首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chert spheroids are distinctive, early‐diagenetic features that occur in bedded siliceous deposits spanning the Phanerozoic. These features are distinct in structure and genesis from similar, concentrically banded ‘wood‐grain’ or ‘onion‐skin’ chert nodules from carbonate successions. In the Miocene Monterey Formation of California (USA), chert spheroids are irregular, concentrically banded nodules, which formed by a unique version of brittle differential compaction that results from the contrasting physical properties of chert and diatomite. During shortening, there is brittle fracture of diatomite around, and horizontally away from, the convex surface of strain‐resistant chert nodules. Unlike most older siliceous deposits, the Monterey Formation still preserves all stages of silica diagenesis, thus retaining textural, mineralogical and geochemical features key to unravelling the origin of chert spheroids and other enigmatic chert structures. Chert spheroids found in opal‐A diatomite form individual nodules composed of alternating bands of impure opal‐CT chert and pure opal‐CT or chalcedony. With increased burial diagenesis, surrounding diatomite transforms to bedded porcelanite or chert, and spheroids no longer form discrete nodules, yet still display characteristic concentric bands of pure and impure microcrystalline quartz and chalcedony. Petrographic observations show that the purer silica bands are composed of void‐filling cement that precipitated in curved dilational fractures, and do not reflect geochemical growth‐banding in the manner of Liesegang phenomena invoked to explain concentrically banded chert nodules in limestone. Chertification of bedded siliceous sediment can occur more shallowly (< 100 m) and rapidly (< 1 Myr) than the bulk silica phase transitions forming porcelanite or siliceous shale in the Monterey Formation and other hemipelagic/pelagic siliceous deposits. Early diagenesis is indicated by physical properties, deformational style and oxygen‐isotopic composition of chert spheroids. Early‐formed cherts formed by pore‐filling impregnation of the purest primary diatomaceous beds, along permeable fractures and in calcareous–siliceous strata.  相似文献   

2.
Speleothems of silica are far rarer than those of calcite but occur in a range of types including stalactites, stalagmites and flowstones. This study has found a wider range and far greater number of silica speleothems on the quartz sandstones of the Sydney region than the small number of previous accounts had suggested. Speleothems on the Sydney region sandstones are composed of multiple layers of amorphous opal‐A and cryptocrystalline chalcedony. Silica slowly dissolved from detrital and diagenetic quartz and kaolinite clays of the host arenites is redeposited as opal‐A at the sandstone surface when groundwater evaporates. This amorphous silica converts over time by Ostwald‐type paragenesis to the cryptocrystalline form, but the expected intermediate opal‐CT phase has not been detected. The crystallisation of chalcedony at earth‐surface temperatures is generally believed to take an extremely long time and its presence makes these speleothems very significant, especially as it is reported in only a small number of silica speleothems elsewhere. Furthermore, a similar paragenetic silica‐‘ripening’ mechanism may also be involved in the low‐temperature earth‐surface formation of other crystalline silica deposits such as silcrete duricrusts and pedogenic quartz. Additional closely coupled laboratory and field investigations into the processes that control silica paragenesis under earth‐surface conditions are sorely needed.  相似文献   

3.
The Fanta Stream site is an archaeological and paleontological locality in Addis Ababa, Ethiopia. The site contains a rich assemblage of fossil mammals and Acheulean artifacts of approximately 600 ka located in a rare high‐altitude context. A ground‐penetrating radar (GPR) survey was conducted in order to provide three‐dimensional imaging of the subsurface, which the authors use to interpret the geometry and distribution of fossil‐containing stratigraphic units. Utilizing the stream's natural cut bank exposure, we calibrate GPR data to known geologic units through radar facies analysis. Shallow, high‐amplitude coherent reflection geometries are attributed to volcanic tuff deposits, as these units exhibit subparallel continuous reflections consistent with planar stratified sedimentary deposition. Deeper, discontinuous reflection packages are interpreted as conglomeritic, fossil‐containing deposits. The results of the GPR survey outline the location of the Fanta Stream's paleodepositional features as well as suggest the extent of fossiliferous stratigraphic units for use in future excavations.  相似文献   

