首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifty groundwater samples were collected from Al-Hasa to analyze the pH, electrical conductivity (EC, dS m?1), total dissolved solids (TDS), major anions (HCO3?, CO32?, Cl?, SO42?, and NO3?), major cations (Ca2+, Mg2+, Na+, and K+), and total hardness. The analyzed data plotted in the Piper, Gibbs, and Durov diagrams, and water quality index (WQI) were calculated to evaluate the groundwater geochemistry and its water quality. The results reveal that most of the investigated samples are Ca2+, Mg2+, SO42?, Cl? and Na+, and HCO3? water types using the Piper diagram. Na+?>?Ca2+?>?Mg2+ are the dominant cations, while Cl??>?HCO3??>?SO42??>?CO32? are the dominant anions. Sodium adsorption ratio (SAR) values varied from 0.79 to 10; however, the Kelly ratio (KR) ranged between 0.1 and 2.2. The permeability index (PI) showed that well water is suitable for irrigation purposes with 75% or more of maximum permeability. The US salinity diagram revealed that the water quality classes of studied waters were CIII-SI, CIII-SII, and CIV-SII, representing height hazards of salinity and medium- to low-sodium hazard. The water quality index (WQI) results indicated that total dissolved solids are out of the drinking water standard limits in Saudi Arabia. The WQI revealed that 38% of the studied wells were considered as poor water (class III), 52% are found as very poor water class (IV), and 10% are unsuitable water for drinking class (V).  相似文献   

2.
Groundwater survey has been carried out in the area of Gummanampadu sub-basin located in Guntur District, Andhra Pradesh, India for assessing the factors that are responsible for changing of groundwater chemistry and consequent deterioration of groundwater quality, where the groundwater is a prime source for drinking and irrigation due to non-availability of surface water in time. The area is underlain by the Archaean Gneissic Complex, over which the Proterozoic Cumbhum rocks occur. The results of the plotting of Ca2+ + Mg2+ versus HCO3 ? + CO3 2?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO4 2? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3 ? + CO3 2?, Na+ versus Ca2+ and Na+: Cl? versus EC indicate that the rock–water interaction under alkaline condition is the main mechanism in activating mineral dissociation and dissolution, causing the release of Ca2+, Mg2+, Na+, K+, HCO3 ?, CO3 2?, SO4 2? and F? ions into the groundwater. The ionic relations also suggest that the higher concentrations of Na+ and Cl? ions are the results of ion exchange and evaporation. The influences of anthropogenic sources are the other cause for increasing of Mg2+, Na+, Cl?, SO4 2? and NO3 ? ions. Further, the excess alkaline condition in water accelerates more effective dissolution of F?-bearing minerals. Moreover, the chemical data plotted in the Piper’s, Gibbs’s and Langelier–Ludwig’s diagrams, computed for the chloro-alkaline and saturation indices, and analyzed in the principal component analysis, support the above hypothesis. The groundwater quality is, thus, characterized by Na+ > Ca2+ > Mg2+ > K+: HCO3 ? + CO3 2? > Cl? > SO4 2? > NO3 ? > F? facies. On the other hand, majority of groundwater samples are not suitable for drinking with reference to the concentrations of TDS, TH, Mg2+ and F?, while those are not good for irrigation with respect to USSL’s and Wilcox’s diagrams, residual sodium carbonate, and magnesium hazard, but they are safe for irrigation with respect to permeability index. Thus, the study recommends suitable management measures to improve health conditions as well as to increase agricultural output.  相似文献   

3.
As one of the most arid regions in the world, the study area, Zhangye Basin is located in the middle reaches of the Heihe River, northwest China. Besides aridity, rapid social and economic development also stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. In this study, the conventional hydrochemical techniques and statistical analyses were applied to examine the major ions chemistry and hydrochemical processes of groundwater in the Zhangye Basin. The results of chemical analysis indicate that no one pair of cations and anions proportions is more than 50% in the groundwater samples of the study area. High-positive correlations were obtained among the following ions: HCO3 ?–Mg2+, SO4 2?–Mg2+, SO4 2?–Na+ and Cl?–Na+. TDS depends mainly on the concentration of major ions such as HCO3 ?, SO4 2?, Cl?, Mg2+ and Na+. The hydrochemical types in the area can be divided into two major groups: the first group includes Mg2+–Na+–HCO3 ?, Mg2+–Na+–Ca2+–HCO3 ?–SO4 2? and Mg2+–Ca2+–Na+–SO4 2?–HCO3 ? types. The second group comprises Mg2+–Ca2+–SO4 2? type, Mg2+–Ca2+–SO4 2?–Cl? type and Mg2+–Na+–SO4 2?–Cl? type. The ionic ratio plot and saturation index calculation suggests that the silicate weathering, to some extent, and evaporation are dominant factors that determine the major ionic composition in the study area.  相似文献   

