首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The present area of European wetlands is only a fraction of their area before the start of large-scale human colonization of Europe. Many European wetlands have been exploited and managed for various purposes. Large wetland areas have been drained and reclaimed mainly for agriculture and establishment of human settlements. These threats to European wetlands persist. The main responses of European wetlands to ongoing climate change will vary according to wetland type and geographical location. Sea level rise will probably be the decisive factor affecting coastal wetlands, especially along the Atlantic coast. In the boreal part of Europe, increased temperatures will probably lead to increased annual evapotranspiration and lower organic matter accumulation in soil. The role of vast boreal wetlands as carbon sinks may thus be suppressed. In central and western Europe, the risk of floods may support the political will for ecosystem-unfriendly flood defence measures, which may threaten the hydrology of existing wetlands. Southern Europe will probably suffer most from water shortage, which may strengthen the competition for water resources between agriculture, industry and settlements on the one hand and nature conservancy, including wetland conservation, on the other.  相似文献   

3.
Tropical and subtropical Asia differs from other tropical regions in its monsoonal climate and the dominant influence of the Hindukush and Himalayan mountain ranges which result in extremes of spatial and temporal variability in precipitation. However, several major rivers and their tributaries arise in the Himalayan ranges and are fed by thousands of glaciers. Huge sediment loads carried by these rivers result in important deltas at their mouths. The climatic and physiographic diversity have endowed the region with many kinds of wetlands. Of these, the peatswamps of southeast Asia constitute about 56% of the world’s tropical peatlands, and more than 42% of the world’s mangroves occur in South and southeast Asia. Among other wetlands, riverine swamps are rather restricted whereas the seasonal marshes are a dominant feature. Another characteristic feature of tropical Asia are the innumerable human-made and intensively managed wetlands of which the paddy fields and aquaculture ponds are the most extensive. Throughout tropical Asia, wetlands have been a part of the socio-cultural ethos of the people and many communities have lived in wetlands. However, the pressures of high population and the economic development have extensively impacted upon wetlands which have been transformed for paddy cultivation and aquaculture, drained and converted to other land uses for economic gains (e.g., conversion to oil palm), and degraded by discharge of domestic and industrial wastes. Invasive plant and animal species have also played a significant role. The climate change is already being felt in the rapid retreat of Himalayan glaciers, increased temperature and variability in precipitation as well as the frequency of extreme events. Sea level rise is seen as a major threat to the coastal wetlands, particularly the mangroves. Increasing droughts have caused frequent fires in Indonesian peat swamps that have further feedback impacts on regional climate. However, the actual threat to wetlands in this region arises from the extensive hydrological alterations being caused by storage, abstraction and diversion of river flows for agriculture, industry and hydropower. Currently, the state of our understanding wetlands in general, and the efforts and infrastructure for research and training in wetlands are very poor. Although a few wetlands have been designated as Ramsar sites, the policies aimed at wetland conservation are either non-existent or very weak. Human responses to greater uncertainty and variability in the available water resources in different parts of Asia will be crucial to the conservation of wetlands in the future.  相似文献   

4.
North and Central America has a combined total of 2.5 million km2 of wetlands, with 51 % in Canada, 46 % in the USA, and the remainder in subtropical and tropical Mexico and Central America. Loss rates are well known for the conterminous USA and for parts of Canada but poorly understood for Mexico and Central America. Wetlands of North America continue to be threatened due to drainage for agriculture and urban development, extreme coastal and river management, water pollution from upstream watersheds, peat mining, waterfowl management, and more recently climate change. Human use of wetlands in this region are many, including receiving ecosystem services such as water purification, flood regulation, climate regulation, and direct provisioning benefits for many cultures living in and among wetlands, especially in the Louisiana Delta and in Mexico and Central America. Climate change affects will cause wetland impacts on coastal wetlands due to sea level rise and on inland wetlands due to changes in precipitation, air temperature, and river discharges. Wetlands, in turn, have a major role in the storage of carbon in boreal regions of Canada and with carbon sequestration in temperate and tropical wetlands of the Americas.  相似文献   