4.
《Sedimentology》2018,65(3):745-774
This paper explores little investigated diagenesis of spicule‐dominated sediments, based on Permian spiculites and cool‐water carbonates of the Tempelfjorden Group in central Spitsbergen. Field observations, petrography, stable isotope geochemistry, and mineralogical and chemical analyses reveal that the strata have been subjected to multistage diagenesis as the result of silica phase transitions at medium burial depths and deep‐burial overprinting. The growth of silica concretions occurred during the opal‐A/opal‐CT conversion and was controlled by the content and distribution of clay and spicules in the sediment, resulting in a variety of megascopic silica fabrics. Opal‐CT was subsequently dissolved, and all silica is now in a stable quartz stage. Petrographically, the rocks are characterized by a variety of chalcedony and quartz cements which perfectly preserve precursor textures. Most cements precipitated from silica‐oversaturated fluids, and their shapes reflect the silica saturation state and geometry of the pore space. Some microquartz and cryptoquartz also formed by a solid–solid inversion (recrystallization) of chalcedony. The cements have δ 18O values between +30‰ and +20‰ Standard Mean Ocean Water and display a systematic depletion in 18O from the first to the last crystallized, interpreted to reflect a gradual increase in temperature during burial. The precipitation of quartz cements started in the Middle Triassic when the strata passed the 19°C isotherm at burial depths of ca 600 m, and was completed in the mid‐Cretaceous, 2·3 km beneath the sea floor at temperatures of 75°C. Late diagenetic overprinting of the chert includes fracturing, brecciation and cementation with carbonate cements having δ 18O values between +2‰ and −30‰ Pee Dee Belemnite and δ 13C values between +4‰ and −14‰ Pee Dee Belemnite; they are linked to hot solutions introduced during Cretaceous volcanism or Palaeogene tectonism. This study illustrates the diagenetic pathway during burial of spicule‐rich sediments in a closed system and thereby provides a baseline for studies of more complexly altered chert deposits.  相似文献   

5.
Silica stromatolites occur in a number of modern hydrothermal environments, but their formation in caves is very rare. The silica stromatolitic speleothems of the Branca Opala cave (Terceira Island, Azores), however, provide an excellent opportunity for their study. These formations may be analogous to ancient silica stromatolites seen around the world. Petrographic, mineralogical and geochemical analyses were undertaken on the silica speleothems of the above cave, and on the silica‐tufa deposits outside it, with the aim of understanding their genesis. The possible hydrothermal origin of their silica is discussed. X‐ray diffraction analyses showed opal‐A to be the sole silica phase. Negligible ordering of this opal‐A showed ageing to be insignificant, as expected for recent silica deposits. Most of the silica speleothems examined were definable as sub‐aquatic opaline stromatolites that are not currently growing. Optical microscopy clearly revealed a lower microlaminated, an intermediate and an upper microlaminated zone within the stromatolites. Stromatolite types (I, II and III) were classified with respect to their internal structure and distribution throughout the cave. Scanning electron microscopy showed silicified bacterial filaments within the stromatolites, the silicified plant remains and the silica‐tufa deposits. Bacteria therefore played a major role in the precipitation of the opal‐A. Plasma emission/mass spectrometry showed major, minor and rare earth elements to be present in only small quantities. The rare earth elements were mainly hosted within volcanic grains. Rapid silica precipitation from highly super‐saturated water would explain the intense silicification of the plant remains found inside and outside the cave. The opaline stromatolites, the silica‐tufa deposits and the above‐mentioned intense general silicification suggest a local hydrothermal source for the silica. Indeed, these deposits strongly resemble plant‐rich silica sinter associated with low‐temperature hot spring deposits that include bacterial filaments. However, no geochemical signals that might indicate a hydrothermal origin could be found.  相似文献   

