首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Changes in trend and quasi-periodicities are sought in the time series of river discharges in all major South American basins. The relationship between trends and quasi-periodicities found and climate variations on interannual and longer time scales are discussed. Consideration of multiple rivers gives insight into the geographical extent of hydrological signals and climate impacts. It is found that the streamflow of all major rivers of South America has experienced an increased trend since the early 1970s. It is suggested that this simultaneity may reflect the impact of a large-scale climate change. All the time series of river streamflows that were analysed show El Niño-like periodicities. Only for La Plata Basin do these explain a larger part of the total variance than the other quasi-periodicities. There are two other quasi-oscillations in the time series analysed: one of them with a longer period—around 17 years—and the other of about 9 years. Previous work has related these oscillations to sea-surface temperature anomalies in the Atlantic Ocean.  相似文献   

2.
North and Central America has a combined total of 2.5 million km2 of wetlands, with 51 % in Canada, 46 % in the USA, and the remainder in subtropical and tropical Mexico and Central America. Loss rates are well known for the conterminous USA and for parts of Canada but poorly understood for Mexico and Central America. Wetlands of North America continue to be threatened due to drainage for agriculture and urban development, extreme coastal and river management, water pollution from upstream watersheds, peat mining, waterfowl management, and more recently climate change. Human use of wetlands in this region are many, including receiving ecosystem services such as water purification, flood regulation, climate regulation, and direct provisioning benefits for many cultures living in and among wetlands, especially in the Louisiana Delta and in Mexico and Central America. Climate change affects will cause wetland impacts on coastal wetlands due to sea level rise and on inland wetlands due to changes in precipitation, air temperature, and river discharges. Wetlands, in turn, have a major role in the storage of carbon in boreal regions of Canada and with carbon sequestration in temperate and tropical wetlands of the Americas.  相似文献   

3.
The influence of the El Niño Southern Oscillation (ENSO) phenomenon on monthly mean river flows of 12 rivers in the extreme south of South America in the 20th century is analysed. The original dataset of each river is divided into two subsets, i.e. warm ENSO events or El Niño, and cold ENSO events or La Niña. The elements of the subsets are composites of 24 consecutive months, from January of the year when the ENSO event begins to December of the following year. The ENSO signal is analysed by comparing the monthly mean value of each subset to the long-term monthly mean. The results reveal that, in general, monthly mean El Niño (La Niña) river flows are predominantly larger (smaller) than the long-term monthly mean in the rivers studied. The anomalies are more evident during the second half of the year in which the event starts and the first months of the following year.  相似文献   

4.
ABSTRACT

This study provides a spatio-temporal analysis of the great floods that occurred in South America in 1983 using hydrometeorological data and outputs from a continental-scale hydrological-hydrodynamic model. In the extreme year 1983, there were three main flooding periods (February, June and July) in many South American river basins, such as the Araguaia, Tocantins, São Francisco, Uruguay, La Plata and its tributaries, resulting in high discharge of the Paraguay River for many months. Depth–area–duration curves show that 3-day precipitation events in northern regions of South America were among the largest 15 events in the period 1980–2015 but only for specific locations, whereas in southern areas, the most extreme events in the same period were for larger durations (≥7-day precipitation). Modelled total export of water volume to the oceans indicates that rivers draining to the South Atlantic reached an anomaly of 3.7 during 1983, followed by 1998 (1.9) and 1992 (1.1), all of them corresponding to El Niño years.  相似文献   

5.
Abstract

El Niño Southern Oscillation (ENSO) has been linked to climate anomalies throughout the world. This paper presents an overview of global ENSO-streamflow teleconnection and identifies regions where the relationship may be exploited to forecast streamflow several months ahead. The teleconnection is investigated by fitting a first harmonic to 24-month El Niño streamflow composites from 581 catchments worldwide and the potential for forecasting is investigated by calculating the lag correlation between streamflow and two indicators of ENSO. The analyses indicate clear ENSO-streamflow teleconnections in many catchments, some of which are consistent across large geographical regions. Strong and regionally consistent ENSO-streamflow teleconnections are identified in Australia and New Zealand, South and Central America, and weaker signals are identified in some parts of Africa and North America. The results suggest that the ENSO-streamflow relationship and the serial correlation in streamflow can be used to successfully forecast streamflow. The streamflow forecasts can be used to help manage water resources, particularly in systems with high interannual variability in Australia, southern and drier parts of Africa and some areas of North America.  相似文献   

