首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a model to estimate the synchrotron radio emission generated in microquasar (MQ) jets due to secondary pairs created via decay of charged pions produced in proton-proton collisions between stellar wind ions and jet relativistic protons. The synchrotron radiation produced by secondary electrons/positrons is computed using consistently derived particle energy distributions. Energy losses due to synchrotron and inverse Compton (IC) processes, and adiabatic expansion, are taken into account. The space parameter for the model is explored and the corresponding spectral energy distributions (SEDs) are presented. We conclude that secondary leptonic emission represents a significant though hardly dominant contribution to the total radio emission in MQs, with observational consequences that can be used to test some still unknown processes occurring in these objects as well as the nature of the matter outflowing in their jets.   相似文献   

2.
Blazars are the most violent steady/recurrent sources of high-energy gamma-ray emission in the known Universe. They are prominent emitters of electromagnetic radiation throughout the entire electromagnetic spectrum. The observable radiation most likely originates in a relativistic jet oriented at a small angle with respect to the line of sight. This review starts out with a general overview of the phenomenology of blazars, including results from a recent multiwavelength observing campaign on 3C279. Subsequently, issues of modeling broadband spectra will be discussed. Spectral information alone is not sufficient to distinguish between competing models and to constrain essential parameters, in particular related to the primary particle acceleration and radiation mechanisms in the jet. Short-term spectral variability information may help to break such model degeneracies, which will require snap-shot spectral information on intraday time scales, which may soon be achievable for many blazars even in the gamma-ray regime with the upcoming GLAST mission and current advances in Atmospheric Cherenkov Telescope technology. In addition to pure leptonic and hadronic models of gamma-ray emission from blazars, leptonic/hadronic hybrid models are reviewed, and the recently developed hadronic synchrotron mirror model for TeV γ-ray flares which are not accompanied by simultaneous X-ray flares (“orphan TeV flares”) is revisited. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

3.
Non-thermal X-rays and very high energy (VHE) γ-rays have been detected from the supernova remnant (SNR) RX J1713.7−3946, and the recent observations with the Suzaku satellite clearly reveal a spectral cut-off in the X-ray spectrum, which directly relates to the cut-off of the energy spectrum of the parent electrons. However, whether the origin of the VHE γ-rays from the SNR is hadronic or leptonic is still in debate. We studied the multi-band non-thermal emission from RX J1713.7−3946 based on a semi-analytical approach towards the non-linear shock acceleration process by including the contribution of the accelerated electrons to the non-thermal radiation. The results show that the multi-band observations on RX J1713.7−3946 can be well explained in the model with appropriate parameters, and the TeV γ-rays have hadronic origin, i.e. they are produced via proton–proton interactions as the relativistic protons accelerated by the shock collide with the ambient matter.  相似文献   

4.
We present results for the first three low-power radio galaxies from the B2 bright sample to have been observed with Chandra . Two have kiloparsec-scale radio jets, and in both Chandra resolves jet X-ray emission, and detects soft X-ray core emission and an X-ray-emitting galaxy-scale atmosphere of luminosity a few ×1041 erg s−1. These are the first detections of X-ray jets in low-power radio galaxies more distant than Centaurus A and M87. The cooling time of the galaxy-scale gas implies mass infall rates of the order of 1 M yr−1. The gas pressure near the jets is comparable to the minimum pressure in the jets, implying that the X-ray-emitting gas may play an important role in jet dynamics. The third B2 radio galaxy has no kiloparsec-scale radio jet, and here only soft X-ray emission from the core is detected. The ratio of X-ray to radio flux is similar for the jets and cores, and the results favour a synchrotron origin for the emission. Kiloparsec-scale radio jets are detected in the X-ray in ∼7-ks exposures with Chandra more readily than in the optical via Hubble Space Telescope snapshot surveys.  相似文献   

5.
We study the influence of the matter content of extragalactic jets on their morphology, dynamics and emission properties. For this purpose we consider jets of extremely different compositions, including pure leptonic and baryonic plasmas. Our work is based on two-dimensional relativistic hydrodynamic simulations of the long-term evolution of powerful extragalactic jets propagating into a homogeneous environment. The equation of state used in the simulations accounts for an arbitrary mixture of electrons, protons and electron–positron pairs. Using the hydrodynamic models, we have also computed synthetic radio maps and the thermal bremsstrahlung X-ray emission from their cavities.
Although there is a difference of about three orders of magnitude in the temperatures of the cavities inflated by the simulated jets, we find that both the morphology and the dynamic behaviour are almost independent of the assumed composition of the jets. Their evolution proceeds in two distinct epochs. During the first one, multidimensional effects are unimportant and the jets propagate ballistically. The second epoch starts when the first larger vortices are produced near the jet head, causing the beam cross-section to increase and the jet to decelerate. The evolution of the cocoon and cavity is in agreement with a simple theoretical model. The beam velocities are relativistic  ( Γ ≃4)  at kiloparsec scales, supporting the idea that the X-ray emission of several extragalactic jets may be due to relativistically boosted CMB photons. The radio emission of all models is dominated by the contribution of the hotspots. All models exhibit a depression in the X-rays surface brightness of the cavity interior, in agreement with recent observations.  相似文献   

