首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高斯波包反射走时速度反演方法   总被引:1,自引:1,他引:0       下载免费PDF全文
李辉  殷俊锋  王华忠 《地球物理学报》2017,60(10):3916-3933

扰动高斯波包理论指出,在Gabor域描述模型的扰动成分,且入射波场为短时宽带信号时,扰动波场可在时间域通过高斯波包算子描述.在此基础上通过拟合反射波的走时,提出一种速度反演方法.反射波走时残差利用地震道局部波形的互相关函数表示,以走时残差的二范数作为目标函数,优化目标函数实现对速度场的反演.基于一阶Born近似,利用扰动高斯波包理论推导出目标函数对速度场的梯度是本文理论部分的核心内容.梯度包括两部分:正传的背景波场与反传的扰动高斯波包之间的互相关,反传的背景波场和正传的扰动高斯波包之间的互相关.梯度表达式中背景波场和扰动波场均利用高斯波包算子模拟.计算梯度的具体算法中,如何模拟扰动波场,以及如何计算反射波的走时残差是两个要点,文中对此做了详细的讨论.数值实验进一步阐述了反演的实现策略,实验结果表明高斯波包反射走时速度反演方法和实现策略有效可行,并得到了理想的反演结果.

  相似文献   

2.
Sensitivity of seismic waves to structure   总被引:2,自引:0,他引:2  
We study how the perturbations of a generally heterogeneous isotropic or anisotropic structure manifest themselves in the wavefield, and which perturbations can be detected within a limited aperture and a limited frequency band. A short-duration broad-band incident wavefield with a smooth frequency spectrum is considered. In-finitesimally small perturbations of elastic moduli and density are decomposed into Gabor functions. The wavefield scattered by the perturbations is then composed of waves scattered by the individual Gabor functions. The scattered waves are estimated using the first-order Born approximation with the paraxial ray approximation. For each incident wave, each Gabor function generates at most 5 scattered waves, propagating in specific directions and having specific polarisations. A Gabor function corresponding to a low wavenumber may generate a single broad-band unconverted wave scattered in forward or narrow-angle directions. A Gabor function corresponding to a high wavenumber usually generates 0 to 5 narrow-band Gaussian packets scattered in wide angles, but may also occasionally generate a narrow-band P to S or S to P converted Gaussian packet scattered in a forward direction, or a broad-band S to P (and even S to S in a strongly anisotropic background) converted wave scattered in wide angles. In this paper, we concentrate on the Gaussian packets caused by narrow-band scattering. For a particular source, each Gaussian packet scattered by a Gabor function at a given spatial location is sensitive to just a single linear combination of 22 values of the elastic moduli and density corresponding to the Gabor function. This information about the Gabor function is lost if the scattered wave does not fall into the aperture covered by the receivers and into the legible frequency band.  相似文献   

3.
We present an approach based on local‐slope estimation for the separation of scattered surface waves from reflected body waves. The direct and scattered surface waves contain a significant amount of seismic energy. They present great challenges in land seismic data acquisition and processing, particularly in arid regions with complex near‐surface heterogeneities (e.g., dry river beds, wadis/large escarpments, and karst features). The near‐surface scattered body‐to‐surface waves, which have comparable amplitudes to reflections, can mask the seismic reflections. These difficulties, added to large amplitude direct and back‐scattered surface (Rayleigh) waves, create a major reduction in signal‐to‐noise ratio and degrade the final sub‐surface image quality. Removal of these waves can be difficult using conventional filtering methods, such as an filter, without distorting the reflected signal. The filtering algorithm we present is based on predicting the spatially varying slope of the noise, using steerable filters, and separating the signal and noise components by applying a directional nonlinear filter oriented toward the noise direction to predict the noise and then subtract it from the data. The slope estimation step using steerable filters is very efficient. It requires only a linear combination of a set of basis filters at fixed orientation to synthesize an image filtered at an arbitrary orientation. We apply our filtering approach to simulated data as well as to seismic data recorded in the field to suppress the scattered surface waves from reflected body waves, and we demonstrate its superiority over conventional techniques in signal preservation and noise suppression.  相似文献   

