首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Cutro Terrace is a mixed marine to continental terrace, where deposits up to 15 m thick discontinuously crop out in an area extending for ca 360 km2 near Crotone (southern Italy). The terrace represents the oldest and highest terrace of the Crotone area, and it has been ascribed to marine isotope stage 7 (ca 200 kyr bp ). Detailed facies and sequence‐stratigraphic analyses of the terrace deposits allow the recognition of a suite of depositional environments ranging from middle shelf to fluvial, and of two stacked transgressive–regressive cycles (Cutro 1 and Cutro 2) bounded by ravinement surfaces and by surfaces of sub‐aerial exposure. In particular, carbonate sedimentation, consisting of algal build‐ups and biocalcarenites, characterizes the Cutro 1 cycle in the southern sector of the terrace, and passes into shoreface and foreshore sandstones and calcarenites towards the north‐west. The Cutro 2 cycle is mostly siliciclastic and consists of shoreface, lagoon‐estuarine, fluvial channel fill, floodplain and lacustrine deposits. The Cutro 1 cycle is characterized by very thin transgressive marine strata, represented by lags and shell beds upon a ravinement surface, and thicker regressive deposits. Moreover, the cycle appears foreshortened basinwards, which suggests that the accumulation of its distal and upper part occurred during forced regressive conditions. The Cutro 2 cycle displays a marked aggradational component of transgressive to highstand paralic and continental deposits, in places strongly influenced by local physiography, whereas forced regressive sediments are absent and probably accumulated further basinwards. The maximum flooding shoreline of the second cycle is translated ca 15 km basinward with respect to that of the first cycle, and this reflects a long‐term regressive trend mostly driven by regional uplift. The stratigraphic architecture of the Cutro Terrace deposits is the result of the interplay between regional uplift and high amplitude, Late Quaternary glacio‐eustatic changes. In particular, rapid transgressions, linked to glacio‐eustatic rises that outpaced regional uplift, favoured the accumulation of thin transgressive marine strata at the base of the two cycles. In contrast, the combined effect of glacio‐eustatic falls and regional uplift led to high‐magnitude forced regressions. The superposition of the two cycles was favoured by a relatively flat topography, which allowed relatively complete preservation of stratal geometries that record large shoreline displacements during transgression and regression. The absence of a palaeo‐coastal cliff at the inner margin of the terrace supports this interpretation. The Cutro Terrace provides a case study of sequence architecture developed in uplifting settings and controlled by high‐amplitude glacio‐eustatic changes. This case study also demonstrates how the interplay of relative sea‐level change, sediment supply and physiography may determine either the superposition of cycles forming a single terrace or the formation of a staircase of terraces each recording an individual eustatic pulse.  相似文献   

2.
A piston core from the Maldives carbonate platform was investigated for carbonate mineralogy, grain‐size distributions, calcium carbonate content and organic carbon. The sedimentary record was linked to Late Pleistocene sea‐level variations, using an age model based on oxygen isotopes obtained from planktonic foramanifera, nannofossil biostratigraphy and 14C age determinations. The correlation between the sedimentary record and Late Pleistocene sea‐level showed that variations in aragonite and mud during the past 150 000 years were clearly related to flooding and sea floor exposure of the main lagoons of the atolls of the Maldives carbonate platform. Platform flooding events were characterized by strongly increased deposition of aragonite and mud within the Inner Sea of the Maldives. Exposure events, in contrast, can be recognized by rapid decreases in the values of both proxy records. The results show that sediments on the Maldives carbonate platform contain a continuous record of Pleistocene sea‐level variations. These sediments may, therefore, contribute to a better understanding of regional and even global sea‐level changes, and yield new insights into the interplay between ocean currents and carbonate platform morphology.  相似文献   

3.
