首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A middle Pleistocene coarse‐grained canyon fill succession (the Serra Mulara Formation) crops out in the northern sector of the Crotone Basin, a forearc basin located on the Ionian side of the Calabrian Arc and active from the Serravallian to middle Pleistocene. This succession is an example of coarse‐grained submarine canyon fill, which consists of a north‐west to south‐east elongated body (4·25 km long and up to 1·5 km wide) laterally confined by a deep‐water clayey and silty succession and located behind the modern Neto delta (north of Crotone). The thickness of the unit reaches 178 m. The lower part of the canyon fill is dominated by gravelly to sandy density‐flow deposits containing abundant bivalve and gastropod fragments, passing upward into a succession composed of metre‐scale to decimetre‐scale density‐flow deposits forming sandstone–mudstone couplets. Sandstone deposits are mostly structureless and planar‐laminated, whereas the clayey layers record hemipelagic deposition during quieter phases. This succession is overlain by another composed of thicker structureless sandstones alternating with layers of interlaminated mudstones and sandstones, which contain leaf remnants and fresh water ostracods, and are linked directly to river floods. The canyon fill is overlain by gravelly to sandy continental deposits recording a later stage of emergence. Facies analysis, together with micropalaeontological data from the hemipelagic units, suggests that the studied canyon fill records, firstly, a progressive gravel material cut‐off during deposition due to an overall relative sea‐level rise, leading to a progressive increase in the entrapment of sediment in fluvial to shallow‐marine systems, and secondly, a generalized relative sea‐level lowering. This trend probably reflects high‐magnitude glacio‐eustatic changes combined with the regional uplift of the region, ultimately leading to emergence.  相似文献   

2.
A combination of published and new radiometric dates on uplifted Holocene fossil beaches from northeastern Sicily and southern Calabria (southern Italy) is compared with the altitude of the inner margin of the Last Interglacial (LIg) (Late Pleistocene, 124 ka) and older marine terraces in order to gain a regional-scale outline of uplift rates and their temporal changes in a region which is one of the fastest uplifting sectors of the Central Mediterranean Sea. Late Holocene radiocarbon dates from Ioppolo (southern Calabria) and Ganzirri (northeast Sicily), two newly discovered sites are here presented for the first time. The Holocene uplift rates are highest at St. Alessio and Taormina in eastern Sicily (2.4 mm/y) and at Scilla in southwestern Calabria (2.1 mm/y), two sites located across the Messina Straits and which separate the island of Sicily from mainland Italy. Uplift rates decrease towards the south and north from this centre of uplift. Late Holocene uplift rates show an apparent increase of between 64 and 124% when compared with the longer-term uplift rates calculated from the LIg highstand terraces. Furthermore, we discovered that the locations of fastest Late Pleistocene and Late Holocene uplift rates spatially coincide. To what extent the Holocene increase in uplift rates results from incomplete elastic strain release along the major extensional faults which frame the seismotectonic of the area, or indicate a true change in regional tectonic processes, is not resolved. Nonetheless, the heterogeneity of uplift, with a well-defined centre that crosses the Messina Straits, and its persistence at different time-scales indicates a tight connection between wider regional processes and fault-related displacement in controlling crustal instability in this area.  相似文献   

3.