6.
A dense grid of very-high resolution seismic profiles on Lake Villarrica provides a quasi-3D view on intercalated lenses of low-amplitude reflections, which are connected by acoustic wipe-out patches and fractures to an underlying voluminous mass-wasting deposit. The lenses are interpreted as being created by earthquake-triggered liquefaction in this buried mass-wasting deposit and subsequent sediment fluidization and extrusion at the paleo-lake bottom. These sediment volcanoes are mapped in detail. They have a rather uniform circular geometry and show a linear relationship between apparent width and maximum thickness on a seismic section. The largest sediment volcanoes are up to 80 m wide and 1.9 m thick. Their slope angles designate a syn- to post-depositional sagging of most sediment volcanoes. Sediment volcano detection and mapping from nearby Lake Calafquén further strengthen the revealed geometrical relationships. Locally, some of the sediment/fluid escape structures extend to a higher position in the stratigraphy, which points to a polyphase escape process associated with multiple multi-century spaced strong earthquakes. Thickness and morphology of the source layer seem to exert a dominant control in the production of sediment/fluid extrusions. This study shows that reflection seismic profiling allowed recognizing 4 different seismic events in the studied stratigraphic interval, which are evidenced by mass-wasting deposits and/or fluidization features.  相似文献   

7.
Petrophysical properties (wet bulk density, porosity, P-wave velocity) are used to predict biogenic silica contents along a seismic reflection profile that ties two well sites, 1095 and 1096, drilled by Ocean Drilling Program (ODP) Leg 178 on sediment drifts on the Pacific continental margin of the Antarctic Peninsula. The biogenic silica contents along the seismic reflection profile were estimated on the basis of three hypotheses about petrophysical properties distributions in the two boreholes and statistical relationships between biogenic silica and other petrophysical properties, which were established on various sediment layers within the boreholes. Our study demonstrates the possibility to reliably predict the distribution of biogenic silica in the sub-seabed sediments if seismic data processed with amplitude preservation are used and statistical relations are considered. We conclude that the statistical extrapolation of biogenic silica content along seismic reflection profiles tied to borehole data is an efficient tool to quantify the amounts of silica undergoing crystalline transformation, which may have strong implications for submarine slope destabilisation.  相似文献   

8.
Abstract

Black opal (opal-AG) owes its dark coloration to a fine-grained pigment commonly inferred to be mainly carbon, yet chemical compositions for black opals suggest there may be additional components. Here we search for such components in pigment concentrates prepared by dissolving black opal nodules (nobbies) from Lightning Ridge (NSW) in hydrofluoric acid, using electron microscopy (scanning electron microscopy, transmission electron microscopy), X-ray diffraction and laser-ablation ICP-MS. The results demonstrate the presence of sulfides—predominantly pyrite and chalcopyrite, with minor galena and Ti-oxide phases, as additional components of the pigment. ATR-FTIR analysis indicates the presence of C=O and C–H groups, consistent with an organic origin. Transmission electron microscopy images of pigment show variously deformed, originally spherical ~100?nm particles rich in sulfide and carbon, which are interpreted as thin coatings of pigment on now dissolved opaline silica spheres. Laser-ablation ICP-MS analysis identifies remnant silica in pigment concentrates, which may be interpreted as opaline silica surviving HF treatment protected as inclusions in sulfides. When examined within the context of petrographic observations from more than 1000 opal nodules (nobbies) at Lightning Ridge, these new results suggest that pigment carbon and sulfides in the nodules formed microbially under initially anoxic groundwater conditions, within pre-existing cavities concurrently being filled with silica sol ultimately derived from chemical weathering of feldspar-rich volcaniclastic sediment. Intensely black pigment layers observed at the floor of many nodules indicate settling of dark, high-density (sulfide–Ti-oxide-rich) pigment within cavities, with the implication that sulfate-reducing bacterial (SRB) activity commences early during the silica sol-gel ripening process. Microbial activity may persist until after the cavity has completely filled with the silica sol, as illustrated by abundant black opals with uniformly distributed pigment. Pigment formed at this stage may no longer be able to settle out within the ripening and increasingly viscous silica gel, thus forming pigmentation throughout the opal cavity. The existence of ‘amber’, pigment-poor opal with intensely black basal pigment layers is interpreted as signalling a lack of sulfate to sustain further SRB activity, or a change to more oxidising conditions, possibly related to interaction with surface waters within a downward-penetrating weathering front. A change in redox conditions would shut off activity of SRB and thus sulfide pigment production and allow development of aerobic microbial activity as described by others.  相似文献   

