首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Authigenic gypsum was found in a gravity core, retrieved from the top of Mound Perseverance, a giant cold‐water coral mound in the Porcupine Basin, off Ireland. The occurrence of gypsum in such an environment is intriguing, because gypsum, a classic evaporitic mineral, is undersaturated with respect to sea water. Sedimentological, petrographic and isotopic evidence point to diagenetic formation of the gypsum, tied to oxidation of sedimentary sulphide minerals (i.e. pyrite). This oxidation is attributed to a phase of increased bottom currents which caused erosion and enhanced inflow of oxidizing fluids into the mound sediments. The oxidation of pyrite produced acidity, causing carbonate dissolution and subsequently leading to pore‐water oversaturation with respect to gypsum and dolomite. Calculations based on the isotopic compositions of gypsum and pyrite reveal that between 21·6% and 28·6% of the sulphate incorporated into the gypsum derived from pyrite oxidation. The dissolution of carbonate increased the porosity in the affected sediment layer but promoted lithification of the sediments at the sediment‐water interface. Thus, authigenic gypsum can serve as a signature for diagenetic oxidation events in carbonate‐rich sediments. These observations demonstrate that fluid flow, steered by environmental factors, has an important effect on the diagenesis of coral mounds.  相似文献   

2.
Alpha Mound and Beta Mound are two cold‐water coral mounds, located on the Pen Duick Escarpment in the Gulf of Cadiz amidst the El Arraiche mud volcano field where focused fluid seepage occurs. Despite the proximity of Alpha Mound and Beta Mound, both mounds differ in their assemblage of authigenic minerals. Alpha Mound features dolomite, framboidal pyrite and gypsum, whereas Beta Mound contains a barite layer and predominantly euhedral pyrite. The diagenetic alteration of the sedimentary record of both mounds is strongly influenced by biogeochemical processes occurring at shallow sulphate methane transition zones. The combined sedimentological, petrographic and isotopic analyses of early diagenetic features in gravity cores from Alpha Mound and Beta Mound indicate that the contrast in mineral assemblages between these mounds is caused by differences in fluid and methane fluxes. Alpha Mound appears to be affected by strong fluctuations in the fluid flow, causing shifts in redox boundaries, whereas Beta Mound seems to be a less dynamic system. To a large extent, the diagenetic regimes within cold‐water coral mounds on the Pen Duick Escarpment appear to be controlled by fluid and methane fluxes deriving from layers underlying the mounds and forcings like pressure gradients caused by bottom current. However, it also becomes evident that authigenic mineral assemblages are not only very sensitive recorders of the diagenetic history of specific cold‐water coral mounds, but also affect diagenetic processes in turn. Dissolution of aragonite, lithification by precipitation of authigenic minerals and subsequent brecciation of these lithified layers may also exert a control on the advective and diffusive fluid flow within these mounds, providing a feedback mechanism on subsequent diagenetic processes.  相似文献   

3.
Cold water coral covered carbonate mounds at the south‐west margin of the Rockall Trough form ridges several kilometres long and up to 380 m high. Piston cores obtained at three mound crests reveal the complex internal structure of the mound build up, with alternating unlithified coral‐dominated intervals and lithified intervals. The most recent lithified interval is covered by corals embedded in a fine‐grained matrix, comprising ca 11 000 years of continuous mound evolution. Before this time 230Th/U dating shows the presence of several hiatuses in mound build‐up. Aragonitic coral material is absent or only present as mouldic porosity in the lithified intervals and coccoliths display widespread overgrowth. Downcore X‐ray fluorescence scanning, computer tomography scan images and petrographic observations indicate different degrees of diagenetic alteration. The upper boundary of the most recent lithified interval shows some erosional features, but petrographic observations indicate that initial lithification of the sediments is not related to this erosive event or to long‐term non‐sedimentation, but to earlier sub‐surface diagenesis. Organic matter oxidation and the subsequent lowering of the saturation state of the carbonate system drives dissolution of the unstable aragonitic coral skeletons. Depending on the openness of the system, this can lead to precipitation of a more stable low‐magnesium carbonate. A model is presented describing the sedimentary and diagenetic processes leading to the formation of lithified intervals.  相似文献   