The growth and decay of the end‐Ordovician Gondwanan glaciation is globally reflected by facies changes in sedimentary sequences, which record a major eustatic fall and subsequent rise in the Hirnantian Stage at the end of the Ordovician. However, there are different reported estimates of the magnitude and pattern of sea‐level change. Particularly good evidence for end‐Ordovician sea‐level change comes from a sequence at Meifod in central Wales, which has a karstified limestone unit within a channel incised into marine shelf sediments. Pre‐glacial (Rawtheyan) mudstones have a diverse fauna suggesting a mid‐to‐deep‐shelf water depth of c. 60 m. The channel, 20 m deep, was incised into these mudstones and partially filled with a mixture of fine sand and detrital carbonate. The taphonomy of bioclasts and intraclasts indicates that many had a long residence time on the sea floor or suffered diagenesis after shallow burial before being resedimented into the channel. The presence of carbonates on the Welsh shelf is atypical and they are interpreted as having accumulated as patches during a minor regression prior to the main glacio‐eustatic fall. Comparison of the carbon stable‐isotopic values of the bioclast material with the global isotopic record confirms that most of the material is of Rawtheyan age, but that some is Hirnantian. The resedimented carbonates lithified rapidly and formed a limestone, several metres thick, in the deepest parts of the channel. As sea‐level fell, this limestone was exposed and eroded into karstic domes and pillars with a relief of over 2 m. The overall, glacio‐eustatic, sea‐level fall is estimated to be in excess of 80 m. A succeeding sea‐level rise estimated to be 40–50 m is recorded in the laminated crust that mantles the karstic domes and pillars. The crust is formed of encrusting bryozoans, associated cystoids, crinoid holdfasts and clusters of the brachiopod Paromalomena, which is normally associated with mid‐shelf environments. Fine sands buried the karst topography and accumulated to fill the channel. In the sandstones at the base of the channel there is a Hirnantia fauna, while in the sandstones high in the channel‐sequence there is cross‐stratification characteristic of mid‐shoreface environments. This would indicate a fall of sea‐level of c. 30 m. The subsequent major transgression marking the end of the glaciation is not recorded at the Meifod locality, but nearby exposures of mudstones suggest a return to mid‐to‐deep‐shelf environments, similar to those that prevailed before the Hirnantian regression. The Meifod sequence provides strong evidence for the magnitude of the Hirnantian sea‐level changes and by implication confirm larger estimates for the size of the ice sheets. Smaller oscillations in relative sea‐level seen at Meifod may be local phenomena or may reflect eustatic changes that have not been widely reported elsewhere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Rapid extension and active normal faulting in the western extremity of the Corinth Gulf are accompanied by fast coastal uplift. We investigate Pleistocene uplift west of Aigion, by attempting to date remains of marine terraces and sedimentary sequences by calcareous nannoplankton and U‐series analyses. Net uplift initiated recently, due to abandonment of an older rift‐bounding fault zone and increase in activity on the presently active, coastal fault zone. This change apparently coincides with an abrupt slow down (or, termination) of secondary fault block tilting within the broader hangingwall block of the older zone, indicated by an angular unconformity that dates in the early part of MIS10 (∼390–350 ka BP, preferably, in the earlier part of this period). Net uplift driven by the coastal zone resulted in the formation of MIS9c (330 ka) and younger terraces. The formation of the unconformity and the initiation of net uplift coincide temporally with a ∼300–400 ka unconformity recognized by recent studies in a wide area offshore Aigion i.e. they could be part of an evolutionary event that affected the entire western part of the Corinth Rift or, a large area therein. Uplift rate estimates at four locations are discussed with reference to the morphotectonic context of differential uplift of secondary fault blocks, and the context of possible increase in uplift rate with time. The most reliable and most useful estimate for uplift rate at the longitude of the studied transect is 1.74–1.85 mm/year (time‐averaged estimate for the last ∼240 ka, based on calcareous nannoplankton and sequence‐stratigraphic interpretation). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Clastic sediments deposited in caves and rock shelters bear peculiar sedimentological characteristics and have seldom been considered as a high‐resolution proxy record of climatic or environmental changes. The Romito Cave has its entrance at 275 m above sea level, about 25 km from the Tyrrhenian coast of Calabria, southern Italy. New archaeological excavation performed since 2000 has revealed a sedimentary succession spanning the record of Gravettian to Late Epigravettian cultures (Late Pleistocene). The present study focuses on the lower part (2.5 m thick) of the succession, where three main unconformity‐bounded stratigraphic units have been recognised (labelled RM1–3). Each unit consists of water‐lain deposits indicating high‐ to low‐competence flow, capped with anthropogenic deposits. The gradual deactivation and reactivation of the water drainage between 23 475 ± 190 and 16 250 ± 500 cal. a BP is correlated with regional precipitation changes due to the onset of dry climatic conditions of the Last Glacial Maximum. However, the deactivation of cave drainage after the deposition of unit RM3, around 15 400 ± 500 cal. a BP, deviates from the regional hydrological trend of progressively increasing water discharges and is attributed to the drainage cut‐off by probable cave wall collapses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Sandstone tidal cross‐strata are the predominant sedimentary feature of strait‐fill stratigraphic