首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE. The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates. Author’s address: Vadim Vadimovich Distler, Institute of Geology of Ore Deposits, Mineralogy, Petrography and Geochemistry Russian Academy of Sciences (IGEM RAS), Staromonetny 35, 119017 Moscow, Russia  相似文献   

2.
Ultramafic rocks and high-Cr chromite ore from the Almaz-Zhemchuzhina deposit, the largest in the Main ore field of the Kempirsai massif, have been studied. The detailed mineralogical and geochemical examination of deep structure test and exploratory boreholes allowed us to establish the rough stratification of ultramafic rocks and to demonstrate the position of unique chromite deposits in the generalized vertical section of the southeastern Kempirsai massif. From top to bottom, a barren harzburgite-lherzolite series gives way to an ore-bearing dunite-harzburgite complex with the largest chromite deposits, including the unique Almaz-Zhemchuzhina deposit, in its upper portion and then to pyroxene-free dunite densely impregnated with chromite in the upper part and containing sparsely disseminated chromite at its base. The lower unit is composed of a barren lherzolite-harzburgite series transformed into blastomylonites near the contact with dunite, suggesting a tectonically doubled section in the southeastern part of the massif. The synore asymmetric geochemical zoning developed in the course of formation of chromite deposits as a result of removal of oreforming iron-group elements from the underlying and wall ultramafic rocks into the overlying rocks. Host rocks with disturbed initial proportions of Cr, Fe, Ni, and Mn, together with orebodies, made up ore-bearing zones no less than 1 km in thickness and subdivided into supra-, inter-, and subore subzones. The subore and wall rocks are characterized by partial loss (wt %) of Cr2O3(0.1), NiO (0.04), FeOtot(0.5), and MnO (0.02) and their removal into the interore and supraore (0.03 NiO) subzones. Thus, the subore ultramafic rocks served as a source of ore-forming components, while the interore zone with orebodies occurring therein served as a zone of discharge of these components. Using Mössbauer spectroscopy, the crystal chemistry of iron ions was studied in a representative selection of Cr-spinel samples from rocks and ores of the southeastern and western blocks (the Almaz-Zhemchuzhina and Geophysical XII deposits). The degree of iron oxidation in the samples varies from 8 to 33%. In most cases, a difference in degree of iron oxidation is established in stoichiometric approximation and from Mössbauer data. In other words, the integral stoichiometry of ferrous and ferric ions is disturbed. Such a disturbance may be related not only to partial inversion of the Cr-spinel structure but also to local heterogeneity of the mineral at the micro- and nanolevels with clustering of cations and formation of their associates. An empirical correction of the olivine-Cr-spinel geothermometer and oxybarometer has been performed. The inverse correlation between oxygen fugacity and degree of depletion of ultramafic rocks indicates that these rocks were formed in a closed system with participation of a water-methane fluid. Along with stratification of ultramafics, this correlation testifies to a powerful asthenospheric source of reduced fluids. The retention of low oxygen fugacity in central portions of orebodies does not rule out that after a break this source participated in the formation of unique chromite deposits in the Kempirsai massif.  相似文献   

3.
The Polar Urals region of northern Russia is well known for large chromium(Cr)-bearing massifs with major chromite orebodies,including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolite belt.New data on platinum(Pt)-group elements(PGE).geochemistry and mineralogy of the host dunite shows that the deposit has anomalous iridium(Ir) values.These values indicate the predominance of ruthenium-osmium-iridium(Ru-Os-Ir)-bearing phases among the platinum-group mineral (PGM) assemblage...  相似文献   