6.
The recent detection of very-high-energy (GeV – TeV) γ-ray emission from the Galactic black-hole candidate and microquasar LS 5039 has sparked renewed interest in jet models for the high-energy emission in those objects. In this work, we have focused on models in which the high-energy emission results from synchrotron and Compton emission by relativistic electrons in the jet (leptonic jet models). Particular attention has been paid to a possible orbital modulation of the high-energy emission due to azimuthal asymmetries caused by the presence of the companion star. Both orbital-phase dependentγγ absorption and Compton scattering of optical/UV photons from the companion star may lead to an orbital modulation of the gamma-ray emission. We make specific predictions which should be testable with refined data from HESS and the upcoming GLAST mission.  相似文献   

7.
Measurement sensitivity in the energetic γ-ray region has improved considerably and is about to increase further in the near future, motivating a detailed calculation of high-energy (HE; ≥100 MeV) and very high-energy (VHE; ≥100 GeV) γ-ray emission from the nearby starburst galaxy NGC 253. Adopting the convection–diffusion model for energetic electron and proton propagation, and accounting for all the relevant hadronic and leptonic processes, we determine the steady-state energy distributions of these particles by a detailed numerical treatment. The electron distribution is directly normalized by the measured synchrotron radio emission from the central starburst region; a commonly expected theoretical relation is then used to normalize the proton spectrum in this region. Doing so fully specifies the electron spectrum throughout the galactic disc and, with an assumed spatial profile of the magnetic field, the predicted radio emission from the full disc matches well the observed spectrum, confirming the validity of our treatment. The resulting radiative yields of both particles are calculated; the integrated HE and VHE fluxes from the entire disc are predicted to be   f (≥100 MeV) ≃ (1.8+1.5−0.8) × 10−8 cm−2 s−1  and   f (≥100 GeV) ≃ (3.6+3.4−1.7) × 10−12 cm−2 s−1  , with a central magnetic field value   B 0≃ 190 ± 10 μ  G. We discuss the feasibility of measuring emission at these levels with the space-borne Fermi and ground-based Cherenkov telescopes.  相似文献   

8.
I summarize here recent work on the physical conditions in blazar jets including the comparison between emission regions at subparsec scales (1016−17 cm) and at very large scales (1022−24 cm) recently detected in X-rays by Chandra. The jet properties at both scales together with those of the presumed associated accretion disk (1014−15 cm) suggest the possibility of a unified scenario for the origin and propagation of jets in strong radio sources.  相似文献   

9.
Chandra ACIS observations of PKS 0521−365 find that the X-ray emission of this BL Lac object consists of emission from an unresolved core, a diffuse halo and a 2-arcsec jet feature coincident with the inner radio/optical jet. A comparison with a new ATCA 8.6-GHz map also finds X-ray emission from the bright hotspot south-east of the nucleus. The jet spectrum, from radio to X-ray, is probably synchrotron emission from an electron population with a broken power-law energy distribution, and resembles the spectra seen from the jets of low-power (FR I) radio galaxies. The hotspot X-ray flux is consistent with the expectations of synchrotron self-Compton emission from a plasma close to equipartition, as seen in studies of high-power (FR II) radio galaxies. While the angular structure of the halo is similar to that found by an analysis of the ROSAT High Resolution Imager image, its brightness is seen to be lower with Chandra , and the halo is best interpreted as thermal emission from an atmosphere of similar luminosity to the haloes around FR I radio galaxies. The X-ray properties of PKS 0521−365 are consistent with it being a foreshortened, beamed, radio galaxy.  相似文献   

10.
Flat radio spectra with large brightness temperatures at the core of active galactic nuclei and X-ray binaries are usually interpreted as the partially self-absorbed bases of jet flows emitting synchrotron radiation. Here we extend previous models of jets propagating at large angles to our line of sight to self-consistently include the effects of energy losses of the relativistic electrons due to the synchrotron process itself and the adiabatic expansion of the jet flow. We also take into account energy gains through self-absorption. Two model classes are presented. The ballistic jet flows, with the jet material travelling along straight trajectories, and adiabatic jets. Despite the energy losses, both scenarios can result in flat emission spectra; however, the adiabatic jets require a specific geometry. No re-acceleration process along the jet is needed for the electrons. We apply the models to observational data of the X-ray binary Cygnus X-1. Both models can be made consistent with the observations. The resulting ballistic jet is extremely narrow with a jet opening angle of only 5 arcsec. Its energy transport rate is small compared to the time-averaged jet power and therefore suggests the presence of non-radiating protons in the jet flow. The adiabatic jets require a strong departure from energy equipartition between the magnetic field and the relativistic electrons. These models also imply a jet power of two orders of magnitude higher than the Eddington limiting luminosity of a  10-M  black hole. The models put strong constraints on the physical conditions in the jet flows on scales well below achievable resolution limits.  相似文献   