4.
基于高斯束与高斯波包的Gabor框架散射波模拟方法   总被引:1,自引:1,他引:0       下载免费PDF全文
李辉  王华忠 《地球物理学报》2015,58(4):1317-1332
在给出真实模型和相应光滑背景模型的情况下,如何计算扰动模型(散射体)产生的散射波场是一个有实际意义的正演问题.在Gabor变换域描述散射体,且入射波场为短时宽带信号时,散射波场可以在频率域用高斯束或时间域用高斯波包描述.相对于波动方程方法,高斯束和高斯波包的计算效率更高;背景模型光滑时,高斯束和高斯波包方法的精度也接近波动方程方法.文中导出了声波假设下应用高斯束和高斯波包计算散射波的方法.测试分析了高斯波包的计算精度.给出了一般散射体的散射波模拟策略.同时针对一个理论模型完成了本文方法计算散射波的实验,实验结果表明高斯波包散射波计算方法是有效可行的.  相似文献   

5.
杨鹏  李振春  谷丙洛 《地球物理学报》2017,60(11):4447-4467

基于Tsvankin提出的精确频散关系,利用近似展开的方法,推导出解耦合的TTI介质纯qP波近似方程,并将方程中的偏微分算子分解成一个laplace算子和一个标量算子,用于代表qP波的精确传播方向,构建时间域二阶纯qP波方程.此推导过程无需设置横波速度为零,能够更加精确地描述qP波的运动学特征.这个方程相比于求解波数域二阶解耦qP波方程,计算效率高,存储需求小;相比于基于Alkhalifah频散关系推导的时间域二阶纯qP波方程,假象干扰压制好,数值误差小,更具一般性.但此方法求解波矢量时采用波场梯度一阶渐近近似,会造成垂直于对称轴方向的波场振幅不准确.为了较正振幅,将椭圆分解方法应用于此方程中,构建纯qP波椭圆分解方程,使得振幅更加均衡,并与Xu等提出的方程比较分析,应用本文构建的纯qP波椭圆分解方程得到的波场振幅值更加准确.本文首先选取了均匀TI介质模型进行了qP波正演模拟,并抽取波场单道波形进行振幅分析,验证了本文构建的纯qP波方程和纯qP波椭圆分解方程的正确性及有效性;然后选取BP TTI模型进行了qP波正演模拟,将其qP波正演结果和均匀TI介质模型振幅分析结果相结合,突出了本文构建的纯qP波椭圆分解方程的优势及适应性;最后选取逆冲模型和BP TTI模型,应用本文构建的纯qP波椭圆分解方程对其进行逆时偏移成像,验证了本文构建的纯qP波椭圆分解方程在逆时偏移中的可行性和适用性.

  相似文献   

6.
舒涛  杨锴  王华忠 《地球物理学报》2022,65(7):2636-2648

分波型或时空局部特征波场的层析成像与叠前深度偏移成像组合是全波形反演成像方法(FWI)实用化的途径之一.其中如何高效稳健地获得具有时空局部特征的地震数据目前仍然是一个挑战.在前人提出的基于高斯束和高斯波包的Gabor框架散射波模拟的基础上, 本文提出了一种基于像域分解的特征高斯波包地震数据模拟方法.新方法利用具有空间局部特征的Gabor函数在成像剖面上实现数据的分解, 不仅可以利用成像剖面地质意义更加直观的特点来拾取特征反射界面, 还能有效地克服传统方法在数据域分解效率和精度不高等问题, 保证了分解后的反射数据具有更加明确的地质意义.此外, 不同于波动方程有限差分模拟, 基于时空局部特征的高斯波包模拟的一次反射波数据包含更多的数据属性, 比如反射波的到达时、空间位置和波场的传播方向, 这在层析反演中用于数据测量和偏移成像等处理时更具优势.数值实验测试表明了本文提出的分解方法的有效性.