4.
The early diagenetic chemical dissolution of skeletal carbonates has previously been documented as taking place within bioturbated, shallow water, tropical carbonate sediments. The diagenetic reactions operating within carbonate sediments that fall under the influence of iron‐rich (terrigenous) sediment input are less clearly understood. Such inputs should modify carbonate diagenetic reactions both by minimizing bacterial sulphate reduction in favour of bacterial iron reduction, and by the reaction of any pore‐water sulphide with iron oxides, thereby minimizing sulphide oxidation and associated acidity. To test this hypothesis sediment cores were taken from sites within Discovery Bay (north Jamaica), which exhibit varying levels of Fe‐rich bauxite sediment contamination. At non‐impacted sites sediments are dominated by CaCO3 (up to 99% by weight). Pore waters from the upper few centimetres of cores show evidence for active sulphate reduction (reduced SO4/Cl? ratios) and minor CaCO3 dissolution (increased Ca2+/Cl? ratios). Petrographic observations of carbonate grains (specifically Halimeda and Amphiroa) show clear morphological evidence for dissolution throughout the sediment column. In contrast, at bauxite‐impacted sites, the sediment is composed of up to 15% non‐carbonate and contains up to 6000 μg g?1 Fe. Pore waters show no evidence for sulphate reduction, but marked levels of Fe(II), suggesting that bacterial Fe(III) reduction is active. Carbonate grains show little evidence for dissolution, often exhibiting pristine surface morphologies. Samples from the deeper sections of these cores, which pre‐date bauxite influence, commonly exhibit morphological evidence for dissolution implying that this was a significant process prior to bauxite input. Previous studies have suggested that dissolution, driven by sulphate reduction and sulphide oxidation, can account for the loss of as much as 50% of primary carbonate production in localized platform environments. The finding that chemical dissolution is minor in a terrigenous‐impacted carbonate environment, therefore, has significant implications for carbonate budgets and cycling, and the preservation of carbonate grains in such sediment systems.  相似文献   

5.
The Darwin Mounds are small (up to 70 m in diameter), discrete cold‐water coral banks found at c. 950 m water depth in the northern Rockall Trough, north‐east Atlantic. Formerly described in terms of their genesis, the Darwin Mounds are re‐evaluated here in terms of mound growth processes based on 100 and 410 kHz side‐scan sonar data. The side‐scan sonar coverage is divided into a series of acoustic facies representing increasing current speed and sediment transport/erosion from south to north: pockmark facies, ‘mounds within depressions’ facies, Darwin Mound facies, stippled seabed facies and sand wave facies. Mound morphometric changes are quantified and show a south‐to‐north divergence from an inherited morphology, reflecting the outline of coral‐colonized fluid escape structures, to developed, downstream elongated, elevated mound forms. It is postulated that increasing current speeds and bedload sand transport favour mound growth and development by a process of enhanced sand sedimentation within mounds due to current deceleration by frictional drag around coral colonies. Comparisons are made with similar growth processes attributed to comparably sized cold‐water coral mounds in the Porcupine Seabight, offshore Ireland.  相似文献   

6.
Relatively few studies have so far addressed diagenetic processes in Heterozoan carbonates and the role that sediment composition and depositional facies exert over diagenetic pathways. This paper presents a study of Oligocene shallow-water, Heterozoan carbonates from the Maltese Islands. We investigate stratigraphic distribution, abundance and timing of diagenetic features and their relationship to sediment composition and depositional facies. The studied carbonate rocks comprise rud- to packstones of the Heterozoan association predominantly containing coralline red algae, bryozoans, echinoids and benthic foraminifers. XRD analyses show that all high-Mg calcite has been transformed to low-Mg calcite and that no aragonite is preserved. Diagenetic processes include dissolution of aragonitic biota, neomorphism of high-Mg calcitic biota to low-Mg calcite and cementation by fibrous, bladed, epitaxial and blocky cements. Stable isotopes on bulk rock integrated with petrographic data suggest that the study interval was not exposed to significant meteoric diagenesis. We interpret early cementation to have taken place in the marine and marine burial environment. The distribution and abundance of early diagenetic features, determining the diagenetic pathway, can be related to the primary sediment composition and depositional texture. Sorting and micrite content are important controls over the abundance of diagenetic features.  相似文献   