Evidence for relative sea‐level changes during the middle and late Holocene is examined from two locations on the Atlantic coast of Harris, Outer Hebrides, Scotland, using morphological mapping and survey, stratigraphical, grain size and diatom analysis, and radiocarbon dating. The earliest event identified is a marine flood, which occurred after 7982–8348 cal. a (7370 ± 80 14C a) BP, when the sea crossed a threshold lying at ?0.08 m Ordnance Datum Newlyn (OD) (?2.17 m mean high water springs (MHWS)) before withdrawing. This could have been due to a storm or to the Holocene Storegga Slide tsunami. By 6407–6122 cal. a (5500 ± 60 14C a) BP, relative sea levels had begun to fall from a sandflat surface with an indicated MHWS level of between 0.08 and ?1.96 m (?2.01 to ?4.05 m). This fall reached between ?0.30 and ?2.35 m (?2.39 to ?4.44 m) after 5841–5050 cal. a (4760 ± 130 14C a) BP, but was succeeded by a relative sea‐level rise which reached between 0.54 and ?1.57 m (?1.55 to ?3.66 m) by 5450–4861 cal. a (4500 ± 100 14C a) BP. This rise continued, possibly with an interruption, until a second sandflat surface was reached between 2.34 and ?0.26 m (0.25 to ?2.35 m) between 2952–3375 cal. a (3000 ± 80 14C a) and 1948–2325 cal. a (2130 ± 70 14C a) BP, before present levels were reached. The regressive episode from the earliest sandflat is correlated with the abandonment of the Main Postglacial Shoreline. It is maintained that the fluctuations in relative sea level recorded can be correlated with similar events elsewhere on the periphery of the glacio‐isostatic centre and may therefore reflect secular changes in nearshore sea surface levels. Despite published evidence from trim lines of differential ice sheet loading across the area, no evidence of variations in uplift between the locations concerned could be found. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The growth and decay of the end‐Ordovician Gondwanan glaciation is globally reflected by facies changes in sedimentary sequences, which record a major eustatic fall and subsequent rise in the Hirnantian Stage at the end of the Ordovician. However, there are different reported estimates of the magnitude and pattern of sea‐level change. Particularly good evidence for end‐Ordovician sea‐level change comes from a sequence at Meifod in central Wales, which has a karstified limestone unit within a channel incised into marine shelf sediments. Pre‐glacial (Rawtheyan) mudstones have a diverse fauna suggesting a mid‐to‐deep‐shelf water depth of c. 60 m. The channel, 20 m deep, was incised into these mudstones and partially filled with a mixture of fine sand and detrital carbonate. The taphonomy of bioclasts and intraclasts indicates that many had a long residence time on the sea floor or suffered diagenesis after shallow burial before being resedimented into the channel. The presence of carbonates on the Welsh shelf is atypical and they are interpreted as having accumulated as patches during a minor regression prior to the main glacio‐eustatic fall. Comparison of the carbon stable‐isotopic values of the bioclast material with the global isotopic record confirms that most of the material is of Rawtheyan age, but that some is Hirnantian. The resedimented carbonates lithified rapidly and formed a limestone, several metres thick, in the deepest parts of the channel. As sea‐level fell, this limestone was exposed and eroded into karstic domes and pillars with a relief of over 2 m. The overall, glacio‐eustatic, sea‐level fall is estimated to be in excess of 80 m. A succeeding sea‐level rise estimated to be 40–50 m is recorded in the laminated crust that mantles the karstic domes and pillars. The crust is formed of encrusting bryozoans, associated cystoids, crinoid holdfasts and clusters of the brachiopod Paromalomena, which is normally associated with mid‐shelf environments. Fine sands buried the karst topography and accumulated to fill the channel. In the sandstones at the base of the channel there is a Hirnantia fauna, while in the sandstones high in the channel‐sequence there is cross‐stratification characteristic of mid‐shoreface environments. This would indicate a fall of sea‐level of c. 30 m. The subsequent major transgression marking the end of the glaciation is not recorded at the Meifod locality, but nearby exposures of mudstones suggest a return to mid‐to‐deep‐shelf environments, similar to those that prevailed before the Hirnantian regression. The Meifod sequence provides strong evidence for the magnitude of the Hirnantian sea‐level changes and by implication confirm larger estimates for the size of the ice sheets. Smaller oscillations in relative sea‐level seen at Meifod may be local phenomena or may reflect eustatic changes that have not been widely reported elsewhere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Speleothems, mostly composed of calcium carbonate, are widely present in modern karst‐originated caves, but have rarely been reported in palaeokarst systems. This study