6.
Abstract

It is known that the El Niño Southern Oscillation (ENSO) phenomenon induces marked climate variability across many parts of the world. However, in seeking useful relationships between ENSO and climate, several indices are available. In addition to the choice of index, previous studies assessing ENSO effects have employed a range of different methods to classify periods as El Niño, La Niña or Neutral. It is therefore clear that significant subjectivity exists in the adoption of ENSO classification schemes. In this study, several ENSO classification methods are applied to a range of ENSO indices. Each method-index combination is investigated to determine which provides the strongest relationship with rainfall and runoff in the Williams River catchment, New South Wales, Australia. The results demonstrate substantial differences between the methods and indices. The Multivariate ENSO Index (or MEI) is found to provide the best classification irrespective of method. The potential for forecasting ENSO-related effects on rainfall, runoff and river abstractions is then investigated. A “rise rule” to account for dynamic ENSO trends is also assessed. Strong relationships were found to exist with runoff (rainfall) up to nine (eight) months in advance of the Summer/autumn period. Implications for improved forecasting of potential river abstractions are apparent.  相似文献   

7.
The relationship between El Niño–Southern Oscillation (ENSO) events versus precipitation anomalies, and the response of seasonal precipitation to El Niño and La Niña events were investigated for 30 basins that represent a range of climatic types throughout South‐east Asia and the Pacific region. The teleconnection between ENSO and the hydroclimate is tested using both parametric and non‐parametric approaches, and the lag correlations between precipitation anomalies versus the Southern Oscillation Index (SOI) several months earlier, as well as the coherence between SOI and precipitation anomalies are estimated. The analysis shows that dry conditions tend to be associated with El Niño in the southern zone, and part of the middle zone in the study area. The link between precipitation anomalies and ENSO is statistically significant in the southern zone and part of the middle zone of the study area, but significant correlation was not observed in the northern zone. Patterns of precipitation response may differ widely among basins, and even the response of a given river basin to individual ENSO events also may be changeable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Understanding the influences of local hydroclimatology and two large-scale oceanic-atmospheric oscillations (i.e., Atlantic Multidecadal Oscillation (AMO) and El Niño-Southern Oscillation (ENSO)) on seasonal precipitation (P) and temperature (T) relationships for a tropical region (i.e., Florida) is the focus of this study. The warm and cool phases of AMO and ENSO are initially identified using sea surface temperatures (SSTs). The associations of SSTs and regional minimum, maximum and average surface air temperatures (SATs) with precipitation are then evaluated. The seasonal variations in P-SATs and P-SSTs associations considering AMO and ENSO phases for sites in (1) two soil temperature regimes (i.e., thermic and hyperthermic); (2) urban and non-urban regions; and (3) regions with and without water bodies, are analysed using two monthly datasets. The analyses are carried out using trend tests, two association measures, nonparametric and parametric statistical hypothesis tests and kernel density estimates. Decreasing (increasing) trend in precipitation (SATs) is noted in the recent multi-decadal period (1985–2019) compared to the previous one (1950–1984) indicating a progression towards warmer and drier climatic conditions across Florida. Spatially and temporally non-uniform variations in the associations of precipitation with SATs and SSTs are noted. Strong positive (weak negative) P–T associations are noted during the wet (dry) season for both AMO phases and El Niño, while significant (positive) P–T associations are observed across southern Florida during La Niña in the dry season. The seasonal influences are predominant in governing the P–T relationship over the regions with and without water bodies; however, considerable variations between El Niño and La Niña are noted during the dry season. The climate variability influences on P–T correlations for hyperthermic and thermic soil zones are found to be insignificant (significant) during the wet (dry) season. Nonparametric clustering is performed to identify the spatial clusters exhibiting homogeneous P–T relationships considering seasonal and climate variability influences.  相似文献   