5.
The south-eastern United States and Gulf Coast of Mexico is physiographically diverse, although dominated by a broad coastal plain. Much of the region has a humid, warm temperate climate with little seasonality in precipitation but strong seasonality in runoff owing to high rates of summer evapotranspiration. The climate of southern Florida and eastern Mexico is subtropical with a distinct summer wet season and winter dry season. Regional climate models suggest that climate change resulting from a doubling of the pre-industrial levels of atmospheric CO2 may increase annual air temperatures by 3–4°C. Changes in precipitation are highly uncertain, but the most probable scenario shows higher levels over all but the northern, interior portions of the region, with increases primarily occurring in summer and occurring as more intense or clustered storms. Despite the increases in precipitation, runoff is likely to decline over much of the region owing to increases in evapotranspiration exceeding increases in precipitation. Only in Florida and the Gulf Coast areas of the US and Mexico are precipitation increases likely to exceed evapotranspiration increases, producing an increase in runoff. However, increases in storm intensity and clustering are likely to result in more extreme hydrographs, with larger peaks in flow but lower baseflows and longer periods of drought. The ecological effects of climate change on freshwaters of the region include: (1) a general increase in rates of primary production, organic matter decomposition and nutrient cycling as a result of higher temperatures and longer growing seasons: (2) reduction in habitat for cool water species, particularly fish and macroinvertebrates in Appalachian streams; (3) reduction in water quality and in suitable habitat in summer owing to lower baseflows and intensification of the temperature–dissolved oxygen squeeze in many rivers and reservoirs; (4) reduction in organic matter storage and loss of organisms during more intense flushing events in some streams and wetlands; (5) shorter periods of inundation of riparian wetlands and greater drying of wetland soils, particularly in northern and inland areas; (6) expansion of subtropical species northwards, including several non-native nuisance species currently confined to southern Florida; (7) expansion of wetlands in Florida and coastal Mexico, but increase in eutrophication of Florida lakes as a result of greater runoff from urban and agricultural areas; and (8) changes in the flushing rate of estuaries that would alter their salinity regimes, stratification and water quality as well as influence productivity in the Gulf of Mexico. Many of the expected climate change effects will exacerbate current anthropogenic stresses on the region's freshwater systems, including increasing demands for water, increasing waste heat loadings and land use changes that alter the quantity and quality of runoff to streams and reservoirs. Research is needed especially in several critical areas: long-term monitoring of key hydrological, chemical and biological properties (particularly water balances in small, forested catchments and temperature-sensitive species); experimental studies of the effects of warming on organisms and ecosystem processes under realistic conditions (e.g. in situ heating experiments); studies of the effects of natural hydrological variation on biological communities; and assessment of the effects of water management activities on organisms and ecosystem processes, including development and testing of management and restoration strategies designed to counteract changes in climate. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
Climate change is an issue of major concern nowadays.Its impact on the natural and human environment is studied intensively,as the expected shift in climate will be significant in the next few decades.Recent experience shows that the effects will be critical in coastal areas,resulting in erosion and inundation phenomena worldwide.In addition to that,coastal areas are subject to "pressures" from upstream watersheds in terms of water quality and sediment transport.The present paper studies the impact of climate change on sediment transport and morphology in the aforementioned coupled system.The study regards a sandy coast and its upstream watershed in Chalkidiki,North Greece;it is based on:(a)an integrated approach for the quantitative correlation of the two through numerical modeling,developed by the authors,and(b)a calibrated application of the relevant models Soil and Water Assessment Tool(SWAT)and PELNCON-M,applied to the watershed and the coastal zone,respectively.The examined climate change scenarios focus on a shift of the rainfall distribution towards fewer and more extreme rainfall events,and an increased frequency of occurrence of extreme wave events.Results indicate the significance of climatic pressures in wide-scale sediment dynamics,and are deemed to provide a useful perspective for researchers and policy planners involved in the study of coastal morphology evolution in a changing climate.  相似文献   