4.
Hydrogeochemical controlling factors for high rate of groundwater contamination in stressed aquifer of fractured, consolidated rocks belonging to semi-arid watershed are examined. The groundwater in mid-eastern part of Prakasam district confining to Musi-Gundlakamma sub-basins is heavily contaminated with nitrate and fluoride. Distinct water chemistry is noticed among each group of samples segregated based on concentration of these contaminants. The nitrate is as high as 594 mg/l and 57 % of the samples have it in toxic level as per BIS drinking water standards, so also the fluoride which has reached a maximum of 8.96 mq/l and 43 % of samples are not fit for human consumption. Nitrate contamination is high in shallow aquifers and granitic terrains, whereas fluoride is in excess concentration in deeper zones and meta-sediments among the tested wells, and 25 % of samples suffer from both NO3 ? and F? contamination. Na+ among cations and HCO3 ? among anions are the dominant species followed by Mg2+ and Cl?. The NO3 ?-rich groundwater is of Ca2+–Mg2+–HCO3 ?, Ca2+–Mg2+–Cl? and Na+–HCO3 ? type. The F?-rich groundwater is dominantly of Na+–HCO3 ? type and few are of Na+–SO4 2? type, whereas the safe waters (without any contaminants) are of Ca2+–Mg2+–HCO3 ?– and Na+–HCO3 ? types. High molecular percentage of Na+, Cl?, SO4 2? and K? in NO3 ? rich groundwater indicates simultaneous contribution of many elements through domestic sewerage and agriculture activity. It is further confirmed by analogous ratios of commonly associated ions viz NO3 ?:Cl?:SO4 2? and NO3 ?:K+:Cl? which are 22:56:22 and 42:10:48, respectively. The F? rich groundwater is unique by having higher content of Na+ (183 %) and HCO3 ? (28 %) than safe waters. The K+:F?:Ca2+ ratio of 10:5:85 and K+:F?: SO4 2? of 16:7:77 support lithological origin of F? facilitated by precipitation of CaCO3 which removes Ca2+ from solution. The high concentrations of Na+, CO3 ? and HCO3 ? in these waters act as catalyst allowing more fluorite to dissolve into the groundwater. The indices, ratios and scatter plots indicate that the NO3 ? rich groundwater has evolved through silicate weathering-anthropogenic activity-evapotranspiration processes, whereas F? rich groundwater attained its unique chemistry from mineral dissolution-water–rock interaction-ion exchange. Both the waters are subjected to external infusion of certain elements such as Na+, Cl?, NO3 ? which are further aggravated by evaporation processes leading to heavy accumulation of contaminants by raising the water density. Presence of NO3 ? rich samples within F? rich groundwater Group and vice versa authenticates the proposed evolution processes.  相似文献   

5.
Hydrogeochemical assessment of groundwater in Isfahan province, Iran   总被引:2,自引:2,他引:0  
Groundwater quality in five catchment areas in Isfahan province of Iran is assessed by measuring physicochemical parameters including major cation and anion compositions, pH, total dissolved solid, electrical conductivity and total hardness. For this purpose, 567 piezometric well samples were collected in October 2007. The abundance of major ions in four of the catchment areas including Gavkhuni, Ardestan, Salt lake and Central Iran desert basins is similar and follows Cl??>?SO4 2??>?Na+?>?HCO3 ??>?Ca2+?>?Mg2+?>?K+?>?CO3 2? trend, while in the fifth basin (Karoon), the trend changes into HCO3 ??>?Ca2+?>?Cl??>?SO4 2??>?Mg2+?>?Na+?>?K+?>CO3 2?. In general, four water facies are determined and it is shown that alkali elements and strong acids are dominating over alkaline earth and weak acids. Statistical analysis including Mann?CWhitney U test indicate that physicochemical parameters in three of the five investigated basins [Gavkhuni, Ardestan and Central Iran desert (CID)] are similar, while Karoon and salt lake basins display different characteristics. The result indicate that groundwater west of the province is suitable for irrigation, while in the central and eastern parts of the province the groundwater loses its quality for this purpose. It is concluded that mineral dissolution and evapotranspiration are the main processes that determine major ion compositions.  相似文献   

