号