7.
Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater‐fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level–driven movement of the fresh water‐sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two‐dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater–dependent ecosystems.  相似文献   

8.
Wetlands are valuable ecosystems that provide many valuable services, yet many of these important ecosystems are at risk because of current trends in climate change. The Prairie Pothole Region (PPR) in the upper‐midwest of the United States and south‐central Canada, characterized by glacially sculpted landscapes and abundant wetlands, is one such vulnerable region. According to regional/global climate model predictions, drought occurrence will increase in the PPR region through the 21st century and thus will probably cause the amount of water in wetlands to decline. Water surface area (WSA) of Kidder County, ND, from 1984–2011 was measured by classifying TM/ETM+(Landsat Thematic Mapper / Enhanced Thematic Mapper Plus) images through the modified normalized difference water index. We then developed a linear model based on the WSA of these wetlands and historical climate data and used this to determine the wetland sensitivity to climate change and predict future wetlands WSA in the PPR. Our model based on Palmer drought severity index (PDSI) of the current year (PDSIt ? 0) and of the previous two years (PDSIt ? 2) can explain 79% of the annual wetland WSA variance, suggesting a high sensitivity of wetlands to drought/climate change. We also predicted the PPR wetlands WSA in the 21st century under A1B scenario (a mid‐carbon emission scenario) using simulated PDSI based on Intergovernmental Panel on Climate Change AR4 22‐model ensemble climate. According to our prediction, the WSA of the PPR wetlands will decrease to less than half of the baseline WSA (defined as the mean wetlands WSA of the 2000s) by the mid of the 21st century, and to less than one‐third by the 2080s, and will then slightly increase in the 2090s. This considerable future wetland loss caused only by climate change provides important implication to future wetland management and climate adaptation policy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Watersheds are complex systems due to their surface and subsurface spatially connected water fluxes and biochemical processes that shape Earth's critical zone. In intensively managed landscapes, the implementation of watershed management practices (WMPs) regulate their short‐term responses, whereas climate variability controls the long‐term processes. Understanding their responses to anthropogenic and natural stressors requires a holistic approach that takes into account their multiscale spatio‐temporal linkages. The objective of this study was to simulate the impacts of spatially and temporally varying WMPs and projected climate changes on the surface and groundwater resources in the Upper Sangamon River Basin (USRB), a watershed in central Illinois greatly impacted by agricultural and industrial operations. The physically based hydrologic model MIKE‐SHE was used to simulate the hydrologic responses of the basin to different WMPs and climatic conditions. The simulation of a WMP was varied spatially across the basin to determine the spectrum of responses and critical conditions. In general, the wetlands and forested riparian buffer scenarios were found to cause a reduction in the average streamflow, whereas crop rotation had varied responses depending on the location of implementation and the climate condition assumed. Reductions of up to 30% in the average streamflow were found for the forested riparian buffer under the ESM 2M climate projections, whereas an increase of up to 13% with the crop rotation schemes under CM3 climate was predicted. The model results showed that the installation of tile drains across the USRB increased the water table depth (from ground level) by up to 56%, making crop production possible. Groundwater level in USRB appeared to be more sensitive to future climatic conditions than to WMP implementation. The impacts of WMPs are determined to depend on the climate conditions under which they are applied. Investigating individual and combined stressors' effects over the critical zone at a watershed scale can lead to a more comprehensive analysis of the risk and trade‐offs in every managerial decision that will enable an efficient use of resources.  相似文献   