4.
The new data for the geology and mineralogy of the platinum group element (PGE) mineralization related to the chromite–platinum ore zones within the dunite of the Svetly Bor and Veresovy Bor massifs in the Middle Urals are discussed. The geological setting of the chromite–platinum ore zones, their platinum content, compositional and morphological features of the platinum group minerals (PGM) are compared to those within the Nizhny Tagil massif, the world standard of the zonal complexes in the Platinum Ural belt. The chromite–platinum orebodies are spatially related to the contacts between differently granular dunites. Majority of PGM are formed by Pt–Fe alloys that are close in terms of stoichiometry to isoferroplatinum (Pt3Fe), and associated with Os–Ir alloys, Ru–Os and Ir–Rh sulfides, and Ir–Rh thiospinels of the cuproiridsite–cuprorhodsite–ferrorhodsite solid solution. The tetraferroplatinum (PtFe)–tulameenite (PtFe0.5Cu0.5) solid solution and Pt–Cu alloys belong to the later PGM assemblage. The established features of the chromite–platinum ore zones testify to the highly probable identification of the PGE mineralization within the dunite of the Svetly Bor and Vesesovy Bor massifs and could be used in prospecting and exploration for platinum.  相似文献   

5.
The results of mineralogical-technological studies of PGM mineralization in zonal mafic-ultramafic complexes of the Ural-Alaskan type are given. All studied massifs in the Urals and Kamchatka are characterized by similar evolution of mineral assemblages. The chromite (platinum-chromitite-dunite) and dunite (platinum-pegmatoid dunite) geological-economic types of small platinum deposits and occurrences are separate enriched sites (ore shoots) of large-volume platinum ore deposits. These are rather thick and extended zones of recrystallized dunites with attributes of high-temperature structural deformations and intense fluid reworking. Low Pt grade in ore (<0.5 gpt) is determined by fine and very fine (grain size class — 80 μm) euhedral PGM crystals distributed rather uniformly in ore mass. The high and occasionally anomalous Pt contents (up to 1 kgpt and higher) are related to large xenomorphic segregations of PGM, which concentrate largely in the marginal parts of separate chromite segregations. The significant part of productive Pt-bearing mineralization is hosted in olivine matrix of igneous rocks, so that recovery of platinum cannot be associated only with separation of chromite ore. The direct gravity concentration of platinum ore without preliminary separation of chromite concentrate is recommended as the main technique of platinum recovery. The technological scheme provides for two-stage comminution of ore with between-cycle separation of coarse the PGM fraction into the concentrate as a commodity product. The results obtained allow us to regard the aforementioned mineralization as a new geological and economic type of lode platinum deposits, whose potential is comparable with active platinum reserves in the complex Cu-Ni ores of the Noril’sk district.  相似文献   

6.
The paper discusses the results of studying the contents of platinum group elements (PGE) and platinum group minerals (PGM) in ores of the Kingash deposit. The bulk of PGE has been established as concentrated in disseminated sulfide chalcopyrite–pyrrhotite–pentlandite ore and is represented by palladium bismuth–tellurides. During melt differentiation, the content and relationship of PGE are changed; the Pd/Pt value increases (up to 1.9 and 4.2 in dunite and wehrlite, respectively) with decreasing Mg number. The distribution of PGE, sulfur, and REE in various ore types suggests two formation mechanisms of high-grade ores: (1) the product of liquid immiscibility and gravity separation at the early magmatic stage and (2) involvement of the residual melt saturated in volatiles, which contributed to transportation and segregation of PGE at the late magmatic stage. The evolution of the ore system of the Kingash massif is characterized by sequential enrichment of PGM in Ni from high-Mg to low-Mg rocks similarly to sulfide minerals of disseminated ore. The criteria for ore content in utramafics of the Kansk block have been identified based on compared ore element and PGE concentrations in ultramafic rocks of the Kingash and Idar complexes.  相似文献   