6.
Hydogrochemical investigation of groundwater resources of Paragraph district has been carried out to assess the solute acquisition processes and water quality for domestic and irrigation uses. Fifty-five groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (F?, Cl?, NO3, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). Study results reveal that groundwater of the area is alkaline in nature and HCO3 ?, Cl?, Mg2+, Na+ and Ca2+ are the major contributing ions to the dissolved solids. The hydrogeochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Pratapgarh district. Alkaline earth metals (Ca2++Mg2+) exceed alkalis (Na++K+) and weak acid (HCO3 ?) dominate over strong acids (Cl?+SO4 2?) in majority of the groundwater samples. Ca-Mg-HCO3 and Ca-Mg-Cl-HCO3 are the dominant hydrogeochemical facies in the groundwater of the area. The computed saturation indices demonstrate oversaturated condition with respect to dolomite and calcite and undersaturated with gypsum and fluorite. A comparison of groundwater quality parameters in relation to specified limits for drinking water shows that concentrations of TDS, F?, NO3 ? and total hardness exceed the desirable limits in many water samples. Quality assessment for irrigation uses reveal that the groundwater is good for irrigation. However, values of salinity, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), %Na and Kelley index are exceeding the prescribed limit at some sites, demanding adequate drainage and water management plan for the area.  相似文献   

7.
In this study, it is determined physicochemical properties of the groundwater and the spatial variability of physicochemical properties of the groundwater in the Amik plain and as well as assess its suitability for drinking and irrigation. A total 92 groundwater samples were collected from drilled well in June 2012. In addition, the 42 of 92 drilled wells were also sampled in September 2012 to evaluate the changes of groundwater properties. According to t test values, the mean Ca2+, SO4 2?, Mg2+ and TH values in the June period were significantly lower than those of the September period. On the other hand, the mean (CO 3 2?  + HCO3 ?) and RSC and MR values in the June period were significantly higher than those of the September period. The order of relative abundance of major cations in the groundwater (in mg L?1) is in order Na> Mg2+ > Ca2+ > K+. The order of the anions abundance (mg L?1) is SO4 2? > Cl? > HCO3 ? > CO3 2? in this research. Log and square-root transformation were carried out for the most of the water properties before the calculation of semivariance. The nugget ratio showed all the variables were strongly spatial dependent except for K+ and Mg2+ and (CO3 2? + HCO3 ?) which showed moderate spatial dependence (ratio ranging from 28 to 49.9 %). Spatial distribution analysis of groundwater quality indicated that The EC, TDS values and Na and Cl? contents which is important water quality parameters increase from northern towards southern. The total hardness values increase also from northwestern towards southwestern.  相似文献   

8.
Twenty groundwater samples were collected from Enugu metropolis over two seasonal periods in order to characterize the groundwater and to determine its quality for domestic and irrigation purposes. The results show that groundwater of the area is strongly acidic to slightly alkaline in nature and varied from “soft water” to “moderately hard” water type. The major ionic trend is in the order Cl> Na> HCO3 ? > K> Mg2+ > Ca2+ > SO4 2?and Mg2+ > Cl> Na> K> Ca2+ > HCO 3 > SO4 2? in abundance for dry and rainy seasons, respectively. The results also reveal that there is an increase in trend of the ionic concentrations during the dry season, which arises from weathering of the host rocks and anthropogenic activities. Two hydrochemical facies were identified, namely, Na+ –K+ –Cl? –SO4 2?and Ca2+ –Mg2+ –Cl? –SO4 2? , with Na+ –K+ –Cl? –SO4 2? as the dominant facies for the two seasons. Groundwater quality ranges from “very poor water” to “good water” and “water unsuitable for drinking purposes” to “good water” for the dry season and rainy season investigations, respectively. The groundwater is suitable for irrigation purposes for the two seasons.  相似文献   