7.
High-resolution seismic profiles, swath bathymetry, side-scan sonar data and video imageries are analysed in this detailed study of five carbonate mounds from the Belgica mound province with special emphasis on the well-surveyed Thérèse Mound. The selected mounds are located in the deepest part of the Belgica mound province at water depths of 950 m. Seismic data illustrate that the underlying geology is characterised by drift sedimentation in a general northerly flowing current regime. Sigmoidal sediment bodies create local slope breaks on the most recent local erosional surface, which act as the mound base. No preferential mound substratum is observed, neither is there any indication for deep geological controls on coral bank development. Seismic evidence suggests that the start-up of the coral bank development was shortly after a major erosional event of Late Pliocene–Quaternary age. The coral bank geometry has been clearly affected by the local topography of this erosional base and the prevailing current regime. The summits of the coral banks are relatively flat and the flanks are steepest on their upper slopes. Deposition of the encased drift sequence has been influenced by the coral bank topography. Sediment waves are formed besides the coral banks and are the most pronounced bedforms. These seabed structures are probably induced by bottom current up to 1 m/s. Large sediment waves are colonised by living corals and might represent the initial phase of coral bank development. The biological facies distribution of the coral banks illustrate a living coral cap on the summit and upper slope and a decline of living coral populations toward the lower flanks. The data suggest that the development of the coral banks in this area is clearly an interaction between biological growth processes and drift deposition both influenced by the local topography and current regime.  相似文献   

8.
This study examines the forcing mechanisms driving long‐term carbonate accumulation and preservation in lacustrine sediments in Lake Iznik (north‐western Turkey) since the last glacial. Currently, carbonates precipitate during summer from the alkaline water column, and the sediments preserve aragonite and calcite. Based on X‐ray diffraction data, carbonate accumulation has changed significantly and striking reversals in the abundance of the two carbonate polymorphs have occurred on a decadal time scale, during the last 31 ka cal bp . Different lines of evidence, such as grain size, organic matter and redox sensitive elements, indicate that reversals in carbonate polymorph abundance arise due to physical changes in the lacustrine setting, for example, water column depth and lake mixing. The aragonite concentrations are remarkably sensitive to climate, and exhibit millennial‐scale oscillations. Extending observations from modern lakes, the Iznik record shows that the aerobic decomposition of organic matter and sulphate reduction are also substantial factors in carbonate preservation over long time periods. Lower lake levels favour aragonite precipitation from supersaturated waters. Prolonged periods of stratification and, consequently, enhanced sulphate reduction favour aragonite preservation. In contrast, prolonged or repeated exposure of the sediment–water interface to oxygen results in in situ aerobic organic matter decomposition, eventually leading to carbonate dissolution. Notably, the Iznik sediment profile raises the hypothesis that different states of lacustrine mixing lead to selective preservation of different carbonate polymorphs. Thus, a change in the entire lake water chemistry is not strictly necessary to favour the preservation of one polymorph over another. Therefore, this investigation is a novel contribution to the carbon cycle in lacustrine systems.  相似文献   

9.
High resolution studies from the Propeller Mound, a cold-water coral carbonate mound in the NE Atlantic, show that this mound consists of >50% carbonate justifying the name ‘carbonate mound’. Through the last ~300,000 years approximately one third of the carbonate has been contributed by cold-water corals, namely Lophelia pertusa and Madrepora oculata. This coral bound contribution to the carbonate budget of Propeller Mound is probably accompanied by an unknown portion of sediments buffered from suspension by the corals. However, extended hiatuses in Propeller Mound sequences only allow the calculation of a net carbonate accumulation. Thus, net carbonate accumulation for the last 175 kyr accounts for only <0.3 g/cm2/kyr, which is even less than for the off-mound sediments. These data imply that Propeller Mound faces burial by hemipelagic sediments as has happened to numerous buried carbonate mounds found slightly to the north of the investigated area.  相似文献   