9.
The suspended sediment yield and the transfer of polluted sediment are investigated for the Puyango river basin in southern Ecuador. This river system receives metal (Cd, Cu, Hg, Pb and Zn) and cyanide pollution generated by mining, and is associated with large‐scale hydrological variability, which is partly governed by El Niño events. Field sampling and statistical modelling methods are used to quantify the amount of mine tailings that is discharged into the basin. Annual suspended sediment yields are estimated using a novel combination of the suspended sediment rating method and Monte Carlo simulations, which allow for propagation of the uncertainties of the calculations that lead to final load estimates. Geochemical analysis of suspended and river bed sediment is used to assess the dispersion and long‐term fate of contaminated sediment within the river catchment. Knowledge of the inter‐ and intra‐annual variation in suspended sediment yield is shown to be crucial for judging the importance of mining discharges, and the extent to which the resultant pollution is diluted by river flows. In wet years, polluted sediments represent only a very small proportion of the yield estimates, but in dry years the proportion can be significant. Evidence shows that metal contaminated sediments are stored in the Puyango river bed during low flows. Large flood events flush this sediment periodically, both on an annual cycle associated with the rainy season, and also related to El Niño events. Therefore, environmental impacts of mining‐related discharges are more likely to be severe during dry years compared with wet years, and in the dry season rather than the wet season. The hydrological consequences of El Niño events are shown to depend upon the extent to which these events penetrate inland. It is, thus, shown that the general conclusion that El Niño events can significantly affect suspended sediment yields needs evaluation with respect to the particular way in which those events affect a given catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The objective of this study was to examine the streamflow variability of Argentinean Andean basins (22°–52°S). Trends and step changes of seven hydrological variables were analysed. In addition, relationships between the hydrological variables and Pacific Decadal Oscillation (PDO), Niño 3.4, and Southern Annular Mode (SAM) indices were analysed. Most streamflow variables showed upward trends in the northwest and central-western basins, while downward trends were identified in the Patagonia (southwestern) region. Streamflow of the central-western and Patagonian basins was positively correlated with the Niño 3.4 index. Moreover, an inverse relationship with the SAM was found in watersheds south of 37°S. Positive step changes associated with the PDO phases in the north and central-western basins in the mid-1970s were detected, while negative step changes resulted in Patagonia between 1970 and 2000. This research provides new evidence of the influence of major climate modes on streamflow variability in the western rivers of Argentina.  相似文献   

11.
High‐elevation tropical grassland systems, called Páramo, provide essential ecosystem services such as water storage and supply for surrounding and lowland areas. Páramo systems are threatened by climate and land use changes. Rainfall generation processes and moisture transport pathways influencing precipitation in the Páramo are poorly understood but needed to estimate the impact of these changes, particularly during El Niño conditions, which largely affect hydrometeorological conditions in tropical regions. To fill this knowledge gap, we present a stable isotope analysis of rainfall samples collected on a daily to weekly basis between January 2015 and May 2016 during the strongest El Niño event recorded in history (2014–2016) in two Páramo regions of Central America (Chirripó, Costa Rica) and the northern Andes (Cajas, south Ecuador). Isotopic compositions were used to identify how rainfall generation processes (convective and orographic) change seasonally at each study site. Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) air mass back trajectory analysis was used to identify preferential moisture transport pathways to each Páramo site. Our results show the strong influence of north‐east trade winds to transport moisture from the Caribbean Sea to Chirripó and the South American low‐level jet to transport moisture from the Amazon forest to Cajas. These moisture contributions were also related to the formation of convective rainfall associated with the passage of the Intertropical Convergence Zone over Costa Rica and Ecuador during the wetter seasons and to orographic precipitation during the transition and drier seasons. Our findings provide essential baseline information for further research applications of water stable isotopes as tracers of rainfall generation processes and transport in the Páramo and other montane ecosystems in the tropics.  相似文献   

12.
Deciphering the mechanisms through which the El Niño/Southern Oscillation (ENSO) affects hydrometeorological parameters in the tropics and extratropics is of great interest. We investigate climatic teleconnections between warm or cold phases of ENSO and streamflow patterns over South Korea using an empirical methodology designed to detect regions showing a strong and consistent hydroclimatic signal associated with ENSO. We calculate not only spatial coherence values by monthly streamflow composite formed over 2‐year ENSO cycle and the first harmonic fit to detect candidate regions but also temporal consistency rates by aggregate composite and index time series to determine core regions. As a result, the core regions, namely, the Han river basin and the Nakdong river basin, are detected with a high level of response of ENSO phenomena to streamflow patterns. The ENSO composites for both core regions indicate drier (wetter) conditions in early autumn of the warm (cold) episode years and wetter (drier) conditions from winter to spring of the following year. For both regions, the spatial coherences are over 92% (82%) and the temporal consistencies are 71% (75%) during the El Niño (La Niña) events. In addition, for the core regions identified by composite‐harmonic analysis for both extreme episodes, the results of comparative analyses by using correlation, annual cycle, and Wilcoxon rank sum test indicate that 2 opposite phases‐streamflow relationships have a tendency of sign reversal of the streamflow anomaly. Also, the positive departures during the El Niño years show more coherent and strong responses than the negative anomalies in the La Niña events. In conclusion, South Korea experiences climatic teleconnection between ENSO forcing and midlatitude streamflow patterns.  相似文献   