9.
The present study assesses the impact of coal mining on surface and groundwater resources of Korba Coalfield, Central India. Accordingly, water samples collected from various sources are analyzed for major ions, trace elements, and other mine effluent parameters. Results show that the groundwater samples are slightly acidic, whereas river water and mine water samples are mildly alkaline. Elevated concentrations of Ca2+, Na+, HCO3 ?, and SO4 2? alongside the molar ratios (Ca2++Mg2+)/(SO4 2?+HCO3 ?) <1 and Na+/Cl? >1 suggest that silicate weathering (water-rock interaction) coupled with ion exchange are dominant solute acquisition processes controlling the chemistry of groundwater in the study area. The overall hydrogeochemistry of the area is dominated by two major hydrogeochemical facies (i.e., Ca–Cl–SO4 and Ca–HCO3). Analysis of groundwater and river water quality index (GRWQI) elucidates that majority (82%) of samples are of “excellent” to “good” category, and the remaining 12% are of “poor” quality. Similarly, the effluent water quality index (EWQI) indicates that 6 out of 8 samples belong to excellent quality. Concentration of trace element constituents such as As, Zn, Cu, Cr, and Cd is found to be well within the stipulated limits for potable use, except for Fe, Mn, and Pb. Suitability of water samples for irrigation purpose, established using standard tools like Wilcox and USSL diagrams, reveal “excellent to permissible” category for majority of the samples. The present study also substantiates the effectiveness of the measures implemented for the treatment of mine effluent water.  相似文献   

10.
The hydrogeochemical study of groundwater in Dumka and Jamtara districts has been carried out to assess the major ion chemistry, hydrogeochemical processes and groundwater quality for domestic and irrigation uses. Thirty groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids (TDS), total hardness, anions (F?, Cl?, NO3 ?, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). The analytical results show the faintly alkaline nature of water and dominance of Mg2+ and Ca2+ in cationic and HCO3 ? and Cl? in anionic abundance. The concentrations of alkaline earth metals (Ca2+?+?Mg2+) exceed the alkali metals (Na+?+?K+) and HCO3 ? dominates over SO4 2??+?Cl? concentrations in the majority of the groundwater samples. Ca?CMg?CHCO3 is the dominant hydrogeochemical facies in 60?% of the groundwater samples, while 33?% samples occur as a mixed chemical character of Ca?CMg?CCl hydrogeochemical facies. The water chemistry is largely controlled by rock weathering and ion exchange processes with secondary contribution from anthropogenic sources. The inter-elemental correlations and factor and cluster analysis of hydro-geochemical database suggest combined influence of carbonate and silicate weathering on solute acquisition processes. For quality assessment, analyzed parameter values were compared with Indian and WHO water quality standards. In majority of the samples, the analyzed parameters are well within the desirable limits and water is potable for drinking purposes. Total hardness and concentrations of TDS, Cl?, NO3 ? , Ca2+ and Mg2+ exceed the desirable limits at a few sites, however, except NO3 ? all these values were below the highest permissible limits. The calculated parameters such as sodium adsorption ratio, percent sodium (%Na) and residual sodium carbonate revealed excellent to good quality of groundwater for agricultural purposes, except at few sites where salinity and magnesium hazard (MH) values exceeds the prescribed limits and demands special management.  相似文献   