10.
Earlier interpretations of textural alteration affecting Great Salt Lake ooids have greatly influenced concepts of ooid diagenesis. Scanning electron microscope study shows, however, that the coarse radial aragonite rays are depositional, that no recrystallization of pellet cores has occurred, and that Great Salt Lake ooids have not suffered noticeable diagenesis. As suggested by Kahle (1974), radial texture in ancient calcitic ooids is probably mainly original, not diagenetic. Retention of such fine textures has been attributed to organic matter (since found to be equivalent in modern skeletal and non-skeletal grains) or to paramorphic replacement (proposed for non-skeletal grains whose original aragonite mineralogy was only inferred from modern analogs). Pleistocene ooids known to have been aragonite alter like aragonite shells to coarse neomorphic calcite, often with aragonite relics. The striking uniformity of that coarse texture in neomorphic calcite replacing known skeletal aragonites throughout the geologic record has been noted for over 100 years. In contrast, Mississippian ooids retain fine texture as do calcite layers of coexisting gastropods, but unlike the strongly altered aragonite layers of these same gastropods. Therefore, inferences of original aragonitic mineralogy of ancient non-skeletal carbonate grains (including muds) which are now calcite but retain fine texture appear unwarranted, as do assumptions of differential diagenetic behaviour of ancient aragonitic skeletal and non-skeletal grains. Accordingly, modern depositional environments of marine ooids and carbonate muds must be rejected as chemically unrepresentative of comparable ancient environments. It is inferred that ancient non-skeletal carbonates were originally predominantly or exclusively calcite because of an earlier lower oceanic Mg/Ca ratio (<2/1) which altered progressively to values favouring aragonite (modern Mg/Ca value = 5/1). Major influencing factors are: selective removal of calcium by planktonic foraminifers and coccolithophorids since Jurassic-Cretaceous time and by abundant younger, Mg-poor aragonite skeletons and an erratic trend toward decreasing dolomite formation (decreasing removal of oceanic Mg). The change to aragonite dominance over calcite for non-skeletal carbonates was probably during early to middle Cenozoic time.  相似文献   