10.
The exact size of the wetland area of South America is not known but may comprise as much as 20% of the sub-continent, with river floodplains and intermittent interfluvial wetlands as the most prominent types. A few wetland areas have been well studied, whereas little is known about others, including some that are very large. Despite the fact that most South American countries have signed the Ramsar convention, efforts to elaborate basic data have been insufficient, thereby hindering the formulation of a wetland-friendly policy allowing the sustainable management of these areas. Until now, the low population density in many wetland areas has provided a high level of protection; however, the pressure on wetland integrity is increasing, mainly as a result of land reclamation for agriculture and animal ranching, infrastructure building, pollution, mining activities, and the construction of hydroelectric power plants. The Intergovernmental Panel on Climate Change has predicted increasing temperatures, accelerated melting of the glaciers in Patagonia and the Andes, a rise in sea level of 20–60 cm, and an increase in extreme multiannual and short-term climate events (El Niño and La Niña, heavy rains and droughts, heat waves). Precipitation may decrease slightly near the Caribbean coast as well as over large parts of Brazil, Chile, and Patagonia, but increase in Colombia, Ecuador, and Peru, around the equator, and in southeastern South America. Of even greater impact may be a change in rainfall distribution, with precipitation increasing during the rainy season and decreasing during the dry season. There is no doubt that the predicted changes in global climate will strongly affect South American wetlands, mainly those with a low hydrologic buffer capacity. However, for the coming decades, wetland destruction by wetland-unfriendly development planning will by far outweigh the negative impacts of global climate change. South American governments must bear in mind that there are many benefits that wetlands bring about for the landscape and biodiversity as well as for humans. While water availability will be the key problem for the continent’s cities and agroindustries, intact wetlands can play a major role in storing water, buffering river and stream discharges, and recharging subterranean aquifers.  相似文献   

11.
In temperate humid catchments, evapotranspiration returns more than half of the annual precipitation to the atmosphere, thereby determining the balance available to recharge groundwaters and support stream flow and lake levels. Changes in evapotranspiration rates and, therefore, catchment hydrology could be driven by changes in land use or climate. Here, we examine the catchment water balance over the past 50 years for a catchment in southwest Michigan covered by cropland, grassland, forest, and wetlands. Over the study period, about 27% of the catchment has been abandoned from row‐crop agriculture to perennial vegetation and about 20% of the catchment has reverted to deciduous forest, and the climate has warmed by 1.14 °C. Despite these changes in land use, the precipitation and stream discharge, and by inference catchment‐scale evapotranspiration, have been stable over the study period. The remarkably stable rates of evapotranspirative water loss from the catchment across a period of significant land cover change suggest that rainfed annual crops and perennial vegetation do not differ greatly in evapotranspiration rates, and this is supported by measurements of evapotranspiration from various vegetation types based on soil water monitoring in the same catchment. Compensating changes in the other meteorological drivers of evaporative water demand besides air temperature—wind speed, atmospheric humidity, and net radiation—are also possible but cannot be evaluated due to insufficient local data across the 50‐year period. Regardless of the explanation, this study shows that the water balance of this landscape has been resilient in the face of both land cover and climate change over the past 50 years.  相似文献   

