共查询到16条相似文献,搜索用时 73 毫秒
1.
2.
耗能梁段作为偏心支撑结构的耗能元件,在大震作用下通过弹塑性变形吸收地震能量,保护主体结构处于弹性受力状态。现行规范基于强度的设计理论,为了保证耗能梁段进入塑性或破坏,梁柱构件需要进行放大内力设计,导致截面过大,而且基于强度的设计方法很难保证结构的整体破坏状态。目前,抗震设计越来越重视基于性能的设计思想,该方法能够评估结构的弹塑性反应。对于高强钢组合偏心支撑,其中耗能梁段和支撑采用Q345钢,框架梁柱采用Q460或者Q690高强度钢材,高强钢不仅带来良好的经济效益,而且能够推广高强钢在抗震设防区的应用。利用基于性能设计方法设计了4种不同形式的高强钢组合偏心支撑钢框架,包括K形、Y形、V形和D形,考虑4层、8层、12层和16层的影响。通过Pushover分析和非线性时程分析评估该结构的抗震性能,研究结果表明:4种形式的高强钢组合偏心支撑钢框架具有类似的抗震性能,在罕遇地震作用下,几乎所有耗能梁段均参与耗能,而且层间侧移与耗能梁段转角沿高度分布较为均匀。其中:D形偏心支撑具有最大的抗侧刚度,但延性较差,而Y形偏心支撑的抗侧刚度最弱,但延性最佳。 相似文献
3.
K形高强钢组合偏心支撑(K-HSS-EBF)是指耗能连梁和支撑采用Q345钢,而框架梁、框架柱采用高强度钢(如Q460)。为研究其在罕遇地震作用下的抗震性能,在试验研究的基础上,采用直接基于位移的抗震设计方法设计了5层、8层和12层算例,分别进行静力推覆分析和动力弹塑性分析,研究高强钢组合偏心支撑钢框架在罕遇地震作用下层间侧移分布和破坏模式。研究结果表明:直接基于位移的抗震设计方法设计的算例在罕遇地震作用下,结构的层间侧移满足我国现行抗震规范的要求,结构呈理想的渐进式梁铰屈服机构,并证明该设计方法的合理性和可靠性。 相似文献
4.
隅撑支撑框架是一种新型的耗能支撑钢框架结构形式,在小震作用下,具有较大的抗侧移刚度,在大震作用下,具有较好的耗能性能.隅撑是隅撑支撑框架中的耗能构件,其设计参数对隅撑支撑框架的抗震性能有重大影响.本文主要通过非线性有限元分析,探讨了隅撑的设计参数对隅撑支撑钢框架抗震性能的影响. 相似文献
5.
为研究高强钢组合K形偏心支撑框架在反复荷载作用下的受力性能,在已有拟静力试验的基础上,利用有限元软件OpenSEES对一个高强钢组合K形偏心支撑框架模型进行了精细化建模研究。首先,探讨了模型的单元选择,纤维截面划分和材料本构参数定义问题。同时,考虑到在地震荷载作用下,高强钢组合K形偏心支撑框架主要依靠消能梁段的剪切变形来耗能,因此,如何模拟结构中消能梁段的剪切效应成为研究的关键。本文采用OpenSEES提供的组合截面和零长度单元两种方法来对消能梁段进行建模,剪切材料分别考虑了Steel 02和滞回材料。将不同消能梁段建模方法的模拟滞回曲线和骨架曲线与试验结果进行比较。结果表明:精细化模型的数值模拟结果和试验结果具有较好的吻合度,验证了数值模型的正确性和可行性;采用零长度单元和Steel 02的组合方式来模拟消能梁段的剪切效应能够同时满足计算效率和计算精度的要求,为进一步利用OpenSEES进行高强钢组合K形偏心支撑框架的动态响应分析和复杂模型分析提供了建模参考依据。 相似文献
6.
为研究近场地震作用下Y形高强钢组合偏心支撑框架结构(Y-HSS-EBF)的弹塑性侧向力分布,本文精细设计了4个不同层数的Y-HSS-EBF结构,通过弹塑性时程分析且考虑了结构层数、近场地震及其速度脉冲效应对结构的影响,获得了Y-HSS-EBF结构在罕遇水准近场地震下的侧向力分布,基于底部剪力法得到了Y-HSS-EBF结构弹塑性侧向力分布模式,并与已有侧向力分布模式进行了对比。结果表明:近场地震波的速度脉冲效应对Y-HSS-EBF结构的侧向力分布影响较大,应考虑其对结构侧向力分布的影响;本文建议的侧向力分布模式在精度上与时程分析结果平均值最为接近,能够为Y-HSS-EBF结构基于性能的塑性设计方法提供一定参考。 相似文献
7.