11.
Stable isotopes and element compositions of the fine‐grained matrix were measured for IODP Expedition 307 Hole U1317E drilled from the summit of Challenger Mound in Porcupine Seabight, northeast Atlantic, to explore the palaeoceanographic and palaeoclimatic background to development of the deep‐water coral mound. The 155 m long mound section was divided into two units by an unconformity at 23.6 mbsf: Unit M1 (2.6–1.7 Ma) and Unit M2 (1.0–0.5 Ma). Results from 519 specimens show a difference in δ13C value between Unit M1 (?0.6‰ to ?5.0‰) and Unit M2 (?1.0‰ to 1.0‰), but such a distinct difference was not seen in δ18O values (1.0‰–2.5‰), CaCO3 content (40–60 wt%), Sr/Ca ratio (2.0–8.0 mmol mol?1), and Mg/Ca ratio (10.0–20.0 mmol mol?1) through the mound. Positive δ18O and negative δ13C shifts at the mound base are consistent with the oceanographic changes in the northeast Atlantic at the beginning of the Quaternary. The positive δ13C regression in Unit M2 suggests a linkage to the mid Pleistocene intensified glaciation in the Northern Hemisphere. Warm Mediterranean Upper Core Water of Mediterranean Outflow Water, Eastern North Atlantic Water and cold Labrador Sea Water of North Atlantic Deep Water are key oceanographic features that cause spikes and shifts in stable isotope and element composition. However, the stable isotope values of the sediment matrix could not primarily record the glacial–interglacial eustatic/temperature change, but indirectly indicate current regimes of the intermediate oceanic layer where the coral mound grew. Similarly, elemental ratios and CaCO3 content may not represent the productivity and temperature of surface sea water, respectively, but superpose the fractions from both surface and bottom water. It is concluded that palaeoceanographic change coupled to the Pleistocene glacial/interglacial cycles is a key control on the geochemical stratigraphy of the matrix sediments of the carbonate mound developed in Porcupine Seabight. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Bulk carbonate samples of hemipelagic limestone–marl alternations from the Middle and Upper Triassic of Italy are analysed for their isotopic compositions. Middle Triassic samples are representative of the Livinallongo Formation of the Dolomites, while Upper Triassic hemipelagites were sampled in the Pignola 2 section, within the Calcari con Selce Formation of the Southern Apennines in Southern Italy. Triassic hemipelagites occur either as nodular limestones with chert nodules or as plane‐bedded limestone–marl alternations which are locally silicified. In the Middle Triassic Livinallongo Formation, diagenetic alteration primarily affected the stable isotopic composition of sediment surrounding carbonate nodules, whereas the latter show almost pristine compositions. Diagenesis lowered the carbon and oxygen isotope values of bulk carbonate and introduced a strong correlation between δ13C and δ18O values. In the Middle Triassic successions of the Dolomites, bulk carbonate of nodular limestone facies is most commonly unaltered, whereas carbonate of the plane‐bedded facies is uniformly affected by diagenetic alteration. In contrast to carbonate nodules, plane‐bedded facies often show compaction features. Although both types of pelagic carbonate rocks show very similar petrographic characteristics, scanning electron microscopy studies reveal that nodular limestone consists of micrite (< 5 μm in diameter), whereas samples of the plane‐bedded facies are composed of calcite crystals ca 10 μm in size showing pitted, polished surfaces. These observations suggest that nodular and plane‐bedded facies underwent different diagenetic pathways determined by the prevailing mineralogy of the precursor sediment, i.e. probably high‐Mg calcite in the nodular facies and aragonite in the case of the plane‐bedded facies. Similar to Middle Triassic nodular facies, Upper Triassic nodular limestones of the Lagonegro Basin are also characterized by uncorrelated δ13C and δ18O values and exhibit small, less than 5 μm size, crystals. The alternation of calcitic and aragonitic precursors in the Middle Triassic of the Dolomites is thought to mirror rapid changes in the type of carbonate production of adjacent platforms. Bioturbation and dissolution of metastable carbonate grains played a key role during early lithification of nodular limestone beds, whereby early stabilization recorded the carbon isotopic composition of sea water. The bulk carbonate δ13C values of Middle and Upper Triassic hemipelagites from Italy agree with those of Tethyan low‐Mg calcite shells of articulate brachiopods, confirming that Triassic hemipelagites retained the primary carbon isotopic composition of the bottom sea water. A trend of increasing δ13C from the Late Anisian to the Early Carnian, partly seen in the data set presented here, is also recognized in successions from tropical palaeolatitudes elsewhere. The carbon isotopic composition of Middle and Upper Triassic nodular hemipelagic limestones can thus be used for chemostratigraphic correlation and palaeoenvironmental studies.  相似文献   

13.
This study investigates the conditions of occurrence and petrographic characteristics of low‐Mg calcite (LMC) from cold seeps of the Gulf of Mexico at a water depth of 2340 m. Such LMC mineral phases should precipitate in calcite seas rather than today's aragonite sea. The 13C‐depleted carbonates formed as a consequence of anaerobic oxidation of hydrocarbons in shallow subsurface cold seep environments. The occurrence of LMC may result from brine fluid flows. Brines are relatively Ca2+‐enriched and Mg2+‐depleted (Mg/Ca mole ratio <0.7) relative to seawater, where the Mg/Ca mole ratio is ~5, which drives high‐Mg calcite and aragonite precipitation. The dissolution of aragonitic mollusk shells, grains and cements was observed. Aerobic oxidation of hydrocarbons and H2S is the most likely mechanism to explain carbonate dissolution. These findings have important implications for understanding the occurrence of LMC in deep water marine settings and consequently their counterparts in the geological record.  相似文献   