9.
Interpretation of a grid of high resolution seismic profiles from the offshore eastern part of the Benin (Dahomey) basin in southwestern Nigeria area permitted the identification of cyclic events of cut and fill associated with the Avon canyon. Seismic stratigraphic analysis was carried out to evaluate the canyon morphology, origin and evolution. At least three generations of ancient submarine canyons and a newly formed submarine canyon have been identified. Seismic reflection parameters of the ancient canyons are characterized by transparent to slightly transparent, continuous to slightly discontinuous, high to moderate amplitude and parallel to sub-parallel reflections. Locally, high amplitude and chaotic reflections were observed. The reflection configurations consist of regular oblique, chaotic oblique, progradational and parallel to sub-parallel types. These seismic reflection characteristics are probably due to variable sedimentation processes within the canyons, which were affected by mass wasting. Canyon morphological features include step-wise and spoon-shaped wall development, deep valley incision, a V-shaped valley, similar orientation in the southeast direction, and simple to complex erosion features in the axial floor. The canyons have a composite origin, caused partly by lowering of the sea level probably associated with the formation of the Antarctic Ice Sheet about 30 Ma ago and partly by complex sedimentary processes. Regional correlation with geological ages using the reflectors show that the canyons cut through the Cretaceous and lower Tertiary sediments while the sedimentary infill of the canyon is predominantly Miocene and younger. Gravity-driven depositional processes, downward excavation by down slope sediment flows, mass wasting from the canyon walls and variation in terrigenous sediment supply have played significant roles in maintaining the canyons. These canyons were probably conduits for sediment transport to deep-waters in the Gulf of Guinea during their period of formation.  相似文献   

10.
《Sedimentology》2018,65(3):809-841
Degradation of basin‐margin clinothems around the shelf‐edge rollover zone may lead to the generation of conduits through which gravity flows transport sediment downslope. Many studies from seismic‐reflection data sets show these features, but they lack small‐scale (centimetre to metre) sedimentary and stratigraphic observations on process interactions. Exhumed basin‐margin clinothems in the Tanqua depocentre (Karoo Basin) provide seismic‐reflection‐scale geometries and internal details of architecture with depositional dip and strike control. At the Geelhoek locality, clinothem parasequences comprise siltstone‐rich offshore deposits overlain by heterolithic prodelta facies and sandstone‐dominated deformed mouth bars. Three of these parasequences are truncated by a steep (6 to 22°), 100 m deep and 1·5 km wide asymmetrical composite erosion surface that delineates a shelf‐incised canyon. The fill, from base to top comprises: (i) thick‐bedded sandstone with intrabasinal clasts and multiple erosion surfaces; (ii) scour‐based interbedded sandstone and siltstone with tractional structures; and (iii) inverse‐graded to normal‐graded siltstone beds. An overlying 55 m thick coarsening‐upward parasequence fills the upper section of the canyon and extends across its interfluves. Younger parasequences display progressively shallower gradients during progradation and healing of the local accommodation. The incision surface resulted from initial oversteepening and high sediment supply triggering deformation and collapse at the shelf edge, enhanced by a relative sea‐level fall that did not result in subaerial exposure of the shelf edge. Previous work identified an underlying highly incised, sandstone‐rich shelf‐edge rollover zone across‐margin strike, suggesting that there was migration in the zone of shelf edge to upper‐slope incision over time. This study provides an unusual example of clinothem degradation and readjustment with three‐dimensional control in an exhumed basin‐margin succession. The work demonstrates that large‐scale erosion surfaces can develop and migrate due to a combination of factors at the shelf‐edge rollover zone and proposes additional criteria to predict clinothem incision and differential sediment bypass in consistently progradational systems.  相似文献   