8.
耗以支撑钢筋混凝土框架结构抗震性能研究 总被引:2,自引:0,他引:2
本文通过普通钢筋混凝土框架、耗能支撑钢筋混凝土框架结构1/8比例模型的地震模拟震动台对比试验,研究两类框架结构在地震作用下的破坏形态和动力特征,揭示了耗能支撑钢筋混凝土框架结构良好的抗震性能;以试验模型进行了弹塑性时程分析,理论分析和试验结果符合较好;结合场州电厂二期主厂房框架结构,研究了其纵向框架结构采用耗能支撑体系时结构的抗震性能,为该类结构形式的工程应用提供依据。 相似文献
9.
为了研究自复位中心支撑钢框架(SC-CBF)结构的抗震性能,对一四层SC-CBF结构进行了静力弹塑性分析、低周往复加载分析和动力弹塑性时程分析,并与中心支撑钢框架(CBF)结构进行对比,探究了不同GAP单元刚度和预应力筋截面积对SC-CBF结构自复位性能及抗震性能的影响规律。结果表明:与传统CBF结构相比,SC-CBF结构的抗侧能力强,地震作用下基底剪力小,卸载后的残余变形较小,具有良好的延性性能;在极罕遇地震作用下SC-CBF结构的位移响应大,耗散的能量多,层间位移角大而残余位移小,表现出良好的自复位性能和抗震性能;GAP单元刚度对预应力筋的受力性能影响较为明显,对结构的整体受力性能和延性性能影响较小,但结构的整体受力性能和延性性能受预应力筋截面积影响显著。 相似文献
10.
耗能段腹板高厚比对Y型偏心支撑钢框架滞回性能影响的试验研究 总被引:1,自引:0,他引:1
Y型偏心支撑钢框架是偏心支撑结构中抗震耗能的结构形式之一,为了研究Y型偏心支撑钢框架中耗能梁段腹板高厚比对结构滞回性能的影响,进行了2榀1/3缩尺Y型偏心支撑钢框架的低周反复荷载试验.本文主要介绍了试验过程,分析了Y型偏心支撑钢框架在循环荷载作用下的破坏机理、滞回性能、延性、刚度退化规律以及耗能能力.试验结果表明:Y型偏心支撑钢框架延性好、耗能能力强,耗能梁段腹板高厚比的改变对Y型偏心支撑钢框架强度、刚度以及耗能能力具有较大的影响.耗能梁段腹板高厚比设计得合理,Y型偏心支撑钢框架侧向刚度较大,可以满足在小震或中震作用下的结构变形要求,在大震作用下提供良好的变形能力和耗散地震能量的功能. 相似文献
11.
Structural damage in buildings designed according to the dissipative design philosophy can be significant, even under moderate earthquakes. Repair of damaged members is an expensive operation and may affect building use, which in turn increases the overall economic loss. If damage can be isolated to certain dissipative members realized to be removable following an earthquake, the repair costs and time of interruption of building use can be reduced. Dual structural configurations, composed of a rigid subsystem with removable ductile elements and a flexible subsystem, are shown to be appropriate for the application of removable dissipative element concept. Eccentrically braced frames with removable links connected to the beams using flush end‐plate bolted connections are investigated as a practical way of implementing this design concept. High‐strength steel is used for members outside links in order to enhance global seismic performance of the structure by constraining plastic deformations to removable links and reducing permanent drifts of the structure. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
12.
Hayato Asada Andrew D. Sen Tao Li Jeffrey W. Berman Dawn E. Lehman Charles W. Roeder 《地震工程与结构动力学》2020,49(15):1619-1639
Current seismic design requirements for special concentrically braced frames (SCBFs) in chevron configurations require that the beams supporting the braces be designed to resist the demands resulting from the simultaneous yielding of the tension brace and degraded, post-buckling strength of the compression brace. Recent research, including large-scale experiments and detailed finite-element analyses, has demonstrated that limited beam yielding is not detrimental to chevron braced frame behavior and actually increases the story drift at which the braces fracture. These findings have resulted in new expressions for computing beam demands in chevron SCBFs that reduce the demand in the tension brace to be equal to the expected compressive capacity at buckling of the compression brace. In turn, the resultant force on the beam is reduced as is the required size of the beam. Further study was undertaken to investigate the seismic performance of buildings with SCBFs, including chevron SCBFs with and without yielding beams and X-braced frames. Prototype three- and nine-story braced frames were designed using all three framing systems, that is, chevron, chevron with yielding beams, and X SCBFs, resulting in six building frames. The nonlinear dynamic response was studied for ground motions simulating two different seismic hazard levels. The results were used to characterize the seismic performance in terms of the probability of salient damage states including brace fracture, beam vertical deformation, and collapse. The results demonstrate that the seismic performance of chevron SCBFs with limited beam yielding performs as well as or better than the conventionally designed chevron and X SCBFs. 相似文献
13.