13.
The present area of European wetlands is only a fraction of their area before the start of large-scale human colonization of Europe. Many European wetlands have been exploited and managed for various purposes. Large wetland areas have been drained and reclaimed mainly for agriculture and establishment of human settlements. These threats to European wetlands persist. The main responses of European wetlands to ongoing climate change will vary according to wetland type and geographical location. Sea level rise will probably be the decisive factor affecting coastal wetlands, especially along the Atlantic coast. In the boreal part of Europe, increased temperatures will probably lead to increased annual evapotranspiration and lower organic matter accumulation in soil. The role of vast boreal wetlands as carbon sinks may thus be suppressed. In central and western Europe, the risk of floods may support the political will for ecosystem-unfriendly flood defence measures, which may threaten the hydrology of existing wetlands. Southern Europe will probably suffer most from water shortage, which may strengthen the competition for water resources between agriculture, industry and settlements on the one hand and nature conservancy, including wetland conservation, on the other.  相似文献   

14.
15.
Influence of SOI, DMI and Niño3.4 on South Australian rainfall   总被引:1,自引:0,他引:1  
The influences of climate drivers (SOI, DMI and Niño3.4) on South Australian (SA) rainfall are investigated in this study. Recent records of monthly rainfall and climate driver index values from 1981 to 2010 were analysed for 53 rainfall stations, located across eight SA natural resources management (NRM) regions. The Pearson, Kendall and Spearman correlation tests were applied between rainfall and climate drivers and between the climate drivers themselves. Both SA summer (December to February) and autumn (March to May) rainfalls were found not significantly influenced by climate indices. Winter rainfall in the south and east parts of SA was found strongly influenced by both SOI and DMI, particularly in July and August. Both SOI and DMI are inter-correlated in winter. Spring rainfall was found significantly influenced by DMI in the south and east parts of SA, particularly in September and October. In terms of ENSO phenomena, whilst both SOI and Niño3.4 are correlated, SOI was found more to be influential than Niño3.4 for SA winter and spring rainfall. Outcomes of the study are useful for stochastic rainfall generation and for developing downscaling techniques to generate rainfall projections in the region.  相似文献   

16.
River flow constitutes an important element of the terrestrial branch of the hydrological cycle, yet knowledge regarding the extent to which its variability, at a range of timescales, is linked to a number of modes of atmospheric circulation is meagre. This is especially so in the Southern Hemisphere where strong candidates, such as El Niño Southern Oscillation and the Southern Annular Mode (SAM), for influencing climate and thus river flow variability can be found. This paper presents the results of an analysis of the impact of the SAM on winter and summer river flow variability across New Zealand, purposefully controlling for the influence of El Niño Southern Oscillation and the tendency for the SAM to adopt a positive phase over the last 10–20 years. Study results, based on identifying hydrological regions and applying circulation‐to‐environment and environment‐to‐circulation approaches commonly used in synoptic climatology, reveal a seasonal asymmetry of the response of river flow variability to the SAM; winter flows demonstrate a higher degree of statistical association with the SAM compared to summer flows. Further, because of the complex orography of New Zealand and its general disposition normal to zonal flows of moisture bearing winds, there are intraseasonal spatial variations in river flow SAM associations with clear rain shadow effects playing out in resultant river flow volumes. The complexity of SAM river flow associations found in this study warns against using indices of large scale modes of atmospheric circulation as blunt tools for hydroclimatological prediction at scales beyond hydroclimatological regions or areas with internal hydrological consistency.  相似文献   