7.
The results of melt inclusion study are reported for chromites of the Klyuchevsky ultramafic massif, which is the most representative of all Ural ultramafic massifs localized beyond the Main Ural Fault Zone. The massif is composed of a dunite-harzburgite complex (tectonized mantle peridotite) and a dunite-wehrlite-clinopyroxenite-gabbro complex (layered portion of the ophiolitic section). The studied Kozlovsky chromite deposit is located in the southeastern part of the Klyuchevsky massif and hosted in serpentinized dunite as a series of lenticular bodies and layers up to 7–8 m thick largely composed of disseminated and locally developed massive ore. Melt inclusions have been detected in chromites of both ore types. The heated and then quenched into glass melt inclusions and host minerals were analyzed on a Camebax-Micro microprobe. The glasses of melt inclusions contain up to 1.06 wt % Na2O + K2O and correspond to melts of normal alkalinity. In SiO2 content (49–56 wt %), they fit basalt and basaltic andesite. The melt inclusions are compared with those from chromites of the Nurali massif in the southern Urals and the Karashat massif in southern Tuva. The physicochemical parameters of magmatic systems related to the formation of disseminated and massive chromite ores of the Klyuchevsky massif are different. The former are characterized by a wider temperature interval (1185–1120°C) in comparison with massive chromite ore (1160–1140°C).  相似文献   

8.
Data on the composition of sulfide ores from ultramafic massifs in the central East Sayan Mountains and on the regularities of platinum group elements (PGE) in these ores are presented. It is found that the highest PGE contents are characteristic for net-textured and massive ores from the Zhelos massif: total PGE content there is up to 15 ppm, with Pd/Pt = 3–8, for Ni and Cu contents of 1.5–2.8 and 0.5–2.7 wt%, respectively. In the disseminated ores of the Zhelos massif, PGE contents vary from 1 to 7 ppm, at Ni and Cu contents varying in the ranges of 0.5–1.0 and 0.2–0.4 wt %, respectively. In the Tokty-Oi massif, disseminated ores are characterized by higher absolute PGE contents (1.6 to 3.3 ppm) at similar Ni content. PGE tenor of disseminated ores is higher compared to that of massive and net-textured ones. In the cross-sections of both massifs, net-textured and massive ores of an essentially pyrrhotine composition are found at the contact between ultramafic and host rocks. Total PGE in these ores is up to 12 ppm. The obtained data on sulfur isotopes indicate the common, well-homogenized sources, and close physical–chemical depositional conditions of all ore types.  相似文献   

9.
铂族元素矿物共生组合(英文)   总被引:1,自引:2,他引:1  
CHEN Yuan 《现代地质》2001,15(2):131-142
由于铂族元素能有效地降低汽车尾气的污染 ,其需求量日益增加 ,对铂族元素矿床的寻找已是当务之急。着重从矿物矿床学角度对铂族元素的矿物共生特点进行了探讨。铂族元素可呈独立矿床产出 ,主要产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中。铂族元素也伴生于铜镍矿床中 ,该类铜镍矿床主要与苏长岩侵入体、溢流玄武岩及科马提岩有关。产于基性超基性层状侵入体中的铂族矿物有铂钯硫化物、铂铁合金、钌硫化物、铑硫化物、铂钯碲化物、钯砷化物及钯的合金。这些铂族矿物可与硫化物矿物共生 ,也可与硅酸盐矿物共生 ,还可与铬铁矿及其他氧化物矿物共生。产于蛇绿岩套中的铂族矿物主要是钌铱锇的矿物 ,而铂钯铑的矿物则较少出现 ,这些铂族矿物可呈合金、硫化物、硫砷化物以及砷化物 4种形式出现。产于阿拉斯加式侵入体中的铂族矿物主要有铂铁合金、锑铂矿、硫铂矿、砷铂矿、硫锇矿及马兰矿等少数几种 ,其中铂铁合金与铬铁矿及与其同时结晶的高温硅酸盐矿物共生 ,而其他的铂族矿物则与后来的变质作用及蛇纹岩化作用中形成的多金属硫化物及砷化物共生。产于铜镍矿床中的铂族矿物主要是铂和钯的矿物。产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中的铂族矿物的共同特点是它们均与铬铁矿?  相似文献   