11.
Through the Deep Sea Drilling Project samples of interstitial solutions of deeply buried marine sediments throughout the World Ocean have been obtained and analyzed. The studies have shown that in all but the most slowly deposited sediments pore fluids exhibit changes in composition upon burial. These changes can be grouped into a few consistent patterns that facilitate identification of the diagenetic reactions occurring in the sediments.Pelagic clays and slowly deposited (<1 cm/103yr) biogenic sediments are the only types that exhibit little evidence of reaction in the pore waters.In most biogenic sediments sea water undergoes considerable alteration. In sediments deposited at rates up to a few cm/103 yr the changes chiefly involve gains of Ca2+ and Sr2+ and losses of Mg2+ which balance the Ca2+ enrichment. The Ca-Mg substitution may often reach 30 mM/kg while Sr2+ may be enriched 15-fold over sea water. These changes reflect recrystallization of biogenic calcite and the substitution of Mg2+ for Ca2+ during this reaction. The Ca-Mg-carbonate formed is most likely a dolomitic phase. A related but more complex pattern is found in carbonate sediments deposited at somewhat greater rates. Ca2+ and Sr2+ enrichment is again characteristic, but Mg2+ losses exceed Ca2+ gains with the excess being balanced by SO4post staggered2? losses. The data indicate that the reactions are similar to those noted above, except that the Ca2+ released is not kept in solution but is precipitated by the HCO3post staggered? produced in SO4post staggered2? reduction. In both these types of pore waters Na+ is usually conservative, but K+ depletions are frequent.In several partly consolidated sediment sections approaching igneous basement contact, very marked interstitial calcium enrichment has been found (to 5.5 g/kg). These phenomena are marked by pronounced depletion in Na+, Si and CO2, and slight enhancement in Cl?. The changes are attributed to exchange of Na+ for Ca2+ in silicate minerals forming from submarine weathering of igneous rocks such as basalts. Water is also consumed in these reactions, accounting for minor increases in total interstitial salinity.Terrigenous, organic-rich sediments deposited rapidly along continental margins also exhibit significant evidences of alteration. Microbial reactions involving organic matter lead to complete removal of SO4post staggered2?, strong HCO3post staggered? enrichment, formation of NH4post staggered+, and methane synthesis from H2 and CO2 once SO4post staggered2? is eliminated. K+ and often Na+ (slightly) are depleted in the interstitial waters. Ca2+ depletion may occur owing to precipitation of CaCO3. In most cases interstitial Cl? remains relatively constant, but increases are noted over evaporitic strata, and decreases in interstitial Cl? are observed in some sediments adjacent to continents.  相似文献   

12.
This paper provides insight into the quality of groundwater used for public water supply on the territory of Kikinda municipality (Vojvodina, Serbia) and main processes which control it. The following parameters were measured: color, turbidity, pH, KMnO4 consumption, TDS, EC, NH4 +, Cl?, NO2 ?, NO3 ?, Fe, Mn, total hardness, Ca2+, Mg2+, SO4 2+, HCO3 ?, K+, Na+, As. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from 11 analyzed sources is Na–HCO3 type. Intense color and elevated organic matter content of these waters originate from humic substances. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, HCO3 content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering.  相似文献   

13.
Agricultural activities act as dominant polluter of groundwater due to increased fertilizers and pesticides usage. Bist-Doab region, Punjab, India, is one such region facing deterioration of groundwater quality due to usage of fertilizers. This study aims in delineating and evaluating the groundwater quality in the region. Water samples are collected from canals, reservoir, and shallow and deep groundwater. Water types in canal and reservoir in Kandi region are Mg2+HCO3 ? and Mg2+Ca2+Na+HCO3 ?, respectively. While water types of shallow and deep groundwaters are found to be of two types: Na+Mg2+Ca2+HCO3 ? and Ca2+Mg2+Na+HCO3 ?. Presence of Mg2+ in groundwater at locations adjoining canals indicates recharge due to canal. The major ion (Na+, Mg2+, Ca2+, HCO3 ?) chemistry of the region is due to weathering of rocks that are rich in sodic minerals and kankar. Deep groundwater quality in the region meets BIS and WHO standards for drinking purpose, unlike shallow groundwater which is of poor quality at many locations. Both shallow and deep groundwater with high sodium concentration (>1.5 meq/l) affect cropping yield and permeability of soil matrix. High concentration of SO4 2? and NO3 2? (>1 meq/l) in shallow groundwater at few locations indicates influence of anthropogenic (fertilizer) activity. Factor analysis indicates that the major cations, bicarbonate and chloride are derived from weathering/dissolution of source rocks. Higher concentration of nitrate and presence of sulphate in shallow groundwater at few locations is due to usage of fertilizers and pesticides.  相似文献   