11.
The Atlantic margin offshore Senegal has been explored by seismic reflection and GRAV‐MAG surveys. High‐amplitude, laterally transgressive seismic reflectors are found to coincide with gravimetric and magnetic highs. Once seismic data are integrated with potential fields modelling, these reflectors can be safely interpreted as saucer‐shaped igneous sills, up to some hundreds of metres thick, some km wide. The occurrence of hydrothermal vent complexes and forced folds in the stratigraphic sequence above the sills constrain the intrusion age to the Miocene. Field observations and in‐situ magnetic susceptibility measurements of Oligocene–Miocene and Quaternary igneous rocks emplaced in coastal Senegal support this interpretation.  相似文献   

12.
Seismoacoustic profiles from the Arkona Basin show a late Pleistocene and Holocene succession of several distinct reflectors. The physical, sedimentological, mineralogical and geochemical properties of more than 30 sediment cores were analysed in order to assign these reflectors to specific sedimentary discontinuity layers. Additionally, AMS 14C data and biostratigraphic information were gathered. Based on this multi‐proxy approach, seven lithostratigraphic units (AI, AII, B to F) were distinguished. These consist of fine‐grained clay, silt and mud, and are separated from each other by thin basin‐wide traceable sandy layers (Sab‐Sef). The most sensitive parameter to mark the lithostratigraphic boundaries is the weight percentage of the grain‐size fraction >63μm. In addition, some of the quartz‐grain‐dominated sandy layers cause the strong reflection lines recorded in seismoacoustic profiles. The sandy layers are interpreted to reflect enhanced hydrodynamic energy induced by episodes of basin‐wide water‐level low‐stand conditions. These low stands resulted from water‐level drops that occurred frequently during the Baltic Sea's history and presumably affected the entire Baltic basin. The thick fine‐grained units AI, AII to F, in which coarser material is absent, represent water‐level high‐stands. We conclude that the units AI and AII are Baltic Ice Lake sediments deposited before and after the Billingen‐1 regression, respectively. We assign the most prominent sandy layer Sab to the final drainage of the Baltic Ice Lake (Billingen‐2), whereas the sandy layers between units B, C., D and E are related to the Yoldia Sea and Ancylus Lake regressions of the Baltic Sea's history. The uppermost fine‐grained unit F with its high organic carbon content contains marine sediments deposited after the Littorina Transgression. The macroscopically well‐visible sediment colour change from reddish/brown‐to‐grey, previously interpreted as a regional stratigraphic boundary, varies from core to core. It has been shown by our new data that this colour change has a diagenetic origin, and thus does not represent a stratigraphic boundary. Previous subdivisions therefore have to be revised.  相似文献   

13.
The occurrence and significance of biogenic opal in the regolith   总被引:1,自引:0,他引:1  
Jonathan   《Earth》2003,60(3-4):175-194
Biogenic opal produced by vascular plants, diatoms, and siliceous sponges have been found in soils and terrestrial sediments of all continents except Antarctica since the middle of the 19th century. The opal particles range in size from fine silt to fine sand. Almost all soils contain detectable opal up to levels of 2–3%, and a significant number contain values in excess of 5%. Even higher values have been found from soils and sediments of all continents in a wide range of soil types. The most important factor is poor soil drainage and seasonal to permanent water logging. This encourages the proliferation of silica producing organisms. Such conditions have been found in the soils and aquatic sediments of the monsoonal tropics, tropical rain forests, temperate forests, tropical savanna, tropical islands, semi-arid grasslands and savanna, and temperate woodland and grassland. The presence of a volcanic substrate also appears favourable in some cases, but is not necessary. Biogenic opal preferentially collects in the A horizon of soils and, to a lesser extent, in the B horizon. This preferential distribution facilitates identification of palaeosols in stacked soil sequences. Biogenic opal is also a component of windblown dust, even in arid environments. Biogenic opal is significant to regolith processes in a number of ways. Firstly, as in the case in marine environments, it is likely to be important in silica cycling and storage because of its greater lability compared to quartz. Secondly, dissolution and reprecipitation of opal A as opal CT or micro-quartz may play a role in cementation and silicification of regolith to form silica hardpans and silcrete. Thirdly, the organisms that form biogenic opal can have considerable palaeoenvironmental significance and be valuable in reconstructing regolith evolution. Finally, some forms of biogenic silica, in particular sponge spicules, can present a health hazard. Their high abundance in some soils and sediments needs to be considered when assessing the health implications of airborne dust.  相似文献   