  相似文献   

7.
We present a Gaussian packet migration method based on Gabor frame decomposition and asymptotic propagation of Gaussian packets. A Gaussian packet has both Gaussian‐shaped time–frequency localization and space–direction localization. Its evolution can be obtained by ray tracing and dynamic ray tracing. In this paper, we first briefly review the concept of Gaussian packets. After discussing how initial parameters affect the shape of a Gaussian packet, we then propose two Gabor‐frame‐based Gaussian packet decomposition methods that can sparsely and accurately represent seismic data. One method is the dreamlet–Gaussian packet method. Dreamlets are physical wavelets defined on an observation plane and can represent seismic data efficiently in the local time–frequency space–wavenumber domain. After decomposition, dreamlet coefficients can be easily converted to the corresponding Gaussian packet coefficients. The other method is the Gabor‐frame Gaussian beam method. In this method, a local slant stack, which is widely used in Gaussian beam migration, is combined with the Gabor frame decomposition to obtain uniform sampled horizontal slowness for each local frequency. Based on these decomposition methods, we derive a poststack depth migration method through the summation of the backpropagated Gaussian packets and the application of the imaging condition. To demonstrate the Gaussian packet evolution and migration/imaging in complex models, we show several numerical examples. We first use the evolution of a single Gaussian packet in media with different complexities to show the accuracy of Gaussian packet propagation. Then we test the point source responses in smoothed varying velocity models to show the accuracy of Gaussian packet summation. Finally, using poststack synthetic data sets of a four‐layer model and the two‐dimensional SEG/EAGE model, we demonstrate the validity and accuracy of the migration method. Compared with the more accurate but more time‐consuming one‐way wave‐equation‐based migration, such as beamlet migration, the Gaussian packet method proposed in this paper can correctly image the major structures of the complex model, especially in subsalt areas, with much higher efficiency. This shows the application potential of Gaussian packet migration in complicated areas.  相似文献   

8.
Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation. In this study, according to differences in morphological characteristics between ground roll and reflected waves, we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves. Because ground roll is characterized by low-frequency, low-velocity, and dispersion, we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll. Because of a strong local correlation of the reflected wave, we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves. A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model, strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.  相似文献   

9.
小波束源有很强的局部性和方向性,它可以很容易的实现局部照明和偏移,除此之外,它的偏移效果也要好于常规的偏移方法。本文介绍了基于框架理论的小波束叠前深度偏移的基本原理。我们解释了基于Gaussian函数的G-D框架。小波束分解提供了局部空间和方向上的信息。我们在小波域中,分别应用矩形窗和Gaussian窗合成了小波束源和小波束记录,并基于傅立叶有限差分算子,对marmousi模型进行了叠前深度偏移试算。通过对单个,以及多个小波束源偏移结果对比分析,验证了Gaussian小波束叠前深度偏移方法的有效性。  相似文献   

10.
Fractured reservoir delineation using multicomponent seismic data   总被引:5,自引:0,他引:5  
The characteristic seismic response to an aligned-fracture system is shear-wave splitting, where the polarizations, time-delays and amplitudes of the split shear waves are related to the orientation and intensity of the fracture system. This offers the possibility of delineating fractured reservoirs and optimizing the development of the reservoirs using shear-wave data. However, such applications require carefully controlled amplitude processing to recover properly and preserve the reflections from the target zone. Here, an approach to this problem is suggested and is illustrated with field data. The proposed amplitude processing sequence contains a combination of conventional and specific shear-wave processing procedures. Assuming a four-component recording (two orthogonal horizontal sources recorded by two orthogonal horizontal receivers), the split shear waves can be simulated by an effective eigensystem, and a linear-transform technique (LTT) can be used to separate the recorded vector wavefield into two principal scalar wavefields representing the fast and slow split shear waves. Conventional scalar processing methods, designed for processing P-waves, including noise reduction and stacking procedures may be adapted to process the separated scalar wavefields. An overburden operator is then derived from and applied to the post-stacked scalar wavefields. A four-component seismic survey with three horizontal wells drilled nearby was selected to illustrate the processing sequence. The field data show that vector wavefield decomposition and overburden correction are essential for recovering the reflection amplitude information in the target zone. The variations in oil production in the three horizontal wells can be correlated with the variations in shear-wave time-delays and amplitudes, and with the variations in the azimuth angle between the horizontal well and the shear-wave polarization. Dim spots in amplitude variations can be correlated with local fracture swarms encountered by the horizontal wells. This reveals the potential of shear waves for fractured reservoir delineation.  相似文献   