Edoardo M. Marino 《地震工程与结构动力学》2014,43(1):97-118
Eurocode 8 (EC8) stipulates design methods for frames with diagonal braces and for chevron braced frames, which differ as regards the numerical model adopted, the value of the behavior factor q and the estimation of the lateral strength provided by braces. Instead, in this paper, the use of the same design method is suggested for both types of concentrically braced frames. The design method is a generalization of the one proposed for chevron braced frames in a previous study. A numerical investigation is conducted to assess the reliability of this design method. A set of concentrically braced frames is designed according to the EC8 and proposed design methods. The seismic response of these frames is determined by nonlinear dynamic analysis. Finally, it is demonstrated that the proposed design method is equivalent to those provided by EC8, because it can ensure the same level of structural safety which would be expected when using EC8. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
14.
The AISC Seismic Provisions for Structural Steel Buildings (AISC 341-16) provide a testing protocol for qualification of link-to-column connections in eccentrically braced frames (EBFs). This symmetrical testing protocol was developed by conducting nonlinear time history analysis on representative EBFs designed according to the International Building Code. Although the testing protocol is intended for qualification of link-to-column connections, many research programs have employed this recommended protocol for testing of shear links. Recent numerical investigations on constructed EBFs and archetype models showed that links can be subjected to one-sided loadings with significantly higher link rotation angles than the codified limits. A numerical study has been undertaken to develop nonsymmetrical loading protocols for shear links in EBFs. Pursuant to this goal, 20 EBF archetypes were designed according to the ASCE7-16 standard. The main parameters investigated were the link length to bay width ratio (e/L), number of stories, type of EBF, and the ground motion level. The archetypes were subjected to maximum considered earthquake and collapse level earthquake as recommended by FEMA P695. The results showed that the history of link rotation is single sided and depends strongly on e/L and the level of ground motion. Nonsymmetrical loading protocols that depend on the aforementioned variables were developed and are presented herein. 相似文献
15.
This paper presents an analytical model for the inelastic response analysis of braced steel structures. A model is first presented for the behaviour of steel struts subjected to cyclic axial load, which combines the analytical formulation of plastic hinge behaviour with empirical formulas developed on the basis of experimental data. The brace is modelled as a pin-ended member, with a plastic hinge located at the midspan. Braces, with other end conditions, are handled using the effective length concept. Step-wise regression analysis is employed, to approximate the plastic conditions for the steel UC section. Verification of the brace model is performed on the basis of quasi-static analyses of individual struts and a one-bay one-storey X-braced steel frame. The comparison of analytical and experimental data has confirmed that the proposed brace model is able to accurately simulate the cyclic inelastic behaviour of steel braces and braced systems. A series of dynamic analyses has been performed on two-storey V- and X-braced frames to study the influence of brace slenderness ratio on the inelastic response, and to look at the redistribution of forces in the post-buckling range of behaviour of CBFs. Recommendations have been made as to the estimation of maximum storey drifts for concentrically-braced steel frames in major seismic event. © 1997 John Wiley & Sons, Ltd. 相似文献
16.
The design and detailing of gusset plate connections greatly influence the seismic performance of a special concentrically braced frame (SCBF). Recently, a balanced design approach has been proposed in order to develop significant inelastic deformation from multiple yield mechanisms and to delay the failure of connections of SCBF system. Although extensive studies have been conducted on the corner gusset plate connections of SCBFs, research on the detailing of mid‐span beam gusset plates is rather limited. This study aims at investigating the required free length for the detailing of the mid‐span gusset plates with different brace slenderness ratios. A nonlinear finite element analysis has been conducted for a braced frame with 4 different values of linear clearance in the mid‐span gusset plates and 2 values of brace slenderness ratios. In all simulation models, the corner gusset plates have been designed using balanced design approach and detailed using an elliptical clearance of 8 times the gusset plate thickness. An experimental study has also been conducted on 2 gusset plate sub‐assemblages having similar brace slenderness ratio but with 2 different values of linear clearance in the middle gusset plates. The lateral drift capacity corresponding to the brace fracture and the level of damage are found to be dependent on the detailing of the gusset plates. Based on the results of numerical and experimental studies, the required free length has been recommended for the detailing of middle gusset plates of SCBFs of different brace slenderness ratios. 相似文献