12.
The ecological condition and biodiversity values of floodplain wetlands are highly dependent on the hydrological connectivity of wetlands to adjacent rivers. This paper describes a method for quantifying connectivity between floodplain wetlands and the main rivers in a wet tropical catchment of northern Australia. We used a one‐dimensional hydrodynamic model to simulate time‐varying water depths across the stream network (i.e. rivers, streams and man‐made drains). The timing and duration of connectivity of seven wetlands (four natural and three artificial) with the two main rivers in the catchment were then calculated for different hydrological conditions. Location and areal extent of the wetlands and the stream network were identified using high‐resolution laser altimetry, and these data formed key inputs to the hydrodynamic model. The model was calibrated using measured water depths and discharges across the floodplain. An algorithm was developed to identify contiguous water bodies at daily time steps, and this gave the temporal history of connection and disconnection between wetlands and the rivers. Simulation results show that connectivity of individual wetlands to both rivers varies from 26 to 365 days during an average hydrological condition. Location, especially proximity to a main river, and wetland type (natural stream or artificial drain) were identified as key factors influencing these levels of connectivity. Some natural wetlands maintain connection with the river for most or all of the year, whereas the connectivity of some artificial wetlands varies from 26 to 36 days according to their patterns of network connection to adjacent rivers – a result that has important implications for the accessibility of these types of wetland to aquatic biota. Using readily available river gauge data, we also show how connectivity modelling can be used to identify periods when connectivity has fallen below critical thresholds for fish movement. These connectivity patterns within the floodplain network are central to the setting of river flows that will meet environmental requirements for biota that use floodplain wetlands during their life history. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Wetlands of Northeast Asia and High Asia: an overview   总被引:3,自引:0,他引:3  
This review reports background information on wetlands in the Northeast Asia and High Asia areas, including wetland coverage and type, significance for local populations, and threats to their vitality and protection, with particular focus on the relationship of how global change influenced wetlands. Natural wetlands in these areas have been greatly depleted and degraded, largely due to global climate change, drainage and conversion to agriculture and silviculture, hydrologic alterations, exotics invasions, and misguided management policies. Global warming has caused wetland and ice-sheet loss in High Asia and permafrost thawing in tundra wetlands in Northeast Asia, and hence induced enormous reductions in water-storage sources in High Asia and carbon loss in Northeast Asia. This, in the long term, will exacerbate chronic water shortage and positively feed back global warming. Recently, better understanding of the vital role of healthy wetland ecosystems to Asia’s sustainable economic development has led to major efforts in wetland conservation and restoration. Nonetheless, collaborative efforts to restore and protect the wetlands must involve not only the countries of Northeast and High Asia but also international agencies. Research has been productive but the results should be more effectively integrated with policy-making and wetland restoration practices under future climatic scenarios.  相似文献   

14.
Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability.The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country.Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially for the dry climates.  相似文献   

15.
Watershed services are the benefits people obtain from the flow of water through a watershed. While demand for such services is increasing in most parts of the world, supply is getting more insecure due to human impacts on ecosystems such as climate or land use change. Population and water management authorities therefore require information on the potential availability of watershed services in the future and the trade-offs involved.In this study, the Soil and Water Assessment Tool (SWAT) is used to model watershed service availability for future management and climate change scenarios in the East African Pangani Basin. In order to quantify actual “benefits”, SWAT2005 was slightly modified, calibrated and configured at the required spatial and temporal resolution so that simulated water resources and processes could be characterized based on their valuation by stakeholders and their accessibility. The calibrated model was then used to evaluate three management and three climate scenarios.The results show that by the year 2025, not primarily the physical availability of water, but access to water resources and efficiency of use represent the greatest challenges. Water to cover basic human needs is available at least 95% of time but must be made accessible to the population through investments in distribution infrastructure. Concerning the trade-off between agricultural use and hydropower production, there is virtually no potential for an increase in hydropower even if it is given priority. Agriculture will necessarily expand spatially as a result of population growth, and can even benefit from higher irrigation water availability per area unit, given improved irrigation efficiency and enforced regulation to ensure equitable distribution of available water. The decline in services from natural terrestrial ecosystems (e.g. charcoal, food), due to the expansion of agriculture, increases the vulnerability of residents who depend on such services mostly in times of drought. The expected impacts of climate change may contribute to an increase or decrease in watershed service availability, but are only marginal and much lower than management impacts up to the year 2025.  相似文献   

16.
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium‐large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time‐consuming. Alternatively, frequency‐domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM‐421 and EM4Soil inversion software package are used to develop a quasi two‐ (2D) and quasi three‐dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium‐large scale drivers including local wave climate and morphology along this wave‐dominated beach. Further research is required to elucidate the influence of spring‐neap tidal cycles, contrasting beach morphological states and sea level rise.  相似文献   