presents a novel type of dolomite speleothem and subsequent submarine dolomite cement, which are widely present in the upper Ediacaran Dengying Formation in the upper Yangtze area. These precipitated materials occur in the cavity system that cuts across several peritidal cycles. The interconnected cavity networks with irregular shapes, embayed walls, internal breccias on cavity floor and their preferential development in the shallower cycle tops (for example, tepee‐deformed beds) suggest that they were initially generated by subaerial dissolution. As the earliest infills, the hemispherical protrusions, icicle‐like pendants and ground‐up columns show similar morphological features and occurrence patterns to the cave popcorn, stalactites and stalagmites, respectively. Thus, these earliest infills are speleothems resulting from associated meteoric precipitation during subaerial exposure. The isopachous growth pattern of subsequent more extensive fibrous dolomite cements points to a submarine diagenetic environment in which they were precipitated. Microscopically, the micritic to micro‐crystalline dolomite, acicular dolomite in speleothems and the subsequent fibrous dolomite share similar crystal fabrics to metastable precursors (for example, Mg‐calcite). Meanwhile, the carbon‐oxygen isotope compositions of the speleothem and fibrous dolomite, although partly altered by burial diagenesis, share a large overlap with host rock and coeval marine carbonates all over the Yangtze Platform. For these reasons, these speleothems and fibrous cements are considered to have been initially precipitated as metastable carbonate precursors in meteoric and submarine environments, respectively, and stabilized during submarine mimetic dolomitization. The cyclic occurrence of cavity systems filled with speleothems and submarine cements reflects periodic subaerial exposure and marine flooding of broad tidal flat in the upper Yangtze area, driven by high‐frequency sea‐level fluctuations. Furthermore, the Neoproterozoic seawater chemistry that favoured early dolomitization of carbonate precursor mineralogies was an advantage for the preservation of fabrics from metastable precursor minerals.  相似文献   

6.
The Jæren area in southwestern Norway has experienced great changes in sea‐levels and sedimentary environments during the Weichselian, and some of these changes are recorded at Foss‐Eikeland. Four diamictons interbedded with glaciomarine and glaciofluvial sediments are exposed in a large gravel pit situated above the post‐glacial marine limit. The interpretation of these sediments has implications for the history of both the inland ice and the Norwegian Channel Ice Stream. During a Middle Weichselian interstadial, a large glaciofluvial delta prograded into a shallow marine environment along the coast of Jæren. A minor glacial advance deposited a gravelly diamicton, and a glaciomarine diamicton was deposited during a following marine transgression. This subsequently was reworked by grounded ice, forming a well‐defined boulder pavement. The boulder pavement is followed by glaciomarine clay with a lower, laminated part and an upper part of sandy clay. The laminated clay probably was deposited under sea‐ice, whereas more open glaciomarine conditions prevailed during deposition of the upper part. The clay is intersected by clastic dykes protruding from the overlying, late Weichselian till. Preconsolidation values from the marine clay suggest an ice thickness of at least 500 m during the last glacial phase. The large variations in sea‐level probably are a combined effect of eustasy and glacio‐isostatic changes caused by an inland ice sheet and an ice stream in the Norwegian Channel. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
8.
We reconstruct one of the longest relative sea‐level (RSL) records in north‐west Europe from the north coast of mainland Scotland, using data collected from three sites in Loch Eriboll (Sutherland) that we combine with other studies from the region. Following deglaciation, RSL fell from a Lateglacial highstand of +6?8 m OD (Ordnance Datum = ca. mean sea level) at ca. 15 k cal a BP to below present, then rose to an early Holocene highstand and remained at ca. +1 m OD between ca. 7 and 3 k cal a BP, before falling to present. We find no evidence for significant differential Holocene glacio‐isostatic adjustment between sites on the north‐west (Lochinver, Loch Laxford), north (Loch Eriboll) and north‐east (Wick) coast of mainland Scotland. This suggests that the region was rapidly deglaciated and there was little difference in ice loads across the region. From one site at the head of Loch Eriboll we report the most westerly sedimentary evidence for the early Holocene Storegga tsunami on the Scottish mainland. The presence of the Storegga tsunami in Loch Eriboll is predicted by a tsunami wave model, which suggests that the tsunami impacted the entire north coast of Scotland and probably also the Atlantic coastline of north‐west Scotland.