14.
Early-diagenetic cementation of tropical carbonates results from the combination of numerous physico-chemical and biological processes. In the marine phreatic environment it represents an essential mechanism for the development and stabilization of carbonate platforms. However, diagenetic cements that developed early in the marine phreatic environment are likely to become obliterated during later stages of meteoric or burial diagenesis. When lithified sediment samples are studied, this complicates the recognition of processes involved in early cementation, and their geological implications. In this contribution, a petrographic microfacies analysis of Holocene Halimeda segments collected on a coral island in the Spermonde Archipelago, Indonesia, is presented. Through electron microscopical analyses of polished samples, this study shows that segments are characterized by intragranular cementation of fibrous aragonite, equant High-Mg calcite (3.9 to 7.2 Mol% Mg), bladed Low-Mg calcite (0.4 to 1.0 Mol% Mg) and mini-micritic Low-Mg calcite (3.2 to 3.3 Mol% Mg). The co-existence and consecutive development of fibrous aragonite and equant High-Mg calcite results initially from the flow of oversaturated seawater along the aragonite template of the Halimeda skeleton, followed by an adjustment of cement mineralogy towards High-Mg calcite as a result of reduced permeability and fluid flow rates in the pores. Growth of bladed Low-Mg calcite cements on top of etched substrates of equant High-Mg calcite is explained by shifts in pore water pH and alkalinity through microbial sulphate reduction. Microbial activity appears to be the main trigger for the precipitation of mini-micritic Low-Mg calcite as well, based on the presumable detection of an extracellular polymeric matrix during an early stage of mini-micrite Low-Mg calcite cement precipitation. Radiocarbon analyses of five Halimeda segments furthermore indicate that virtually complete intragranular cementation in the marine phreatic environment with thermodynamically/kinetically controlled aragonite and High-Mg calcite takes place in about 100 years. Collectively, this study shows that early-diagenetic cements are highly diverse and provides new quantitative constraints on the rate of diagenetic cementation in tropical carbonate factories.  相似文献   

15.
Faunally restricted argillaceous wackestones from the Middle Jurassic of eastern England contain evidence of early diagenetic skeletal aragonite dissolution and stabilization of the carbonate matrix, closely followed by precipitation of zoned calcite cements, and precipitation of pyrite. Distinctive cathodoluminescence and trace element trends through the authigenic calcites, their negative δ13C compositions and the location of pyrite in the paragenetic sequence indicate that calcite precipitation took place during sequential bacterial Mn, Fe and sulphate reduction. Calcite δ18O values are compatible with cementation from essentially marine pore fluids, although compositions vary owing to minor contamination with 18O-depleted ‘late’cements. Mg and Sr concentrations in the calcites are lower than those in recent marine calcite cements. This may be a result of kinetic factors associated with the shallow burial cementation microenvironments. Bicarbonate for sustained precipitation of the authigenic calcites was derived largely from aragonite remobilization, augmented by that produced through anaerobic organic matter oxidation in the metal and sulphate reduction environments. Aragonite dissolution is thought to have been induced by acidity generated during aerobic bacterial oxidation of organic matter. Distinction of post-oxic metal reduction and anoxic sulphate reduction diagenetic environments in modern carbonate sediments is uncommon outside pelagic settings, and early bacterially mediated diagenesis in modern platform carbonates is associated with extensive carbonate dissolution. High detrital Fe contents of the Jurassic sediments, and their restricted depositional environment, were probably the critical factors promoting early cementation. These precipitates constitute a unique example of calcite authigenesis in shallow water limestones during bacterial Mn and Fe reduction.  相似文献   

16.
祝仲蓉 Marsh.  J 《沉积学报》1992,10(1):133-145
更新世以来,剧烈的构造运动已将巴布亚新几内亚合恩半岛东北海岸的晚第四纪珊瑚礁阶地抬升上千米.阶地中造礁珊瑚的成岩变化和成岩产物的组构特征反映了该礁的成岩历史,充分体现该区快速构造上升的影响.海水潜流带和淡水渗流带为上升礁的主要成岩环境.生物钻孔、生物碎屑填隙、珊瑚文石针粗化、珊瑚骨骼的溶解和新生变形转化,以及其不同矿物成分和组构的种种胶结物的胶结作用是造礁珊瑚经历的主要成岩作用.地球化学资料表明其成岩变化发生于开放的化学体系之中.  相似文献   