successions. However, although widely described in numerous studies, tidal strait‐fill two‐dimensional and three‐dimensional cross‐strata have rarely been reported to occur in discrete intervals which are laterally adjacent or vertically stacked, and the meaning of this stratigraphic architecture has not yet been fully investigated. Understanding of the processes responsible for changes in the internal features of modern and ancient tidal bedforms is essential in order to predict lateral and vertical heterogeneities in analogous reservoir strata. This facies‐based study aims to interpret the three‐dimensional to two‐dimensional cross‐strata transition observed in the lower Pleistocene mixed siliciclastic/bioclastic sandstone filling the Catanzaro Strait, in southern Italy, during a continuous phase of tectonically driven marine transgression. Tidal cross‐strata disappear in the uppermost interval of the studied succession, where mudstone strata prevail. This stratigraphic trend is interpreted as the evidence of an important change in the tidal strait hydrodynamics due to a phase of relative sea‐level rise. At the beginning of the transgression, three‐dimensional tidal dunes migrated throughout the ca 3 to 4 km wide and ca 30 km long, WNW–ESE‐oriented Catanzaro Strait, due to strong tidal currents amplified through the seaway and flowing in semi‐diurnal phase opposition. As the intermediate phase of transgression enlarged the seaway width, the tidal current strength decreased as tidal water exchange occurred over a larger cross‐sectional area. The progressive reduction of the bed shear stress modified three‐dimensional tidal dunes into an extensive two‐dimensional bedform field. At the end of the transgression, the further widening of the Catanzaro Strait into a ca 10 to 12 km wide marine passageway changed the tidally dominated strait into a non‐tidal open shelf. The results of this research suggest the presence of a ‘critical cross‐sectional area’ in the narrowest strait‐centre zone which controls the activation and deactivation of tidal current amplification along a marine seaway.  相似文献   

8.
The Plio‐Pleistocene non‐marine sequence in the northeast Guadix–Baza Basin (southern Spain) comprises alluvial and lacustrine deposits (Baza Formation). The results of a revised lithostratigraphical correlation between sections from the middle and upper members of the Baza Formation in the northeast part of the basin, supported by detailed mapping, is presented. The position of micromammal sites in the lithostratigraphical scheme, together with the results of intensive palaeontological sampling for small mammal remains, has allowed us to develop a high‐resolution biostratigraphical framework for the area. This provides an opportunity to refine the biozonation for the Plio‐Pleistocene micromammal faunas, and to define faunal events from the late Villanyian (late Pliocene) to the early Pleistocene. On the basis of the lithostratigraphical and biostratigraphical approaches we obtain the following sequence of biozones for the late Pliocene to early Pleistocene: Kislangia gusii, Mimomys cf. reidi, M. oswaldoreigi, Allophaiomys pliocaenicus and A. burgondiae. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The palynological record from the Colle Curti and Cesi continental deposits has been examined in order to identify the main palaeofloristic and vegetational changes between 0.99 and 0.6–0.7 Ma. These data show a progressive increase in aridity, as well as a progressive decrease in temperature, which are associated with the transition in dominance from the 41 to 100 ka cyclicity in the Milankovitch orbital record during the Middle Pleistocene. The disappearance of Tsuga, recorded during the lower part of the Brunhes Chron, also has been related to a shift in global aridity. During the successive open vegetational phases (glacials), Chenopodiaceae and Artemisia progressively increase, whereas Cyperaceae decrease. Forest phases (interglacials) are successively dominated by Tsuga, Abies with Picea and, finally, Pinus; but all lack significant expansion of broad‐leaved deciduous taxa. Palynological and sedimentological data, in addition to taphonomic interpretations, demonstrate the occurrence of several hiatuses in the lower parts of the interglacials. These hiatuses are considered to represent the palaeoenvironmental response to climatic changes affecting local sedimentological and geomorphological conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
This paper outlines evidence from Pakefield (northern Suffolk), eastern England, for sea‐level changes, river activity, soil development and glaciation during the late Early and early Middle Pleistocene (MIS 20–12) within the western margins of the southern North Sea Basin. During this time period, the area consisted of a low‐lying coastal plain and a shallow offshore shelf. The area was drained by major river systems including the Thames and Bytham. Changes in sea‐level caused several major transgressive–regressive cycles across this low‐relief region, and these changes are identified by the stratigraphic relationship between shallow marine (Wroxham Crag Formation), fluvial (Cromer Forest‐bed and Bytham formations) and glacial (Happisburgh and Lowestoft formations) sediments. Two separate glaciations are recognised—the Happisburgh (MIS 16) and Anglian (MIS 12) glaciations, and these are separated by a high sea level represented by a new member of the Wroxham Crag Formation, and several phases of river aggradation and incision. The principal driving mechanism behind sea‐level changes and river terrace development within the region during this time period is solar insolation operating over 100‐kyr eccentricity cycles. This effect is achieved by the impact of cold climate processes upon coastal, river and glacial systems and these climatically forced processes obscure the neotectonic drivers that operated over this period of time. © British Geological Survey/Natural Environment Research Council copyright 2005. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

12.