10.
Malitch  K. N.  Kogarko  L. N. 《Doklady Earth Sciences》2011,440(2):1455-1459
This contribution firstly presents particularities of mineral chemistry of platinum-group elements (PGE) mineralization from placer deposits linked to the Bor-Uryakh massif of the Maimecha-Kotui Province, northern part of the Siberian Craton. The chemical composition of PGE mineralization has been studied by electron microprobe analysis. At Bor-Uryakh, main platinum-group minerals (PGM) comprise Os-Ir and Pt-Fe alloys represented by individual crystals, and polyphase PGM assemblages. The majority (e.g., 12 out of 19) of the Os-rich nuggets are iridian osmium, with subordinate amounts of native osmium (Os) and chengdeite (Ir3Fe). Pt-Fe alloys have a stoichiometric composition close to Pt2Fe. According to the nomen-clature by L. Cabri and C. Feather [1975] these minerals correspond to ferroan platinum. Based on geological position and geochemical features of investigated PGE mineralization the particular rock sources have been established. This study has demonstrated the similarity of chemical characteristics of Os-Ir and Pt-Fe alloys of the Bor-Uryakh massif to those of PGM from the Guli massif (Maimecha-Kotui Province), platiniferous zoned-type ultramafic massifs (e.g., Kondyor, Inagli and Chad) of the Aldan Province and Platinum belt of the Urals (Nizhny Tagil, Kytlym, etc.).  相似文献   

11.
Nickel and iron–cobalt ores from weathering crusts on ultramafic massifs in the Urals contain elevated PGE concentrations. Platinum group minerals first found in weathering crusts in Russia are primarily represented by Pt-palladium, native platinum, and compounds of Pd and Pt with Bi, Sb, and Te. Platinum group elements are characterized by a high differentiated mobility in the weathering profile. This is manifested by a difference in values of the PGE accumulation coefficient and a spatial separation of local accumulation zones of different PGE. This is also experimentally confirmed by different values of the PGE solubility in natural waters. An important factor of the formation of PGE-rich zones in weathering crusts at the Sakhara and Elizavet ore deposits is their substrate represented by the Sakhara and Uktus massifs of the Ural Platinum Belt. It is supposed that geochemical barriers for the PGE concentration in these weathering crusts were provided by the iron oxide zone and horizons enriched in manganese minerals.  相似文献   

12.
Zaykov  V. V.  Kotliarov  V. A.  Zaykova  E. V.  Blinov  I. A. 《Doklady Earth Sciences》2017,476(2):1212-1216

Microinclusions of ore minerals were found and studied in grains of native gold for characterization of the mineralogy of placer gold of the South Urals. One hundred ten unrounded and poorly rounded grains with a size of 1–2 mm from eight placer zones were studied. Microinclusions of ore minerals were detected in six placers of the Miass zone. The list of minerals includes sulfides, arsenides, Cu-bearing Au, and PGEs. All microinclusions show links to certain deposits of ore gold and chromite occurrences. It is suggested that the northern flanges of the Talovsky and Nurali massifs containing gold placers with PGEs require a search for PGE mineralization.

  相似文献   

13.
The geology and mineralogy of host metamorphic rocks, the mineralogy of sulfide ores, and the distribution of PGE mineralization were studied in detail for the Kvinum-1 and Kvinum-2 copper-nickel occurrences of the Kvinum ore field, which are the most promising targets for the copper-nickel-PGE mineralization of the Sredinny Range of Kamchatka. It was established that stringer-disseminated and massive copper-nickel ores are localized in amphibole peridotites, cortlandites, and form ore bodies varying from tens of centimeters to 5–20 m thick among the layered cortlandite-gabbroid massifs. The massive sulfide ores were found only at the bottom of cortlandite bodies and upsection grade into stringer-disseminated and disseminated ores. Pyrrhotite, chalcopyrite, and pentlandite are the major ore minerals with a sharply subordinate amount of pyrite, sphalerite, galena, arsenopyrite, and löllingite. Besides pentlandite, the Ni-bearing minerals include sulforasenides (gersdorffite), arsenides (nickeline), and tellurides (melonite) of nickel. It was found that PGE mineralization represented by antimonides (sudburyite) and tellurobismuthides (michenerite) of Pd with sharply subordinate platinum arsenide (sperrylite) is confined to the apical parts of massive sulfide zones and the transition zone to the stringer-disseminated ores. Ore intervals enriched in arsenides and tellurides of Ni, Pd, and Bi contain high-purity gold. In the central parts of the orebodies, the contents of PGE and native gold are insignificant. It is suggested that the contents of major sulfide minerals and the productivity of PGE mineralization in the cortlandites are defined by combined differentiation and sulfurization of ultramafic derivatives under the effect of fluids, which are accumulated at the crystallization front and cause layering of parental magmas with different sulfur contents. The fluid-assisted layering of mafic-ultramafic massifs resulted in the contrasting distribution of PGM in response to uneven distribution of sulfur (as well as As, Te, and Bi) during liquid immiscibility. The productivity of PGE mineralization significantly increases with increasing contents of S, As, Te, and Bi (elements to which Pt and, especially, Pd have high affinity) in fluids.  相似文献   