14.
A survey on quality of groundwater was carried out for assessing the geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India, where the area is underlain by Peninsular Gneissic Complex. The results of the groundwater chemistry show a variation in pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ? and F?. The chemical composition of groundwater is mainly characterized by Na+?HCO3 ? facies. Hydrogeochemical type transits from Na+–Cl?–HCO3 ? to Na+–HCO3 ?–Cl? along the flow path. Graphical and binary diagrams, correlation coefficients and saturation indices clearly explain that the chemical composition of groundwater is mainly controlled by geogenic processes (rock weathering, mineral dissolution, ion exchange and evaporation) and anthropogenic sources (irrigation return flow, wastewater, agrochemicals and constructional activities). The principal component (PC) analysis transforms the chemical variables into four PCs, which account for 87% of the total variance of the groundwater chemistry. The PC I has high positive loadings of pH, HCO3 ?, NO3 ?, K+, Mg2+ and F?, attributing to mineral weathering and dissolution, and agrochemicals (nitrogen, phosphate and potash fertilizers). The PC II loadings are highly positive for Na+, TDS, Cl? and F?, representing the rock weathering, mineral dissolution, ion exchange, evaporation, irrigation return flow and phosphate fertilizers. The PC III shows high loading of Ca2+, which is caused by mineral weathering and dissolution, and constructional activities. The PC IV has high positive loading of Mg2+ and SO4 2?, measuring the mineral weathering and dissolution, and soil amendments. The spatial distribution of PC scores explains that the geogenic processes are the primary contributors and man-made activities are the secondary factors responsible for modifications of groundwater chemistry. Further, geochemical modeling of groundwater also clearly confirms the water–rock interactions with respect to the phases of calcite, dolomite, fluorite, halite, gypsum, K-feldspar, albite and CO2, which are the prime factors controlling the chemistry of groundwater, while the rate of reaction and intensity are influenced by climate and anthropogenic activities. The study helps as baseline information to assess the sources of factors controlling the chemical composition of groundwater and also in enhancing the groundwater quality management.  相似文献   

15.
A comprehensive and systematic study to understand various geochemical processes as well as process drivers controlling the water quality and patterns of the hydrochemical composition of river water in Muthirapuzha River Basin, MRB (a major tributary of Periyar, the longest river in Kerala, India), was carried out during various seasons, such as monsoon, post-monsoon and pre-monsoon of 2007–2008, based on the data collected at 15 monitoring stations (i.e., 15 × 3 = 45 samples). Ca2+ and Mg2+ dominate the cations, while Cl? followed by HCO3 ? dominates the anions. In general, major ion chemistry of MRB is jointly controlled by weathering of silicate and carbonate rocks, which is confirmed by relatively larger Ca2+ + Mg2+/Na+ K+ ratios as well as Ca2+/Na+ vs. Mg2+/Na+ and Ca2+/Na+ vs. HCO3 ?/Na+ scatter plots. The relationship between Cl? and Na+ implies stronger contributions of anthropogenic activities modifying the hydrochemical composition, irrespective of seasons. The water types emerged from this study are transitional waters or waters that changed their chemical character by mixing with waters of geochemically different ionic signatures. However, various ionic ratios, hydrochemical plots and graphical diagrams suggest seasonality over the hydrochemical composition, which is solely controlled by the rainfall pattern. Relatively higher pCO2 indicates the disequilibrium existing in natural waterbodies vis-à-vis the atmosphere, which is an outcome of both the contribution of groundwater to stream discharge and anthropogenic activities. Hence, continuous monitoring of hydrochemical composition of mountain rivers is essential in the context of climate change, which has serious implications on tropical mountain fluvial-hydro systems.  相似文献   

16.
Groundwater of an aquifer located in the vicinity of a large coal washery near Zarand City, Iran consists of two hydrochemically differing facies, which have been informally designated as groundwater (A) and groundwater (B). Groundwater (A) is native, brackish in composition and is characterized by Na+ > Mg2+ > Ca2+ > K+ and SO4 2? > HCO3 ? > Cl? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of chloro-alkaline indices, C ratio and Na+/Cl? molar ratio indicate that in the groundwater (A), the ionic load of Ca2+, Mg2+, Na+, K+, SO4 2? and HCO3 ? is derived essentially from weathering of both carbonates and aluminosilicates and direct cation and reverse cation–anion exchange reactions. Groundwater (B) is the polluted variant of the groundwater (A), brackish to saline in composition, and unlike the groundwater (A), consists of HCO3 ? as the dominant anion. In comparison with the groundwater (A), the groundwater (B) contains higher concentrations of all ions, and its average ionic load (av. = 59.74 me/L) is 1.43 times higher than that of the groundwater (A) (av. = 41.54 me/L). Additional concentrations of Ca2+, Mg2+, K+, SO4 2?, Cl? and HCO3 ? in the groundwater (B) are provided mainly by downward infiltrating water from the coal washery tailings pond and reverse cation–anion exchange reaction between tailings pond water and exchanger of the aquifer matrix during non-conservative mixing process of groundwater (A) and tailings pond water. Certain additional concentrations of Na+, K+ and NO3 ? in the groundwater (B) are provided by other anthropogenic sources. Quality wise, both groundwaters are marginally suitable for cultivation of salt-tolerant crops only.  相似文献   