17.
气候变化对湖库水环境的潜在影响研究进展   总被引:1,自引:3,他引:1  
本文着重归纳气候变化对湖库热力特性、冰期、溶解氧、营养盐、浮游植物和水生植物等方面的影响规律,探讨气候变化对湖库水环境潜在影响的区域差异,讨论现有研究方法的优缺点和发展前景.研究表明,气候变暖对湖库物理过程的影响最为显著;热带草原气候和温带海洋性气候对于气候变暖和降雨变化的响应较其他气候类型突出;气候变化对湖库水环境的影响效果具有两面性.通过分析各气候类型中气候变暖对磷水平的潜在影响差异表明,亚热带季风气候的湖库更可能受气候变暖的影响趋于富营养状态.在今后研究中,建议深入开展各气候类型中区域性气候变化对湖库水环境影响的实例研究.  相似文献   

18.
湖泊湿地水文过程研究进展   总被引:1,自引:0,他引:1  
湖泊湿地是世界上最重要的生态系统之一,在调蓄洪水、净化环境、保护生物多样性以及为人类提供淡水和食物等方面发挥着不可替代的作用.然而,受气候变化和人类活动叠加影响,湖泊湿地水文过程发生了剧烈变化,湖泊湿地面临着面积萎缩、质量下降和服务功能退化等风险.本文总结了原位观测、数值模拟和遥感技术在获取湖泊湿地关键水文要素方面的优...  相似文献   

19.

Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth’s temperature and consequently have led to changes in wind and wave regimes. The main effects of climate change on oceans are warming of the ocean water, melting of ice, acidification of ocean water, and change in the ocean currents. The main effects of climate change on coastal regions are change in the coast hydrodynamics, sea level rise, change in wave height, coastal erosion, coastal structure damage, food shortage, and storms. Due to the importance of waves in the coastal zone and its effect on erosion and sedimentation, it is necessary to study wave changes. In this study, the effect of climate change on wave specifications was evaluated in the southern coast of the Caspian Sea in Noshahr Port. To simulate wave parameters, the third generation spectral Simulating WAves Nearshore (SWAN) model was used. Wave modeling was carried out using the SWAN numerical model for two 30-yearly periods, including the control period (1984 to 2014) and the future period (2051 to 2080). For wave modeling in the control period, the European Center for Average Weather Forecast wind field was used, and for the future period, a downscaled wind field from Coordinated Regional Downscaling Experiment projection, which was sponsored by World Climate Research Programme, based on the most recent emission scenarios RCP2.6, RCP4.5, and RCP8.5, was used. The model results were calibrated and verified with buoy-recorded data. The effect of the climate change on the wave parameters was evaluated by studying the differences between the patterns in three scenarios and the control period. Results showed that the 30-year maximum significant wave height will increase because of climate change, and the wave direction will not change. In addition, the intensity of storms will increase in the future.

  相似文献   

20.
Pressures on braided river systems in New Zealand are increasing due to anthropogenic stresses such as demand for irrigation water, braidplain conversion to farmland and invasive vegetation, as well as extreme natural events associated with earthquakes and climate change. These pressures create issues around preserving braided river physical environments and associated ecosystems, and managing hazards such as floods, aggradation and erosion. A need for more robust understanding and quantification of braided river morphodynamic processes underpins many of these issues. Here, we present eight morphodynamic research challenges to service this need. The first four research challenges relate to managing aggradation-related flooding hazards; the last four address issues stem largely from recent dairy expansion, which has created huge pressure to take land and irrigation water from the alp-fed braided rivers and to alter flow regimes at their mouths. Hāpua, the freshwater lagoons found where most braided rivers meet the coast, show complex morphodynamic behaviour in response to the interplay of river and coastal processes, and their special ecosystems are sensitive to river flow and sediment load changes. We discuss how physical laboratory experiments and novel numerical modelling can help to understand the morphological processes braided rivers undergo, and we show how those research advances could inform planning and legal decisions to regulate land rights and irrigation water allocation on New Zealand's braidplains. We illustrate these environmental and engineering issues and research challenges with examples from the Kowhai, Waiho, Waiau, Rangitata and Hurunui Rivers. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号