17.
Petrographic and geochemical studies of an Upper Eocene reef and associated basinal sediments from the mixed carbonate–siliciclastic fill of the south‐eastern Pyrenean foreland basin near Igualada (NE Spain) provide new insights into the evolution of subsurface hydrology during the restriction of a marine basin. The reef deposits are located on delta‐lobe sandstones and prodelta marls, which are overlain by hypersaline carbonates and Upper Eocene evaporites. Authigenic celestite (SrSO4) is an important component in the observed diagenetic sequences. Celestite is a significant palaeohydrological indicator because its low solubility constrains transportation of Sr2+ and SO42? in the same diagenetic fluid. Stable isotopic analyses of carbonates in the reef indicate that meteoric recharge was responsible for aragonite stabilization and calcite cementation. Sulphur and oxygen isotope geochemistry of the celestite demonstrates that it formed from residual sulphate after bacterial sulphate reduction, but also requires that there was a prior episode of sulphate recycling. Meteoric water reaching the reef and basinal areas was most probably charged with SO42? from the dissolution of younger Upper Eocene marine evaporites. This sulphate, combined with organic matter present in the sediments, fuelled bacterial sulphate reduction in the meteoric palaeoaquifer. Strontium for celestite precipitation was partly derived in situ from dissolution of aragonite corals in the reef and basinal counterparts. However, 87Sr/86Sr data also suggest that Sr2+ was partly derived from dissolution of overlying evaporites. Mixing of these two fluids promoted celestite formation. The carbonate stable isotopic data suggest that the local meteoric water was enriched in 18O compared with that responsible for stabilization of other reefs along the basin margin. Furthermore, meteoric recharge at Igualada post‐dated evaporite deposition in the basin, whereas other parts of the same reef complex were stabilized before evaporite formation. This discrepancy resulted from the spatial distribution of continental siliciclastic units that acted as groundwater conduits.  相似文献   

18.
鲕粒原生矿物识别及对海水化学成分变化的指示意义   总被引:1,自引:0,他引:1  
李飞  武思琴  刘柯 《沉积学报》2015,33(3):500-511
鲕粒是碳酸盐沉积过程中一类非常特殊的颗粒类型, 为研究当时的沉积背景、水动力条件、气候环境, 甚至储层特征提供了重要线索。然而, 鲕粒的矿物组成及控制因素问题, 长期受到忽视。组成鲕粒的原生矿物类型在地质历史时期呈周期性变化, 在显生宙表现为三个以文石和高镁方解石占主导的时期以及两个以低镁方解石占主导的时期, 这也被称作“文石海”和“方解石海”时期。原生矿物的组成, 制约着鲕粒的纹层结构、保存程度以及成岩特征, 还蕴含着海水化学成分变化的线索。鲕粒原生矿物识别主要依据:①原生纹层结构;②保存程度;③微量元素浓度, 尤其是Sr-Mg的浓度。文石质鲕粒受文石不稳定性的影响, 原生结构保存程度较差;一般保存有典型的文石残余纹层结构(例如砖砌结构、溶解变形结构以及偏心结构等);在封闭成岩环境下原生矿物为文石质的鲕粒Sr浓度往往大于2 000 ppm;纹层结构主要为切线状(占主导)和放射状。方解石质鲕粒包括低镁方解石和高镁方解石两种类型:低镁方解石为稳定矿物, 原生结构一般保存良好。尽管高镁方解石也为亚稳定矿物, 但成岩转换后的保存程度好于文石。两者Sr含量一般均低于1 000 ppm, Mg含量一般在0~20 mol % MgCO3(两者以4 mol % MgCO3为界)。高镁方解石受成岩作用影响, 在纹层中往往保留有微粒白云石包裹体;海相地层中保存的方解石质鲕粒为放射状或同心-放射状结构。另外还存在一类由两种矿物共同构成的双矿物鲕粒, 可以通过分析两类纹层在结构和保存特征上的差异进行区分。鲕粒原生矿物成分随时间的波动变化受到海水化学条件, 尤其是Mg/Ca比值, 大气二氧化碳分压以及碳酸盐饱和度的控制。Mg/Ca比值的波动决定着鲕粒原生矿物类型的长期变化规律。一些突发性事件可能会扰动(区域)短时间尺度下鲕粒原生矿物的组成, 造成鲕粒原生矿物的转换。通过研究碳酸盐鲕粒原生矿物特征以及控制因素进而了解海水的化学特征, 是独立于古生物学和地球化学分析之外的一种较为可靠的沉积学方法。  相似文献   