14.
云南铂族元素找矿基础问题   总被引:9,自引:2,他引:9  
云南省铂族元素矿床成矿地质条件较好,已有不少已知矿床、矿点、找矿信息及地球化学异常。找矿重点以基性超基性岩型为主,也应考虑其它类型,如热液型、黑色页岩型、煤岩型等。找矿重点地区除在峨眉山玄武岩分布区及其周边外,应注意康滇地轴中部及边缘中新生代断裂带通过的地区。峨眉山玄武岩分布区外围的卡林型金矿和浅成低温热液型矿床分布区亦值得重视,如滇东南地区。此外,寒武系黑色岩系及含磷层位的含铂性是一个具有挑战性的新课题,值得加强研究。云南铂族元素矿床的成矿时代,可能从元古代到新生代均有,对云南找铂来说非常有利,其它省区无法与之相比。新生代构造可能将深埋的矿体错动到浅部,找矿中需要特别注意。不妨“沿河找矿”。第四纪的风化壳中是否有铂族元素的富集也可探索。  相似文献   

15.
The paper discusses earlier poorly studied mineralized rocks of the Kingash ultramafic complex in the Kan Block of the Eastern Sayan, including the large Cu–Ni–PGE deposit of the same name. Despite many researchers' increased interest in the Kingash massif, a number of questions related to the petrology, formation mechanism, and localization of Cu–Ni–PGE ore remain controversial. Along with already known ore minerals, we have identified and described a number of new mineral species: argentite, Fe-enriched sperrylite, a bismuth variety of merenskyite, gersdorffite, cobaltite, and thorianite. The ore minerals are distinguished by a higher relative amount of Fe, and this makes the Kingash deposits close to other Paleoproterozoic Cu–Ni deposits, e.g., the Jinchuan in China, Pechenga in Russia, Ungava in Canada, Mt. Scholl in Australia, etc.  相似文献   

16.
铂族元素的地球化学行为及全球主要铂族金属矿床类型   总被引:2,自引:0,他引:2  
全球铂族金属矿床主要有6种类型,分别为:(1)镁铁质-超镁铁质层状岩体铂族金属矿床;(2)镁铁质-超镁铁质Cu-Ni硫化物矿床伴生的铂族金属矿床;(3)Urals杂岩体型铂族金属矿床;(4)蛇绿岩型铂族金属矿床;(5)与热液相关的铂族金属矿床;(6)外生型铂族金属矿床。除第4类型外其他类型的铂族矿床都具有经济意义。铂族金属矿床的形成主要与幔源岩浆性质及岩浆演化过程密切相关。大规模的幔源岩浆活动及在岩浆演化过程中具有产生硫饱和的条件是形成铂族金属矿床的有利条件,同时岩浆期后的热液作用能使铂族元素迁移并在特定条件下富集,对铂族金属矿床的形成有利。镁铁质-超镁铁质层状侵入体形成铂族金属矿床的有利条件是岩浆分异作用强,并且具有能产生高R因子的环境;镁铁质-超镁铁质Cu-Ni硫化物矿床中形成铂族金属矿床的有利条件是硫化物熔体的结晶分异作用;Urals型杂岩体中,由于岩浆在早期演化过程中硫的不饱和,形成的主要铂族矿物为Pt-Fe、Pt-Ir合金,且主要与铬铁矿共生,在岩浆演化硫饱和阶段可形成富Pd的铂族矿物,且与Cu-Fe-V-Ti-P金属共生;蛇绿岩型杂岩体中,主要形成的铂族矿物为含Ir- 、Os- 、Pt- 的合金或少量硫化物矿物,且主要赋存于铬铁矿中。  相似文献   

