首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
3.
4.
5.
6.
7.
An earthquake of Ms 8 struck Wenchuan County,western Sichuan,China,on May 12~(th), 2008 and resulted in long surface ruptures (>300 km).The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu,Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt.Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beichuan rupture zone reach 2.5-4m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m.The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component.The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.  相似文献   

8.
An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beiehuan rupture zone reach 2.514 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.  相似文献   

9.
10.
11.
12.
13.
14.
15.

Extreme meteorological conditions favor the development of severe storms and tornadoes that may have largely impacts on the population despite its relatively short life. Tornadic severe storms have been documented around the World. In Mexico (MEX), the study of the occurrence of tornadoes and severe storms is relatively new. In this research, we have selected an event of severe tornadic storm in Ciudad Acuña, Mexico. The storm was driven by a frontal system moving southward from USA converging with a warmer moist air flux from the Gulf of Mexico. The tornado strikes on the Northeast of Mexico, in Coahuila State, on May 25, 2015. Imagery of infrared channel from GOES 13 satellite and the presence of a hook echo in radar data of May 25, 2015, indicate a supercell structure. The maximum values of radial velocity were about ?20 and 15 m s?1. In this study, the WRF model was used in order to simulate the mesoscale meteorological conditions of the tornado. Model simulations capture atmospheric features observed in Doppler radar. The simulated storm-relative helicity values were between 400 and 500 m2 s?2. The simulated convective available potential energy values were of 3000 J kg?1. These values were higher than values for convective storms, located over the region of Ciudad Acuña in Mexico and Del Rio in USA. The supercell was a result of high humidity and temperature gradients, conditioned by frontal activity and moisture flux intensifications from the Gulf of Mexico.

  相似文献   

16.
17.
Reconnaissance observations are presented on the building damage caused by the May 19, 2011, Kütahya–Simav earthquake in Western Turkey as well as an overview of strong ground motion data recorded during the earthquake is given. According to Disaster and Emergency Management Presidency of Turkey, the magnitude of the earthquake is 5.7 in local magnitude scale. Although the earthquake can be regarded as a moderate event when considering its magnitude and strong motion recordings, it caused excessive structural damage to buildings in Simav district and several villages in the near vicinity. During the field investigation, different types of structural damage were observed mainly in the reinforced concrete frame buildings with infill walls and masonry buildings with various types of construction materials. Observed damage resulted from several deficiencies in structural and non-structural components of the buildings. Poor construction materials and workmanship, non-conforming earthquake-resistant design and construction techniques and non-ductile detailing are the main reasons for such an extensive damage, as observed in many past earthquakes in Turkey.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号