19.
Modern aragonite needles are present all along the modern leeward margin of Great Bahama Bank (ODP Leg 166), while Middle Miocene sediments contain needles only in more distal areas (Sites 1006 and 1007). In contrast to the rimmed, flat-topped platform topography during the Plio-Pleistocene, the Miocene Great Bahama Bank morphology is a carbonate ramp profile. This might imply a different location and precipitation type for Miocene aragonite needles. In this study, aragonite needles in Miocene sediments were isolated using a granulometric separation method. Furthermore, the isolation of the various carbonate components enables the identification of primary versus diagenetic components. The Miocene aragonite needles are concentrated in the finest granulometric sediment fractions (<12 μm). The fraction-specific geochemical analyses (δ13C, δ18O and Sr elemental abundance) represent useful tools to assess the possible sources of the aragonite mud. The geochemical variation of the fractions, rich in pristine aragonite needles, and the characteristics of the needle morphology point to whiting phenomena as the main sediment source and algal fragmentation as a minor component. Both components indicate shallow-water environments as the main sediment source area. Ramp-top-related fine-grained particles now present at distal sites were likely exported as suspended material similar to present-day transport mechanisms. The scarcity of needles at proximal sites is probably linked to hydrodynamic processes but dissolution and recrystallization processes cannot be excluded. The granulometric separation approach applied here enables a better characterization of the finest carbonate particles representing an important step towards the discrimination between primary and diagenetic fine-grained components.  相似文献   

20.
Large areas of southern Australia and New Zealand are covered by mid‐Tertiary limestones formed in cool‐water, shelf environments. The generally destructive character of sea‐floor diagenesis in such settings precludes ubiquitous inorganic precipitation of carbonates, yet these limestones include occasional units with marine cements: (1) within rare in situ biomounds; (2) within some stacked, cross‐bedded sand bodies; (3) at the top of metre‐scale, subtidal, carbonate cycles; and (4) most commonly, associated with certain unconformities. The marine cements are dominated by isopachous rinds of fibrous to bladed spar, interstitial homogeneous micrite and interstitial micropeloidal micrite, often precipitated sequentially in that order. Internal sedimentation of microbioclastic micrite may occur at any stage. The paradox of marine‐cemented limestone units in an overall destructive cool‐water diagenetic regime may be explained by the precipitation of cement as intermediate Mg‐calcite from marine waters undersaturated with respect to aragonite. In some of the marine‐cemented limestones, aragonite biomoulds may include marine cement/sediment internally, suggesting that dissolution of aragonite can at times be wholly marine and not always involve meteoric influences. We suggest that marine cementation occurred preferentially, but not exclusively, during periods of relatively lowered sea level, probably glacio‐eustatically driven in the mid‐Tertiary. At times of reduced sea level, there was a relative increase in both the temperature and the carbonate saturation state of the shelf waters, and the locus of carbonate sedimentation shifted towards formerly deeper shelf sites, which now experienced increased swell wave and/or tidal energy levels, fostering sediment abrasion and reworking, reduced sedimentation rates and freer exchange of sediment pore‐waters. Energy levels were probably also enhanced by increased upwelling of cold, deep waters onto the Southern Ocean margins of the Australasian carbonate platforms, where water‐mass mixing, warming and loss of CO2 locally maintained critical levels of carbonate saturation for sea‐floor cement precipitation and promoted the phosphate‐glauconite mineralization associated with some of the marine‐cemented limestone units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号