The northern Wanganui Basin, New Zealand, is one of the key global sites for understanding marine cyclic sedimentation during the Quaternary. This paper presents the first evidence of marine cyclic sedimentation from its central-southern parts. Sedimentological, micropalaeontological and palynological analyses on a 280-m-deep borehole encountered units dating back to MIS 10. The sequence includes four marine cycles spanning MIS 9–5, which are overlain by terrestrial fluvial aggradation surfaces dating from MIS 4–2. Each marine unit represents a progressively shallowing depositional environment from the mid-shelf to coastal plain. This is overlain by a terrestrial sequence of lowstand fluvial terraces. Localized fault movements appear to have influenced the sedimentary character of the sequence during MIS 7a and 5e producing basement highs which provided protection to the shoreline. The cyclothems described in this paper now extend the already extensive, previously described record from MIS 17–10 to produce a combined eustatic record of Quaternary sea level change within the basin to MIS 5. They also provide an excellent example of the sedimentary response of a coastal basin to a progressive loss of sedimentation accommodation space.  相似文献   

13.
During Integrated Ocean Drilling Program Expedition 325, 34 holes were drilled along five transects in front of the Great Barrier Reef of Australia, penetrating some 700 m of late Pleistocene reef deposits (post‐glacial; largely 20 to 10 kyr bp ) in water depths of 42 to 127 m. In seven holes, drilled in water depths of 42 to 92 m on three transects, older Pleistocene (older than last glacial maximum, >20 kyr bp ) reef deposits were recovered from lower core sections. In this study, facies, diagenetic features, mineralogy and stable isotope geochemistry of 100 samples from six of the latter holes were investigated and quantified. Lithologies are dominated by grain‐supported textures, and were to a large part deposited in high‐energy, reef or reef slope environments. Quantitative analyses allow 11 microfacies to be defined, including mixed skeletal packstone and grainstone, mudstone‐wackestone, coral packstone, coral grainstone, coralline algal grainstone, coral‐algal packstone, coralline algal packstone, Halimeda grainstone, microbialite and caliche. Microbialites, that are common in cavities of younger, post‐glacial deposits, are rare in pre‐last glacial maximum core sections, possibly due to a lack of open framework suitable for colonization by microbes. In pre‐last glacial maximum deposits of holes M0032A and M0033A (>20 kyr bp ), marine diagenetic features are dominant; samples consist largely of aragonite and high‐magnesium calcite. Holes M0042A and M0057A, which contain the oldest rocks (>169 kyr bp ), are characterized by meteoric diagenesis and samples mostly consist of low‐magnesium calcite. Holes M0042A, M0055A and M0056A (>30 kyr bp ), and a horizon in the upper part of hole M0057A, contain both marine and meteoric diagenetic features. However, only one change from marine to meteoric pore water is recorded in contrast with the changes in diagenetic environment that might be inferred from the sea‐level history. Values of stable isotopes of oxygen and carbon are consistent with these findings. Samples from holes M0032A and M0033A reflect largely positive values (δ18O: ?1 to +1‰ and δ13C: +1 to +4‰), whereas those from holes M0042A and M0057A are negative (δ18O: ?4 to +2‰ and δ13C: ?8 to +2‰). Holes M0055A and M0056A provide intermediate values, with slightly positive δ13C, and negative δ18O values. The type and intensity of meteroric diagenesis appears to have been controlled both by age and depth, i.e. the time available for diagenetic alteration, and reflects the relation between reef deposition and sea‐level change.  相似文献   

14.