11.
We estimate the power of relativistic, extragalactic jets by modelling the spectral energy distribution of a large number of blazars. We adopt a simple one-zone, homogeneous, leptonic synchrotron and inverse Compton model, taking into account seed photons originating both locally in the jet and externally. The blazars under study have an often dominant high-energy component which, if interpreted as due to inverse Compton radiation, limits the value of the magnetic field within the emission region. As a consequence, the corresponding Poynting flux cannot be energetically dominant. Also the bulk kinetic power in relativistic leptons is often smaller than the dissipated luminosity. This suggests that the typical jet should comprise an energetically dominant proton component. If there is one proton per relativistic electrons, jets radiate around 2–10 per cent of their power in high-power blazars and 3–30 per cent in less powerful BL Lacs.  相似文献   

12.
We present images of infrared (IR) emission from the radio jet in 3C 66B. Data at three wavelengths (4.5, 6.75 and 14.5 μm) were obtained using the Infrared Space Observatory . The 6.75-μm image clearly shows an extension aligned with the radio structure. The jet was also detected in the 14.5-μm image, but not at 4.5 μm. The radio–infrared–optical spectrum of the jet can be interpreted as synchrotron emission from a population of electrons with a high-energy break of 4×1011 eV. We place upper limits on the IR flux from the radio counter-jet. A symmetrical, relativistically beamed twin-jet structure is consistent with our results if the jets consist of multiple components.  相似文献   

13.
We have observed the prototypical wide-angle tail (WAT) radio galaxy 3C 465 with Chandra and XMM–Newton . X-ray emission is detected from the active nucleus and the inner radio jet, as well as a small-scale, cool component of thermal emission, a number of the individual galaxies of the host cluster (Abell 2634), and the hotter thermal emission from the cluster itself. The X-ray detection of the jet allows us to argue that synchrotron emission may be an important mechanism in other well-collimated, fast jets, including those of classical double radio sources. The bases of the radio plumes are not detected in the X-ray, which supports the model in which these plumes are physically different from the twin jets of lower-power radio galaxies. The plumes are in fact spatially coincident with deficits of X-ray emission on large scales, which argues that they contain little thermal material at the cluster temperature, although the minimum pressures throughout the source are lower than the external pressures estimated from the observed thermal emission. Our observations confirm both spatially and spectrally that a component of dense, cool gas with a short cooling time is associated with the central galaxy. However, there is no evidence for the kind of discontinuity in external properties that would be required in many models of the jet–plume transition in WATs. Although the WAT jet–plume transition appears likely to be related to the interface between this central cool component and the hotter intracluster medium, the mechanism for WAT formation remains unclear. We revisit the question of the bending of WAT plumes, and show that the plumes can be bent by plausible bulk motions of the intracluster medium, or by motion of the host galaxy with respect to the cluster, as long as the plumes are light.  相似文献   

14.
We predict the synchrotron radiation from transient pulsars. The radiation is generated under the interaction of the magneto-dipole radiation with the relativistic electron-positron wind just after switching off of a radio pulsar. We calculate the spectrum and the flux of this radiation. The synchrotron radiation is estimated to observe from two nulling pulsars B1929+10 and B0656+14 on the level of several tens mJansky. The observed bright spiky emission of B0656+14 by Weltevrede et al. (Astron. Astrophys. 458:269, 2006) allows us to suggest that it has synchrotron nature. Observation of the synchrotron radiation gives possibility to determine the pulsar magnetic field and parameters and geometry of the pulsar wind.  相似文献   

15.
The large mechanical luminosity of the jets of GRS 1915+105 should give rise to luminous emission regions, similar to those observed in radio galaxies, where the jets interact with the gas surrounding the source. However, no radio synchrotron emission of the expected morphology has been found. Here we present the results of a study suggesting that radio bremsstrahlung from the compressed and heated ISM in front of the jets should be detectable, while the synchrotron lobes may be too faint. We identify these jet impact sites with two well-known IRAS regions. This identification suggests a distance of GRS 1915+105 of 6.5± 1.6 kpc, significantly closer than the usually assumed distance of 11–12 kpc. We discuss the implications of this reduced distance estimate. The non-detection of the synchrotron radio lobes implies a significant fraction of non-radiating particles, possibly protons, in the jets. The apparent motion of small-scale jet components is not superluminal, so if superluminal motion is required for an object to be termed a microquasar, GRS 1915+105 actually does not qualify. The mass of the black hole in the system is increased to 21± 9 M, while the mechanical luminosity of the jets is reduced to 14% of the Eddington luminosity.  相似文献   