17.
Potential chromite ore deposits of India are situated in Sukinda, Odisha, which may also be considered as a potential resource for platinum group elements (PGEs). This paper reports on PGE geochemistry in twenty six samples covering chromite ores, chromitites and associated ultramafic rocks of the Sukinda ultramafic complex. Platinum group element contents range from 213 to 487 ppb in the chromite ore body, from 63 to 538 ppb in rocks that have chromite dendrites or dissemination and from 38 to 389 ppb in associated olivine–peridotite, serpentinite, pyroxenite and brecciated rocks. The PGEs are divided into two sub‐groups: IPGE (Ir, Os, and Ru) and PPGE (Pd, Pt, and Rh) based on their chemical behaviour. The IPGE and PPGE in these three litho‐members show a contrasting relationship e.g. average IPGE content decreases from chromite to chromitite and associated rocks while PPGE increases in the same order. Appreciable Ag in chromitite (270–842 ppb) is recorded. Positive correlation between IPGE with Cr2O3 and with Al2O3 is observed while these are negatively correlated with MgO. Covariant relationships between Au and Mg in rocks devoid of chromite and between Ag and Fe in chromitite sample are observed. Chromite in all seams and some chromitite samples exhibit an IPGE‐enriched chondrite normalized pattern while PPGE are highly fractionated and show a steep negative slope, thereby indicating that PGE in the parental melt fractionates and IPGE‐compatible elements prefer to settle with chromite. The rocks devoid of chromite and rocks containing accessory chromite exhibit a nearly flat pattern in chondrite‐normalized PGE plots and this suggests a limited fractionation of PGE in these rocks. Variation in the distribution pattern of PGE and Ag in three typical litho‐members of the Sukinda Valley may be related to multiple intrusion of ultramafic magma, containing variable volume percentage of chromite.  相似文献   

18.
The Kaalamo massif is located in the Northern Ladoga region, Karelia, on the extension of the Kotalahti Belt of Ni-bearing ultramafic intrusions in Finland. The massif, 1.89 Ga in age, is differentiated from pyroxenite to diorite. Nickel–copper sulfide mineralization with platinoids is related to the pyroxenite phase. The ore consists of two mineral types: (i) pentlandite–chalcopyrite–pyrrhotite and (ii) chalcopyrite, both enriched in PGE. Pd and Pt bismuthotellurides, as well as Pd and Pt tellurobismuthides, are represented by the following mineral species: kotulskite, sobolevskite, merenskyite, michenerite, moncheite, keithconnite, telluropalladinite; Pt and Pd sulfides comprise vysotskite, cooperite, braggite, palladium pentlandite, and some other rare phases. High-palladium minerals are contained in pentlandite–chalcopyrite–pyrrhotite ore. Native gold intergrown with kotulskite commonly contains microinclusions (1–3 μm) of Pd stannides: paolovite and atokite. Ore with 20–60% copper sulfides (0.2–6.0% Cu) contains 5.1–6.6 gpt PGE and up to 0.13–2.3 gpt Au. Pd minerals, arsenides and sulfoarsenides of Pt, Rh, Ir, Os, and Ru are identified as well. These are sperrylite, ruthenium platarsite, hollingworthite, and irarsite; silvery gold and paolovite have also been noted. All these minerals have been revealed in the massif for the first time. The paper also presents data on the compositions of 25 PGE minerals (PGM) from Kaalamo ores.  相似文献   