  相似文献   

9.
Kenai, located on the west coast of the Kenai Peninsula, Alaska, subsided during the great earthquake of AD 1964. Regional land subsidence is recorded within the estuarine stratigraphy as peat overlain by tidal silt and clay. Reconstructions using quantitative diatom transfer functions estimate co‐seismic subsidence (relative sea‐level rise) between 0.28±0.28 m and 0.70±0.28 m followed by rapid post‐seismic recovery. Stratigraphy records an earlier co‐seismic event as a second peat‐silt couplet, dated to ~1500–1400 cal. yr BP with 1.14±0.28 m subsidence. Two decimetre‐scale relative sea‐level rises are more likely the result of glacio‐isostatic responses to late Holocene and Little Ice Age glacier expansions rather than to co‐seismic subsidence during great earthquakes. Comparison with other sites around Cook Inlet, at Girdwood and Ocean View, helps in constructing regional patterns of land‐level change associated with three great earthquakes, AD 1964, ~950–850 cal. yr BP and ~1500–1400 cal. yr BP. Each earthquake has a different spatial pattern of co‐seismic subsidence which indicates that assessment of seismic hazard in southern Alaska requires an understanding of multiple great earthquakes, not only the most recent. All three earthquakes show a pre‐seismic phase of gradual land subsidence that marked the end of relative land uplift caused by inter‐seismic strain accumulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A combination of published and new radiometric dates on uplifted Holocene fossil beaches from northeastern Sicily and southern Calabria (southern Italy) is compared with the altitude of the inner margin of the Last Interglacial (LIg) (Late Pleistocene, 124 ka) and older marine terraces in order to gain a regional-scale outline of uplift rates and their temporal changes in a region which is one of the fastest uplifting sectors of the Central Mediterranean Sea. Late Holocene radiocarbon dates from Ioppolo (southern Calabria) and Ganzirri (northeast Sicily), two newly discovered sites are here presented for the first time. The Holocene uplift rates are highest at St. Alessio and Taormina in eastern Sicily (2.4 mm/y) and at Scilla in southwestern Calabria (2.1 mm/y), two sites located across the Messina Straits and which separate the island of Sicily from mainland Italy. Uplift rates decrease towards the south and north from this centre of uplift. Late Holocene uplift rates show an apparent increase of between 64 and 124% when compared with the longer-term uplift rates calculated from the LIg highstand terraces. Furthermore, we discovered that the locations of fastest Late Pleistocene and Late Holocene uplift rates spatially coincide. To what extent the Holocene increase in uplift rates results from incomplete elastic strain release along the major extensional faults which frame the seismotectonic of the area, or indicate a true change in regional tectonic processes, is not resolved. Nonetheless, the heterogeneity of uplift, with a well-defined centre that crosses the Messina Straits, and its persistence at different time-scales indicates a tight connection between wider regional processes and fault-related displacement in controlling crustal instability in this area.  相似文献   

11.