16.
On the basis of issues raised by observations of BL Lac objects and the qualitative jet model proposed by Bakeret al. in 1988, we have been led to consider the quantitative role of coherent, stimulated emission in jets and construct a new jet model of blazars in which a relativistic electron beam with an axial symmetric, power-law distribution is injected from the central engine into the jet plasma. We study quantitatively the synchrotron emission of the relativistic electron beams. Using the weak turbulent theory of plasma, we discuss the interaction between relativistic electron beams and jet plasma, and the roles of stimulated emission. The main results are:
  1. The synchrotron emission increases sensitively with the increase of the angle between the direction of the beam and the magnetic field. When the direction of the beam is vertical to the magnetic field, the synchrotron emission reaches its maximum, i.e. the emitted waves are beamed in the direction of the jet axis. We suggest that radio selected BL Lac objects belong to this extreme classification.
  2. The synchrotron emission of the relativistic beam increases rapidly with the increase of the Lorentz factor of the relativistic electron,γ, whenγ ≤ 22.5, then decreases rapidly with increase ofγ.
  3. The stimulated emission also increases with increasing Lorentz factorγ of the relativistic electrons whenγ ≤ 35 and then decreases with the increasingγ. The maximum stimulated emission and the maximum synchrotron emission occur at different frequencies. Stimulated emission is probably very important and reasonable flare mechanism in blazars.
  4. The rapid polarization position angle (PA) swings may arise from the interaction between the relativistic electron beam and the turbulent plasma.
  相似文献   

17.
Jet models for the high-energy emission of Galactic X-ray binary sources have regained significant interest with detailed spectral and timing studies of the X-ray emission from microquasars, the recent detection by the HESS collaboration of very-high-energy γ-rays from the microquasar LS 5039, and the earlier suggestion of jet models for ultraluminous X-ray sources observed in many nearby galaxies. Here we study the synchrotron and Compton signatures of time-dependent electron injection and acceleration, and adiabatic and radiative cooling in the jets of Galactic microquasars.  相似文献   

18.
Jet physics is again flourishing as a result of Chandra’s ability to resolve high-energy emission from the radio-emitting structures of active galaxies and separate it from the X-ray-emitting thermal environments of the jets. These enhanced capabilities have coincided with an increasing interest in the link between the growth of super-massive black holes and galaxies, and an appreciation of the likely importance of jets in feedback processes. I review the progress that has been made using Chandra and XMM-Newton observations of jets and the medium in which they propagate, addressing several important questions, including: Are the radio structures in a state of minimum energy? Do powerful large-scale jets have fast spinal speeds? What keeps jets collimated? Where and how does particle acceleration occur? What is jet plasma made of? What does X-ray emission tell us about the dynamics and energetics of radio plasma/gas interactions? Is a jet’s fate determined by the central engine?  相似文献   

19.
We have used the very large Jodrell Bank VLA Astrometric Survey/Cosmic Lens All-Sky Survey 8.4-GHz surveys of flat-spectrum radio sources to test the hypothesis that there is a systematic alignment of polarization position angle vectors on cosmological scales of the type claimed by Hutsemékers et al. The polarization position angles of 4290 sources with polarized flux density ≥1 mJy have been examined. They do not reveal large-scale alignments either as a whole or when split in half into high-redshift  ( z ≥ 1.24)  and low-redshift subsamples. Nor do the radio sources which lie in the specific areas covered by Hutsemékers et al. show any significant effect. We have also looked at the position angles of parsec-scale jets derived from very long baseline interferometry observations and again find no evidence for systematic alignments. Finally, we have investigated the correlation between the polarization position angle and those of the parsec-scale jets. As expected, we find that there is a tendency for the polarization angles to be perpendicular to the jet angles. However, the difference in jet and polarization position angles does not show any systematic trend in different parts of the sky.  相似文献   

20.
Very high energy (VHE) γ‐ray observations have proven to be very successful in localizing Galactic acceleration sites of VHE particles. Observations of shell‐type supernova remnants have confirmed that particles are accelerated to VHE energies in supernova blast waves; the interpretation of the γ‐ray data in terms of hadronic or leptonic particle components in these objects relies nevertheless strongly on input from X‐ray observations. The largest identified Galactic VHE source class consists of pulsar wind nebulae, as detected in X‐rays. Many of the remaining VHE sources remain however unidentified until now. With X‐ray observations of these enigmatic “dark” objects one hopes to solve the following questions: What is the astrophysical nature of these sources? Are they predominantly electron or hadron accelerators? And what is their contribution to the overall cosmic ray energy budget? The paper aims to provide an overview over the identification status of the Galactic VHE source population. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号