19.
铬铁矿是关键金属铬唯一可经济利用的自然资源,主要有层状铬铁矿和蛇绿岩中的豆荚状铬铁矿两种类型,其中豆荚状铬铁矿矿体规模小、发育不规律,是一个长期存在的勘探难题。由于铬铁矿特殊的经济战略地位,美国、欧洲、苏联和中国都非常重视铬铁矿地球物理勘探。铬铁矿地球物理探测技术发展始于20世纪30年代,至20世纪80年代,发展了以重力、磁法为主导的铬铁矿地球物理勘探技术,地震、电法也被应用。这一阶段在苏联乌拉尔肯皮尔赛等超大型蛇绿岩型隐伏铬铁矿勘探取得重大突破,在其他矿区取得一定的进展。自21世纪以来,高精度的便携式仪器和新兴地球物理技术逐渐运用到铬铁矿地球物理勘探,综合地球物理成为铬铁矿勘探的主流方法,在我国罗布莎等多个岩体隐伏铬铁矿勘探中取得突破,在印度、阿尔巴尼亚等国家也取得进展。本文回顾了铬铁矿地球物理勘探的发展历程,综述了铬铁矿岩石物理特征与测量方法、重磁勘探主要应用及存在问题、电磁法勘探的主要方法,并重点介绍了音频大地电磁测深在罗布莎铬铁矿的探测效果和电磁法勘探模式,展望了张量CSAMT技术、磁异常模量反演、高光谱遥感、高密度激电、无人机物探等有望在铬铁矿地球物理勘探中发挥重要作用的前沿...  相似文献   

20.
The investigation of stable and radiogenic isotopes and of platinum-group (PGE) and rare earth elements (REE) in chromitites and associated ultramafic rocks of the Kempirsai Massif, southern Urals, gives strong evidence for a multistage formation of giant ophiolitic-podiform chromite deposits present in the southeastern part of the massif. The Kempirsai ophiolite massif is divided by a shear zone into two parts: in the northwestern area, small bodies of Al-rich chromite formed from basaltic melts between 420 to 400 Ma, according to Sm-Nd mineral isochrons of harzburgite, pyroxenite, websterite and gabbro. Harzburgites and pyroxenites in this area are enriched in light REE and have ɛNd(400) > +6 and ɛSr(400) ∼ +5. Chromitites have scattered PGE distributions (Pd/Ir, 0.4–7.0), being partly enriched in Pd and Pt. γOs(400) of one chromitite is −4.4. The southeastern part of the Kempirsai Massif, well-known for its world-class deposits of podiform low-Al magnesiochromite, is characterized by harzburgite and dunite enriched in light REE with very low ɛNd(400) (+4.3 to –17.1) and positive ɛSr(400) (>+10) values. Chromitites are strongly enriched in Ir, Os and Ru and depleted in Pd and Pt. γOs(400) of three chromitites is uniform and approaches C1 and DMM compositions. In veins and pods postdating crystallization of massive chromite, pargasitic amphibole formed in equilibrium with fluid-inclusion-bearing chromite at temperatures close to 1000 °C. These amphiboles give 40Ar/39Ar stepwise heating ages of 365 to 385 Ma and are characterized by low ɛNd(400) (+0.6 to −4.6) and general enrichment in REE. The cooling ages correspond to a 379.3 ± 1.6 Ma Rb-Sr mineral isochron produced from amphibole and phlogopite of a pyroxenite vein in the western part of the massif. From these data it is concluded that parts of the Kempirsai Massif have been pervasively metasomatized by large amounts of fluids and melts derived from a subducted slab composed of oceanic crust and sediments. Subduction occurred at least 15–35 Ma after a melting event that produced a typical ophiolitic sequence in the Paleozoic Sakmara Zone. We conclude that large chromite orebodies formed from second-stage high-Mg melts that interacted with depleted mantle and fluids on their way upward in a suprasubduction zone regime, and in a fore-arc position to the Magnitogorsk island arc. Received: 21 January 1998 / Accepted: 24 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号