Deglacial sea‐level index points defining relative sea‐level (RSL) change are critical for testing glacial isostatic adjustment (GIA) model output. Only a few observations are available from North Wales and until recently these provided a poor fit to GIA model output for the British‐Irish Ice Sheet. We present results of an integrated offshore geophysical (seismic reflection), coring (drilling rig), sedimentological, micropalaeontological (foraminifera), biostratigraphical (palynology) and geochronological (AMS 14C) investigation into a sequence of multiple peat/organic sediment horizons interbedded within a thick estuarine–marine sequence of minerogenic clay‐silts to silty sands from the NE Menai Strait, North Wales. Ten new sea‐level index points and nine new limiting dates from the Devensian Late‐glacial and early Holocene are integrated with twelve pre‐existing Holocene sea‐level index points and one limiting point from North Wales to generate a regional RSL record. This record is similar to the most recent GIA predictions for North Wales RSL change, supporting either greater ice load and later deglaciation than in the GIA predictions generated before 2004, or a modified eustatic function. There is no evidence for a mid‐Holocene highstand. Tidally corrected RSL data indicate initial breaching of the Menai Strait between 8.8 and 8.4 ka BP to form a tidal causeway, with final submergence between 5.8 and 4.6 ka BP. Final breaching converted the NE Menai Strait from a flood‐dominated estuary into a high energy ebb tidal delta with extensive tidal scouring of pre‐existing Late‐glacial and Holocene sequences. The study confirms the value of utilising offshore drilling/coring technology to recover sea‐level records which relate to intervals when rates of both eustatic and isostatic change were at their greatest, and therefore of most value for constraining GIA models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Autochthonous red algal structures known as coralligène de plateau occur in the modern warm‐temperate Mediterranean Sea at water depths from 20 to 120 m, but fossil counterparts are not so well‐known. This study describes, from an uplifted coastal section at Plimiri on the island of Rhodes, a 450 m long by 10 m thick Late Pleistocene red algal reef (Coralligène Facies), interpreted as being a coralligène de plateau, and its associated deposits. The Coralligène Facies, constructed mainly by Lithophyllum and Titanoderma, sits unconformably upon the Plio‐Pleistocene Rhodes Formation and is overlain by a Maerl Facies (2 m), a Mixed Siliciclastic‐Carbonate Facies (0·2 m) and an Aeolian Sand Facies (2·5 m). The three calcareous facies, of Heterozoan character, are correlated with established members in the Lindos Acropolis Formation in the north of the island, while the aeolian facies is assigned to the new Plimiri Aeolianite Formation. The palaeoenvironmental and genetic‐stratigraphic interpretations of these mixed siliciclastic‐carbonate temperate water deposits involved consideration of certain characteristics associated with siliciclastic shelf and tropical carbonate shelf models, such as vertical grain‐size trends and the stratigraphic position of zooxanthellate coral growths. Integration of these results with electron spin resonance dates of bivalve shells indicates that the Coralligène Facies was deposited during Marine Isotope Stage 6 to 5e transgressive event (ca 135 to 120 ka), in water depths of 20 to 50 m, and the overlying Maerl Facies was deposited during regression from Marine Isotope Stage 5e to 5d (ca 120 to 110 ka), at water depths of 25 to 40 m. The capping Aeolian Sand Facies, involving dual terrestrial subunits, is interpreted as having formed during each of the glacial intervals Marine Isotope Stages 4 (71 to 59 ka) and 2 (24 to 12 ka), with soil formation during the subsequent interglacial periods of Marine Isotope Stages 3 and 1, respectively. Accumulation rates of about 0·7 mm year?1 are estimated for the Coralligène Facies and minimum accumulation rates of 0·2 mm year?1 are estimated for the Maerl Facies. The existence of older red algal reefs in the Plimiri region during at least Marine Isotope Stages 7 (245 to 186 ka) and 9 (339 to 303 ka) is inferred from the occurrence of reworked coralligène‐type lithoclasts in the basal part of the section and from the electron spin resonance ages of transported bivalve shells.  相似文献   

13.
14.
This paper outlines evidence from Pakefield (northern Suffolk), eastern England, for sea‐level changes, river activity, soil development and glaciation during the late Early and early Middle Pleistocene (MIS 20–12) within the western margins of the southern North Sea Basin. During this time period, the area consisted of a low‐lying coastal plain and a shallow offshore shelf. The area was drained by major river systems including the Thames and Bytham. Changes in sea‐level caused several major transgressive–regressive cycles across this low‐relief region, and these changes are identified by the stratigraphic relationship between shallow marine (Wroxham Crag Formation), fluvial (Cromer Forest‐bed and Bytham formations) and glacial (Happisburgh and Lowestoft formations) sediments. Two separate glaciations are recognised—the Happisburgh (MIS 16) and Anglian (MIS 12) glaciations, and these are separated by a high sea level represented by a new member of the Wroxham Crag Formation, and several phases of river aggradation and incision. The principal driving mechanism behind sea‐level changes and river terrace development within the region during this time period is solar insolation operating over 100‐kyr eccentricity cycles. This effect is achieved by the impact of cold climate processes upon coastal, river and glacial systems and these climatically forced processes obscure the neotectonic drivers that operated over this period of time. © British Geological Survey/Natural Environment Research Council copyright 2005. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

15.