14.
Ground penetrating radar (GPR) surveys of unit and compound braid bars in the sandy South Saskatchewan River, Canada, are used to test the influential facies model for sandy braided alluvium presented by Cant & Walker (1978) . Four main radar facies are identified: (1) high‐angle (up to angle‐of‐repose) inclined reflections, interpreted as having formed at the margins of migrating bars; (2) discontinuous undular and/or trough‐shaped reflections, interpreted as cross‐strata associated with the migration of sinuous‐crested dunes; (3) low‐angle (< 6°) reflections, interpreted as formed by low‐amplitude dunes or unit bars as they migrate onto bar surfaces; and (4) reflections of variable dip bounded by a concave reflection, interpreted as being formed by the filling of channel scours, cross‐bar channels or depressions on the bar surface. The predominant vertical arrangement of facies is discontinuous trough‐shaped reflections at the channel base overlain by discontinuous undular reflections, overlain by low‐angle reflections that dominate the deposits near the bar surface. High‐angle inclined reflections are only found near the surface of unit bars, and are of relatively small‐scale (< 0·5 m), but can be found at a greater range of depths within compound bars. The GPR data show that a high spatial variability exists in the distribution of facies between different compound bars, with facies variability within a single bar being as pronounced as that between bars. Compound bars evolve as an amalgamation of unit bars and other compound bars, and comprise a facies distribution that is representative of the main bar types in the South Saskatchewan River. The GPR data are compared with the original model of Cant & Walker (1978) and reveal a much greater variability in the scale, proportion and distribution of facies than that presented by Cant & Walker (1978) . Most notably, high‐angle inclined strata are over‐represented in the model of Cant and Walker, with many bars being dominated by the deposits of low‐ and high‐amplitude dunes. It is suggested that further GPR studies from a range of braided river types are required to properly quantify the full range of deposits. Only by moving away from traditional, highly generalized facies models can a greater understanding of braided river deposits and their controls be established.  相似文献   

15.
DONALD R. LOWE 《Sedimentology》2012,59(7):2042-2070
Deposits of submarine debris flows can build up substantial topography on the sea floor. The resulting sea floor morphology can strongly influence the pathways of and deposition from subsequent turbidity currents. Map views of sea floor morphology are available for parts of the modern sea floor and from high‐resolution seismic‐reflection data. However, these data sets usually lack lithological information. In contrast, outcrops provide cross‐sectional and lateral stratigraphic details of deep‐water strata with superb lithological control but provide little information on sea floor morphology. Here, a methodology is presented that extracts fundamental lithological information from sediment core and well logs with a novel calibration between core, well‐logs and seismic attributes within a large submarine axial channel belt in the Tertiary Molasse foreland basin, Austria. This channel belt was the course of multiple debris‐flow and turbidity current events, and the fill consists of interbedded layers deposited by both of these processes. Using the core‐well‐seismic calibration, three‐dimensional lithofacies proportion volumes were created. These volumes enable the interpretation of the three‐dimensional distribution of the important lithofacies and thus the investigation of sea floor morphology produced by debris‐flow events and its impact on succeeding turbidite deposition. These results show that the distribution of debris‐flow deposits follows a relatively regular pattern of levées and lobes. When subsequent high‐density turbidity currents encountered this mounded debris‐flow topography, they slowed and deposited a portion of their sandy high‐density loads just upstream of morphological highs. Understanding the depositional patterns of debris flows is key to understanding and predicting the location and character of associated sandstone accumulations. This detailed model of the filling style and the resulting stratigraphic architecture of a debris‐flow dominated deep‐marine depositional system can be used as an analogue for similar modern and ancient systems.  相似文献   