The Cova Gran de Santa Linya (Lleida, Spain) is a recently discovered site, with a broad chrono‐cultural sequence that contains archaeological levels dating to the Middle Palaeolithic, Early Upper Palaeolithic, Late Upper Palaeolithic, Neolithic and Early Bronze Age. We present the chronometric and stratigraphic context of these occupations, which were dated using 14C accelerator mass spectrometry and thermoluminescence. The sequence provides important indicators that aid in the reconstruction of the history of human occupation on the southern slopes of the Spanish Pyrenees over the past 50,000 years. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Pleistocene fibrous aragonite fabrics, including crusts and spherules, occur in the Danakil Depression (Afar, Ethiopia) following the deposition of two distinctive Middle and Late Pleistocene coralgal reef units and pre‐dating the precipitation of evaporites. Crusts on top of the oldest reef unit (Marine Isotope Stage 7) cover and fill cavities within a red algal framework. The younger aragonite crusts directly cover coralgal bioherms (Marine Isotope Stage 5) and associated deposits. Their stratigraphic position between marine and evaporitic deposits, and their association to euryhaline molluscs, suggest that the crusts and spherules formed in restricted semi‐enclosed conditions. The availability of hard substrate controls crust formation with crusts more often found on steep palaeo‐slopes, from sea level up to at least 80 m depth, while spherules mainly occur associated with mobile substrate. Crusts reach up to 30 cm in thickness and can be microdigitate, columnar (branching and non‐branching) or non‐columnar, with laminated and non‐laminated fabrics. Two different lamination types are found within the crystalline fabrics: (i) isopachous lamination; and (ii) irregular lamination. These two types of lamination can be distinguished by the organization of the aragonite fibres, as well as the lateral continuity of the laminae. Scanning electron microscopy with energy dispersive X‐ray spectroscopy analyses on well‐preserved samples revealed the presence of Mg‐silicate laminae intercalated with fibrous aragonite, as well as Mg‐silicate aggregates closely associated with the fibrous aragonite crusts and spherules. The variety of observed fabrics results from a continuum of abiotic and microbial processes and, thus, reflects the tight interaction between microbially mediated and abiotic mineralization mechanisms. These are the youngest known isopachously laminated, digitate and columnar branching fibrous crusts associated with a transition from marine to evaporitic conditions. Understanding the context of formation of these deposits in Afar can help to better interpret the depositional environment of the widespread Precambrian sea‐floor precipitates.  相似文献   

16.
17.
This work presents the stratigraphy and facies analysis of an interval of about 2500 m in the Langhian and Serravallian stratigraphic succession of the foredeep turbidites of the Marnoso‐arenacea Formation. A high‐resolution stratigraphic analysis was performed by measuring seven stratigraphic logs between the Sillaro and Marecchia lines (60 km apart) for a total thickness of about 6700 m. The data suggest that the stratigraphy and depositional setting of the studied interval was influenced by syndepositional structural deformations. The studied stratigraphic succession has been subdivided into five informal stratigraphic units on the basis of how structurally controlled topographic highs and depocentres, a consequence of thrust propagation, change over time. These physiographic changes of the foredeep basin have also been reconstructed through the progressive appearance and disappearance of thrust‐related mass‐transport complexes and of five bed types interpreted as being related to structurally controlled basin morphology. Apart from Bouma‐like Type‐4 beds, Type‐1 tripartite beds, characterized by an internal slurry unit, tend to increase especially in structurally controlled stratigraphic units where intrabasinal topographic highs and depocentres with slope changes favour both mud erosion and decelerations. Type‐2 beds, with an internal slump‐type chaotic unit, characterize the basal boundary of structurally controlled stratigraphic units and are interpreted as indicating tectonic uplift. Type‐3 beds are contained‐reflected beds that indicate different degrees of basin confinement, while Type‐5 are thin and fine‐grained beds deposited by dilute reflected turbulent flows able to rise up the topographic highs. The vertical and lateral distribution of these beds has been used to understand the synsedimentary structural control of the studied stratigraphic succession, represented in the Marnoso‐arenacea Formation by subtle topographic highs and depocentres created by thrust‐propagation folds and emplacements of large mass‐transport complexes.  相似文献   

18.