11.
A simple method to contour local inhomogeneities using seismic data is proposed. It formalizes an approximate inversion method which is based on the interpretation of local inhomogeneities as making the differences between an actual seismic data set and a previous reference model. It uses the optimal statistical criteria of parameter estimation and recognition and the ray representation of the waves spreading. Any combination of direct, reflected and/or other types of waves may be used as the database. Inhomogeneities, having a size two times above the wavelength of the seismic waves, can be resolved. Laboratory experiments, using ultrasonic waves and analysis of data from field experiments, confirmed the theoretical results. The method can be used to search for ore bodies, kimberlite cubes, oiltraps, etc.  相似文献   

12.

纵横波波场分离是弹性波偏移方法的必要条件,通过纵横波成像的差异可以获取更多地下介质的信息.目前所用的纵横波波场分离方法多采用Helmholtz分解,这样得到的波场不仅物理意义发生了变化,振幅和相位也会发生改变.本文采用纵横波解耦的弹性波方程,将其应用于三维介质,对比分析了纵横波解耦方法相对传统Helmholtz分解方法在相位、振幅上的优势.将该解耦的波场分离方法应用于弹性波逆时偏移,能得到相位、振幅和物理意义不受改变的偏移结果.但是该解耦方法分离得到的纵横波波场均为矢量场,将该波场分离方法用于弹性波逆时偏移,还需要解决矢量场如何得到标量成像结果的问题.本文引入了Poynting矢量,通过Poynting矢量对矢量波场进行标量化,这样就能得到保振幅、相位,且无极性反转的标量PP和PS成像结果.同时针对S波Poynting矢量求取不准确的问题,采用拟S波应力场和S波速度场得到了更加准确的S波Poynting矢量.理论计算证明了本文采用的3D波场解耦的矢量波场分离方法的正确性和引入Poynting矢量对矢量波场进行标量成像的有效性.

  相似文献   

13.
The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.  相似文献   

14.
The goal of wave‐mode separation and wave‐vector decomposition is to separate a full elastic wavefield into three wavefields with each corresponding to a different wave mode. This allows elastic reverse‐time migration to handle each wave mode independently. Several of the previously proposed methods to accomplish this task require the knowledge of the polarisation vectors of all three wave modes in a given anisotropic medium. We propose a wave‐vector decomposition method where the wavefield is decomposed in the wavenumber domain via the analytical decomposition operator with improved computational efficiency using low‐rank approximations. The method is applicable for general heterogeneous anisotropic media. To apply the proposed method in low‐symmetry anisotropic media such as orthorhombic, monoclinic, and triclinic, we define the two S modes by sorting them based on their phase velocities (S1 and S2), which are defined everywhere except at the singularities. The singularities can be located using an analytical condition derived from the exact phase‐velocity expressions for S waves. This condition defines a weight function, which can be applied to attenuate the planar artefacts caused by the local discontinuity of polarisation vectors at the singularities. The amplitude information lost because of weighting can be recovered using the technique of local signal–noise orthogonalisation. Numerical examples show that the proposed approach provides an effective decomposition method for all wave modes in heterogeneous, strongly anisotropic media.  相似文献   

15.
一般而言,由于地下非均质体的存在所产生的二次波源,由它再生成新的波场,叫散射波场。目前,将散射波作为有效波来成像,已开始在溶洞和裂缝等特殊地质体的识别中得到应用。但对于野外资料采集来说,地表复杂地区,如戈壁、砾石区和山前带,大量存在的散射波却是干扰波,它们的存在会严重影响资料的品质,而其研究与实际应用国内外还很少。因此,通过正演模拟,分析散射波的基本特征,在此基础上研究散射波的去噪方法显得十分必要。本文从地震波运动学时距关系出发,研究了反射波和散射波的几何特征;然后用有限差分正演,模拟了散射波场,用理论模型研究并测试了局域双曲线Radon变换散射波去噪新方法。对于实际炮集资料,分析了F-K滤波方法压制散射噪声的局限,采用局域双曲Radon变换有效地去除了炮集中存在的散射噪声,取得了较好的应用效果。  相似文献   