16.
Pleistocene fibrous aragonite fabrics, including crusts and spherules, occur in the Danakil Depression (Afar, Ethiopia) following the deposition of two distinctive Middle and Late Pleistocene coralgal reef units and pre‐dating the precipitation of evaporites. Crusts on top of the oldest reef unit (Marine Isotope Stage 7) cover and fill cavities within a red algal framework. The younger aragonite crusts directly cover coralgal bioherms (Marine Isotope Stage 5) and associated deposits. Their stratigraphic position between marine and evaporitic deposits, and their association to euryhaline molluscs, suggest that the crusts and spherules formed in restricted semi‐enclosed conditions. The availability of hard substrate controls crust formation with crusts more often found on steep palaeo‐slopes, from sea level up to at least 80 m depth, while spherules mainly occur associated with mobile substrate. Crusts reach up to 30 cm in thickness and can be microdigitate, columnar (branching and non‐branching) or non‐columnar, with laminated and non‐laminated fabrics. Two different lamination types are found within the crystalline fabrics: (i) isopachous lamination; and (ii) irregular lamination. These two types of lamination can be distinguished by the organization of the aragonite fibres, as well as the lateral continuity of the laminae. Scanning electron microscopy with energy dispersive X‐ray spectroscopy analyses on well‐preserved samples revealed the presence of Mg‐silicate laminae intercalated with fibrous aragonite, as well as Mg‐silicate aggregates closely associated with the fibrous aragonite crusts and spherules. The variety of observed fabrics results from a continuum of abiotic and microbial processes and, thus, reflects the tight interaction between microbially mediated and abiotic mineralization mechanisms. These are the youngest known isopachously laminated, digitate and columnar branching fibrous crusts associated with a transition from marine to evaporitic conditions. Understanding the context of formation of these deposits in Afar can help to better interpret the depositional environment of the widespread Precambrian sea‐floor precipitates.  相似文献   

17.
The vertical distribution of foraminifera, testate amoebae and diatoms was investigated in saltmarshes in the Taf estuary (south Wales), the Erme estuary (south Devon) and the Brancaster marshes (north Norfolk), to assess the use of multiproxy indicators in sea‐level reconstructions. A total of 116 samples were subjected to regression analyses, using the program calibrate, with duration of tidal flooding as the dependent variable. We found that the relationship between flooding duration and taxa was strongest for diatoms and testate amoebae and weakest for foraminifera. The vertical range of testate amoebae in saltmarshes is small. Their lower tolerance limit in present‐day saltmarshes occurs where tides cover the marsh less than a combined total of 7 days (1.9%) in a year. However, they are important sea‐level indicators because information for sea‐level reconstruction is best derived from sediments that originate in the highest part of the intertidal zone. Diatoms span the entire sampled range in intertidal and supratidal areas, whereas the upper limit of foraminifera is found very close to the highest astronomical tide level. Local training sets provide reconstructions with higher accuracy and precision than combined training sets, but their use is limited if they do not represent adequate modern analogues for fossil assemblages. Although analyses are time consuming, a regional training set of all three groups of micro‐organisms yields highly accurate (r2 = 0.80) and precise (low value of root mean square error) predictions of tidal level. This approach therefore could improve the accuracy and precision of Holocene sea‐level reconstructions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