The stratigraphic architecture of shoal‐water deltaic systems developed in low‐accommodation settings is relatively well‐known. In contrast, the features of shoal‐water deltas developed in high‐accommodation settings remain relatively poorly documented, especially when compared with the available data sets for Gilbert‐type deltaic systems developed in the same settings. The lacustrine Valimi Formation (Gulf of Corinth, Greece) provides an opportunity to investigate the facies assemblage and architectural style of shoal‐water deltaic systems developed in high‐accommodation settings. The studied interval accumulated during the Pliocene and Pleistocene and represents part of the early syn‐rift Gulf of Corinth succession. Six facies associations, each described in terms of depositional processes and geometries, have been identified and interpreted to represent a range of proximal to distal deltaic sub‐environments: delta plain, distributary channel, mouth‐bar, delta front, prodelta and open lake. The facies associations and their architectural elements reveal characteristics which are not common in traditionally described shoal‐water deltas. Of note, different facies arrangements are observed in the distributary channels in different sectors of the delta, passing from thick single‐storey channel fills embedded within delta‐plain fines in landward positions, to thin, amalgamated and multi‐storey channels closer to the river mouth. This study proposes a new depositional model for shoal‐water deltas in high‐accommodation settings documenting, for the first time, that shoal‐water delta deposits can form a substantial part of stratigraphic successions that accumulate in these settings. The proposed depositional model provides new criteria for the recognition and interpretation of these deposits; the results of this study have applied significance for reservoir characterization.  相似文献   

19.
Stable isotopes and element compositions of the fine‐grained matrix were measured for IODP Expedition 307 Hole U1317E drilled from the summit of Challenger Mound in Porcupine Seabight, northeast Atlantic, to explore the palaeoceanographic and palaeoclimatic background to development of the deep‐water coral mound. The 155 m long mound section was divided into two units by an unconformity at 23.6 mbsf: Unit M1 (2.6–1.7 Ma) and Unit M2 (1.0–0.5 Ma). Results from 519 specimens show a difference in δ13C value between Unit M1 (?0.6‰ to ?5.0‰) and Unit M2 (?1.0‰ to 1.0‰), but such a distinct difference was not seen in δ18O values (1.0‰–2.5‰), CaCO3 content (40–60 wt%), Sr/Ca ratio (2.0–8.0 mmol mol?1), and Mg/Ca ratio (10.0–20.0 mmol mol?1) through the mound. Positive δ18O and negative δ13C shifts at the mound base are consistent with the oceanographic changes in the northeast Atlantic at the beginning of the Quaternary. The positive δ13C regression in Unit M2 suggests a linkage to the mid Pleistocene intensified glaciation in the Northern Hemisphere. Warm Mediterranean Upper Core Water of Mediterranean Outflow Water, Eastern North Atlantic Water and cold Labrador Sea Water of North Atlantic Deep Water are key oceanographic features that cause spikes and shifts in stable isotope and element composition. However, the stable isotope values of the sediment matrix could not primarily record the glacial–interglacial eustatic/temperature change, but indirectly indicate current regimes of the intermediate oceanic layer where the coral mound grew. Similarly, elemental ratios and CaCO3 content may not represent the productivity and temperature of surface sea water, respectively, but superpose the fractions from both surface and bottom water. It is concluded that palaeoceanographic change coupled to the Pleistocene glacial/interglacial cycles is a key control on the geochemical stratigraphy of the matrix sediments of the carbonate mound developed in Porcupine Seabight. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号