16.
Quantifying the density contrasts of the Earth's inner core boundary(ICB) is crucial to understand core-mantle coupling and the generation of the geodynamo. The PKiKP/PcP amplitude ratio is commonly used to obtain the density contrast at the ICB, but its applications are limited by scattered observed data. In this study, we selected the PKiKP and PcP phases reflected at the same region of inner-core and core-mantle boundaries beneath Northeast Asia from different earthquakes for the first time, and the observations suggested that the PKiKP/PcP amplitude ratio is widely scattered. We also compared the PKiKP and PcP amplitudes, which demonstrated that the scatter cannot be attributed only to ICB anomalies but might also arise from raypath differences and heterogeneities throughout the crust and mantle. By fitting the observed PKiKP/PcP amplitude ratio, we obtained a density contrast of approximately 0.65 g cm~(-3) and a compressional velocity contrast of approximately 0.87 km s~(-1) at the ICB beneath Northeast Asia. The larger contrast values indicate the possible occurrence of local crystallization occurring at the inner core surface.  相似文献   

17.
多分量地震波波场分解研究   总被引:17,自引:2,他引:15       下载免费PDF全文
提出了一种有效的多分量地震波波场分解方法, 该方法假设在相邻道集波场的振幅、相位变化不大的情况下, 根据纵波和转换波在传播中相对于不同的极化矢量和慢度得到的垂向和水平向分量, 在最小方差约束下从多分量输入数据中获取纵波和转换波的偏振方向和振幅并重构纵波和转换波, 从而分离纵波和转换波. 这种方法精度较高, 不仅能有效分解一次反射波的多分量波场, 多次反射的纵波和转换波也能被恰当地分解. 该方法不需要输入地层速度等参数信息, 减少了人为误差的影响. 通过对合成资料的处理, 验证了方法的可行性和正确性.  相似文献   

18.
局域波分解及其在地震信号时频分析中的应用   总被引:13,自引:7,他引:6       下载免费PDF全文
讨论非平稳、非线性局域波信号分解方法的物理意义和自适应性,数值实现三种局域波分解算法,研究局域波分解在地震信号时频分析中的应用方法和实践.通过Hilbert变换得到地震信号时频分布特征,与Fourier变换谱物理意义不同.采用一定的计算策略,改善瞬时频率计算精度,突出瞬时频率属性的物理意义;将局域波分解同Wigner分布结合,计算地震信号基于局域波分解的Wigner分布,抑制交叉项.模型和实际地震数据试算结果表明实现算法的正确性和有效性.研究表明:在地震信号时频分析中采用局域波分解求Hilbert谱具有自适应性,时域和频域的分辨率也较高;而基于局域波分解的地震信号Wigner分布,保留Wigner分布优良特性,抑制交叉项方法简单易实现;局域波分解方法适合处理地震信号,值得进一步研究和推广.  相似文献   

19.
In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong contrast media. This approach can takes the advantage of accurate boundary condition of BEM and completely overcomes the weak contrast limitation of the perturbationtheory based one-way operator approach. The one-way BEM is a smooth boundary approximation, which avoids huge matrix operations in exact full BEM. In addition, the one-way BEM can model the primary-only transmitted and reflected waves and therefore is a valuable tool in elastic imaging and inversion. Through numerical tests for some simple models,we proved the validity and efficiency of the proposed method.  相似文献   

20.
Surface wave method consists of measurement and processing of the dispersive Rayleigh waves recorded from two or more vertical transducers. The dispersive phase data are inverted and the shear wave velocity versus depth is obtained. However, in case of residual soil, the reliable phase spectrum curve is difficult to be produced. Noises from nature and other human-made sources disturb the generated surface wave data. In this paper, a continuous wavelet transform based on mother wavelet of Gaussian Derivative was used to analyze seismic waves in different frequency and time. Time-frequency wavelet spectrum was employed to localize the interested seismic response spectrum of generated surface waves. It can also distinguish the fundamental mode of the surface wave from the higher modes of reflected body waves. The results presented in this paper showed that the wavelet analysis is able to determine reliable surface wave spectrum of sandy clayey residual soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号