While contributing <1 m equivalent eustatic sea‐level rise the British Isles ice sheet produced glacio‐isostatic rebound in northern Britain of similar magnitude to eustatic sea‐level change, or global meltwater influx, over the last 18 000 years. The resulting spatially variable relative sea‐level changes combine with observations from far‐field locations to produce a rigorous test for quantitative models of glacial isostatic adjustment, local ice‐sheet history and global meltwater influx. After a review of the attributes of relative sea‐level observations significant for constraining large‐scale models of the isostatic adjustment process we summarise long records of relative sea‐level change from the British Isles and far‐field locations. We give an overview of different global theoretical models of the isostatic adjustment process before presenting intercomparisons of observed and predicted relative sea levels at sites in the British Isles and far‐field for a range of Earth and ice model parameters in order to demonstrate model sensitivity and the resolving power available from using evidence from the British Isles. For the first time we show a good degree of fit between relative sea‐level observations and predictions that are based upon global Earth and ice model parameters, independently derived from analysis of far‐field data, with a terrain‐corrected model of the British Isles ice sheet that includes extensive glaciation of the North Sea and western continental shelf, that does not assume isostatic equilibrium at the Last Glacial Maximum and keeps to trimline constraints of ice surface elevation. We do not attempt to identify a unique solution for the model lithosphere thickness parameter or the local‐scale detail of the ice model in order to provide a fit for all sites, but argue that the next stage should be to incorporate an ice‐sheet model that is based on quantitative, glaciological model simulations. We hope that this paper will stimulate this debate and help to integrate research in glacial geomorphology, glaciology, sea‐level change, Earth rheology and quantitative modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Pliocene and Pleistocene deposits from Grande‐Terre (Guadeloupe archipelago, French Lesser Antilles) provide a remarkable example of an isolated carbonate system built in an active margin setting, with sedimentation controlled by both rapid sea‐level changes and tectonic movements. Based on new field, sedimentological and palaeontological analyses, these deposits have been organized into four sedimentary sequences (S1 to S4) separated by three subaerial erosion surfaces (SB0, SB1 and SB2). Sequences S1 and S2 (‘Calcaires inférieurs à rhodolithes’) deposited during the Late Zanclean to Early Gelasian (planktonic foraminiferal Zones PL2 to PL5) in low subsidence conditions, on a distally steepened ramp dipping eastward. Red algal‐rich deposits, which dominate the western part of Grande‐Terre, change to planktonic foraminifer‐rich deposits eastward. Vertical movements of tens of metres were responsible for the formation of SB0 and SB1. Sequence S3 (‘Formation volcano‐sédimentaire’, ‘Calcaires supérieurs à rhodolithes’ and ‘Calcaires à Agaricia’) was deposited during the Late Piacenzian to Early Calabrian (Zones PL5 to PT1a) on a distally steepened, red algal‐dominated ramp that changes upward into a homoclinal, coral‐dominated ramp. Deposition of Sequence S3 occurred during a eustatic cycle in quiet tectonic conditions. Its uppermost boundary, the major erosion surface SB2, is related to the Cala1 eustatic sea‐level fall. Finally, Sequence S4 (‘Calcaires à Acropora’) probably formed during the Calabrian, developing as a coral‐dominated platform during a eustatic cycle in quiet tectonic conditions. The final emergence of the island could then have occurred in Late Calabrian times.  相似文献   

20.
We reconstruct palaeoclimate and palaeoceanography of the Ísafjarðardjúp fjord system from two cores – one from the inner fjord and one near the fjord mouth – while separating the potential overprinting of relative sea‐level (RSL) and local fjord hydrographic changes on these records. The inner fjord core (B997‐339) reflects local fjord hydrography; the outer fjord core (MD99‐2266) reflects the regional oceanic signal. Glacial marine conditions ended at ca. 10 200 cal. a BP, indicated by both ice‐rafted debris records. The other proxy records show spatial and temporal variability within the fjord system. At the inner fjord site (B997‐339) foraminiferal assemblages and the δ18O record indicate lowered RSL between ca. 10 600 and 8900 cal. a BP and document the onset of fjord water overturning at ca. 8900 cal. a BP, which obscured the climate record. At the fjord mouth (MD99‐2266) mass accumulation rates suggest lowered RSL between ca. 10 200 and 5500 cal. a BP and local freshwater and/or reduced salinities of the Irminger Current water masses affected the δ18O signal between ca. 10 200 and 7900 cal. a BP. At MD99‐2266, foraminiferal fauna record the Holocene Thermal Maximum between ca. 8000 and 5700 cal. a BP and the onset of modern oceanic circulation at ca. 7000 cal. a BP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号