16.
地震属性分析技术一直是地震特殊处理和地质解释的主要研究内容。随着相关理论的发展,地震属性分析技术已经应用到油气勘探开发的各个阶段。S盆地南部处于勘探开发的前期,具有井少、二维地震测网较稀、储层预测难的特点。由于沉积地层的变化能引起地震波在动力学和运动学上的相应变化,因此利用地震属性能较好地进行储层特征的定性研究,即通过地震多种属性分析,进行研究区内砂岩储层横向预测。其研究技术路线实际上为先找储层,再进行初步油气检测,最后进行勘探目标优选。根据这个技术路线,地震属性的研究则相应地以三个方面的分析为主:即利用振幅属性来寻找砂体富集区,利用有效带宽判断砂层的均质性,再利用频率属性判断其含气性。地震属性分析方法的应用在早期天然气勘探开发具有可以推广的普遍意义。  相似文献   

17.
The Palaeoproterozoic Frere Formation (ca 1.89 Gyr old) of the Earaheedy Basin, Western Australia, is a ca 600 m thick succession of iron formation and fine‐grained, clastic sedimentary rocks that accumulated on an unrimmed continental margin with oceanic upwelling. Lithofacies stacking patterns suggest that deposition occurred during a marine transgression punctuated by higher frequency relative sea‐level fluctuations that produced five parasequences. Decametre‐scale parasequences are defined by flooding surfaces overlain by either laminated magnetite or magnetite‐bearing, hummocky cross‐stratified sandstone that grades upward into interbedded hematite‐rich mudstone and trough cross‐stratified granular iron formation. Each aggradational cycle is interpreted to record progradation of intertidal and tidal channel sediments over shallow subtidal and storm‐generated deposits of the middle shelf. The presence of aeolian deposits, mud cracks and absence of coarse clastics indicate deposition along an arid coastline with significant wind‐blown sediment input. Iron formation in the Frere Formation, in contrast to most other Palaeoproterozoic examples, was deposited almost exclusively in peritidal environments. These other continental margin iron formations also reflect upwelling of anoxic, Fe‐rich sea water, but accumulated in the full spectrum of shelf environments. Dilution by fine‐grained, windblown terrigenous clastic sediment probably prevented the Frere iron formation from forming in deeper settings. Lithofacies associations and interpreted paragenetic pathways of Fe‐rich lithofacies further suggest precipitation in sea water with a prominent oxygen chemocline. Although essentially unmetamorphosed, the complex diagenetic history of the Frere Formation demonstrates that understanding the alteration of iron formation is a prerequisite for any investigation seeking to interpret ocean‐atmosphere evolution. Unlike studies that focus exclusively on their chemistry, an approach that also considers palaeoenvironment and oceanography, as well the effects of post‐depositional fluid flow and alteration, mitigates the potential for incorrectly interpreting geochemical data.  相似文献   

18.
Three‐dimensional seismic data were used to infer how bottom currents control unidirectional channel migration. Bottom currents flowing towards the steep bank would deflect the upper part of sediment gravity flows at an orientation of 1° to 11° to the steep bank, yielding a helical flow circulation consisting of a faster near‐surface flow towards the steep bank and a slower basal return flow towards the gentle bank. This helical flow model is evidenced by the occurrence of bigger, muddier (suggested by low‐amplitude seismic reflections) lateral accretion deposits and gentle channel wall with downlap terminations on the gentle bank and by smaller, sandier (indicated by high‐amplitude seismic reflectors) channel fills and steep channel walls with truncation terminations on the steep bank. This helical flow circulation promotes asymmetrical depositional patterns with dipping accretion sets restricted to the gentle bank, which restricts the development of sinuosity and yields unidirectional channel migration. These results aid in obtaining a complete picture of flow processes and sedimentation in submarine channels.  相似文献   