17.
The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season over the past twenty years. More TCs formed in the eastern region of the WNP and the northern region of the South China Sea(SCS). More TCs took the northeast quadrant in the WNP, recurving from northwestward to northward and causing heavy damages in China's Mainland(69.73 billion yuan) in 2018. Multiscale climate variability is conducive to an active season via an enhanced monsoon trough and a weakened subtropical high in the WNP. The large-scale backgrounds in 2018 showed a favorable environment for TCs established by a developing central Pacific(CP) El Ni?o and positive Pacific meridional mode(PMM)episode on interannual timescales. The tropical central Pacific(TCP) SST forcing exhibits primary control on TCs in the WNP and large-scale circulations, which are insensitive to the PMM. During CP El Ni?o years, anomalous convection associated with the TCP warming leads to significantly increased anomalous cyclonic circulation in the WNP because of a Gill-type Rossby wave response. As a result, the weakened subtropical high and enhanced monsoon trough shift eastward and northward, which favor TC genesis and development. Although such increased TC activity in 2018 might be slightly suppressed by interdecadal climate variability, it was mostly attributed to the favorable interannual background. In addition, high-frequency climate signals,such as intraseasonal oscillations(ISOs) and synoptic-scale disturbances(SSDs), interacted with the enhanced monsoon trough and strongly modulated regional TC genesis and development in 2018.  相似文献   

18.
This paper presents the EOF analysis results of the lightning density (LD) anomalies for the different seasons in southeastern China and Indochina Peninsula by using the OTD/LIS database (June 1995 to Feb. 2003) of the global LD with 2.5Ü×2.5× resolution offered by Global Hydrology Resource Center. It is shown that the LD positive anomalies in the region occurred at the same time of NINO3 SSTA steep increase in the spring of 1997 and remained to be a higher level till the next spring, as well the corresponding anomaly percent maximum in different seasons was 89%, 30%, 45%, 498% and 55% successively from the beginning to the end of the 1997/98 El Niño event (ENSO). The centre of the LD positive anomalies for the spring or winter season is located at southeastern China and the adjacent coastal areas, but it for the summer or autumn season is located at the southern Indochina Peninsula and Gulf of Thailand, whose position for each season in the ENSO as contrasted with the normal years has a westward shift, and especially for winter or spring season a northward shift at the same time. In addition, an analysis of the interannual variations in the LD anomaly percent, convective precipitation and H-CAPE days in southern China shows that each among the three anomaly percents is correlative with the other for the positive anomaly zone and Kuroshio area. The relative variation of LD during the El Niño period is the highest among the three rates and is larger than that during the non-El Niño period, meaning that the response of lightning activities to the ENSO is the most sensitive in both areas. But the response of lightning activities and precipitation to the ENSO appears to be more complex and diversified either in Kuroshio area or in the Qinghai-Tibet Plateau and northwestern and northeastern China.  相似文献   

19.
湖泊湿地水文过程研究进展   总被引:1,自引:0,他引:1  
湖泊湿地是世界上最重要的生态系统之一,在调蓄洪水、净化环境、保护生物多样性以及为人类提供淡水和食物等方面发挥着不可替代的作用.然而,受气候变化和人类活动叠加影响,湖泊湿地水文过程发生了剧烈变化,湖泊湿地面临着面积萎缩、质量下降和服务功能退化等风险.本文总结了原位观测、数值模拟和遥感技术在获取湖泊湿地关键水文要素方面的优...  相似文献   

20.
Paired watershed experiments involving the removal or manipulation of forest cover in one of the watersheds have been conducted for more than a century to quantify the impact of forestry operations on streamflow. Because climate variability is expected to be large, forestry treatment effects would be undetectable without the treatment–control comparison. New understanding of climate variability provides an opportunity to examine whether climate variability interacts with forestry treatments, in a predictable manner. Here, we use data from the H. J. Andrews Experimental Forest, Oregon, USA, to examine the impact of the El Niño‐Southern Oscillation on streamflow linked to forest harvesting. Our results show that the contrast between El Niño and La Niña events is so large that, whatever the state of the treated watershed in terms of regrowth of the forest canopy, extreme climatic variability related to El Niño‐Southern Oscillation remains the more dominant driver of streamflow response at this location. Improvements in forecasting interannual variation in climate might be used to minimize the impact of forestry treatments on streamflow by avoiding initial operations in La Niña years. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号