19.
Determining the relative influence of eustasy versus local sedimentary processes on strata formation is a fundamental challenge in the study of continental margin stratigraphy. In this paper, the relative contribution of these factors on continental margin evolution during the Middle to Late Pleistocene is evaluated using samples from Integrated Ocean Drilling Program Expedition 317. Core‐logging, biostratigraphy and quantitative X‐ray diffraction mineralogy are used to delineate continental shelf sedimentary systems. Major lithological unconformities bound stratigraphic sequences that contain recurring compositional patterns and that resemble other examples of Middle to Upper Pleistocene sequences. However, a preliminary chronology suggests that sequence boundary formation cannot be linked ‘one to one’ with eustatic cycles and therefore these sequences can contain multiple ca 100 ka eustatic cycles. Smaller amplitude, higher frequency transitions in sediment composition are interpreted as stratigraphic sequences driven by more rapid perturbations in the interplay of accommodation and sediment supply; their stratigraphy is variable in time and across the shelf, suggesting a strong influence of local sedimentary forcing in their formation. Changes in sediment composition after the Middle Pleistocene Transition indicate that sediment transfer from onshore sources in the glaciated Southern Alps to the middle‐shelf occurred over a single 100 ka glacio‐eustatic cycle, with an additional 100 ka lag before the mineralogical signal was preserved on the outer‐shelf. This phenomenon is coincident with rapid shelf progradation in this basin, suggesting a causal relation between across‐shelf sediment transport and margin progradation. This is one of very few studies that provide insights at the core scale into the processes driving continental margin evolution during the Middle to Late Pleistocene. This work shows that compositional changes in mud‐dominated successions can lead to a sequence stratigraphic interpretation and the identification of high‐frequency sequences, which may not be possible using a conventional stratigraphic approach.  相似文献   

20.
This work presents the stratigraphy and facies analysis of an interval of about 2500 m in the Langhian and Serravallian stratigraphic succession of the foredeep turbidites of the Marnoso‐arenacea Formation. A high‐resolution stratigraphic analysis was performed by measuring seven stratigraphic logs between the Sillaro and Marecchia lines (60 km apart) for a total thickness of about 6700 m. The data suggest that the stratigraphy and depositional setting of the studied interval was influenced by syndepositional structural deformations. The studied stratigraphic succession has been subdivided into five informal stratigraphic units on the basis of how structurally controlled topographic highs and depocentres, a consequence of thrust propagation, change over time. These physiographic changes of the foredeep basin have also been reconstructed through the progressive appearance and disappearance of thrust‐related mass‐transport complexes and of five bed types interpreted as being related to structurally controlled basin morphology. Apart from Bouma‐like Type‐4 beds, Type‐1 tripartite beds, characterized by an internal slurry unit, tend to increase especially in structurally controlled stratigraphic units where intrabasinal topographic highs and depocentres with slope changes favour both mud erosion and decelerations. Type‐2 beds, with an internal slump‐type chaotic unit, characterize the basal boundary of structurally controlled stratigraphic units and are interpreted as indicating tectonic uplift. Type‐3 beds are contained‐reflected beds that indicate different degrees of basin confinement, while Type‐5 are thin and fine‐grained beds deposited by dilute reflected turbulent flows able to rise up the topographic highs. The vertical and lateral distribution of these beds has been used to understand the synsedimentary structural control of the studied stratigraphic succession, represented in the Marnoso‐arenacea Formation by subtle topographic highs and depocentres created by thrust‐propagation folds and emplacements of large mass‐transport complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号