17.
Assessment of groundwater quality in and around Vedaraniyam,South India   总被引:1,自引:1,他引:0  
Groundwater from 47 wells were analyzed on the basis of hydrochemical parameters like pH, electric conductivity, total dissolved solids, Ca2+, Mg2+, Na+, K+, Cl?, CO3 2?, HCO3 ?, NO3 ?, PO4 3? and F? in the Cauvery delta of Vedaraniyam coast. Further, water quality index (WQI), sodium percentage (Na %), sodium absorption ratio, residual sodium carbonate, permeability index and Kelley’s ratio were evaluated to understand the suitability of water for drinking and irrigation purposes. The result shows significant difference in the quality of water along the coastal stretch. The order of dominance of major ions is as follows: Na+ ≥ Mg2+ ≥ Ca2+ ≥ K+ and Cl? ≥ HCO3 ? ≥ CO3 2? ≥ PO4 3? ≥ F?. Na/Cl, Cl/HCO3 ratio and Revelle index confirmed that 60–70 % of the samples were affected by saline water intrusion. WQI showed that 36 % of the samples were good for drinking and the remaining were poor and unsuitable for drinking purpose. The degradation of groundwater quality was found to be mainly due to over-exploitation, brackish aquaculture practice, fertilizer input from agriculture and also due to domestic sewage.  相似文献   

18.
The change in groundwater chemistry along the groundwater flow path in the Matsumoto tunnel vicinity was studied, and the origin of the groundwater and dissoluted substances was determined. The relationship between the concentration of HCO3 , Ca2+, and Na+, and CO2 gas pressure in the groundwater indicated that the HCO3 , Ca2+, and Na+ were produced by the reaction of the CO2 gas in the groundwater and feldspar in the rocks. The relationship between the concentration of NO3 and the Eh and pH values in the groundwater indicated that in an oxidative condition, ammonia-oxidizing and nitriteoxidizing bacteria used NH4 + and produced NO3 and H+, and in a reductive condition, denitrifying bacteria used NO3 and produced N2 gas and OH. The stable hydrogen and oxygen isotopic ratio in the groundwater and precipitation indicated that the groundwater originated from precipitation that had fallen on the area. The concentration of3H and the stable hydrogen and oxygen isotopic ratios in the groundwater suggested that it has been getting warmer climatically for more than 60 years. The stable carbon isotopic ratio indicated that the HCO3 in the groundwater, excluding deep well water, originated from CO2 gas produced by organic matter in the soil. The deep well water, which had a higher concentration of HCO3 than the other groundwater sampled, was thought to have acquired HCO3 though contact with rocks. The36Cl/Cl ratio indicated the recharge age of the deep well water sampled at a depth of 760 m at the foot of the plateau was recent.  相似文献   

19.
The study of groundwater hydrogeochemistry of a hard rock aquifer system in Thoothukudi district has resulted in a large geochemical data set. A total of 100 water samples representing various lithologies like Hornblende Biotite Gneiss, Alluvium Marine, alluvium Fluvial, Quartzite, Charnockite, Granite and Sandstone were collected for two different seasons and analyzed for major ions like Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ?, PO4 ?, F? and H4SiO4. Statistical analysis of the data has been attempted to unravel the hidden relationship between ions. Correlation analyses and factor analyses were applied to classify the groundwater samples and to identify the geochemical processes controlling groundwater geochemistry. Factor analysis indicates that sea water intrusion followed by leaching of secondary salts, weathering and anthropogenic impacts are the dominant factors controlling hydrogeochemistry of groundwater in the study area. Factor score overlay indicate major active hydrogeochemical regimes are spread throughout the Eastern, Northwestern and Southeastern parts of the study area. The dominant ions controlling the groundwater chemistry irrespective of season are Cl?, Na+, Mg2+, Ca2+, SO4 2?, K+ and NO3 ?. An attempt has also been made to note the seasonal variation of the factor representations in the study area. This study also illustrates the usefulness of statistical analysis to improve the understanding of groundwater systems and estimates of the extent of salinity/salt water intrusion.  相似文献   

20.
Natural gases and associated condensate oils from the Zhongba gas field in the western Sichuan Basin, China were investigated for gas genetic types and origin of H2S by integrating gaseous and light hydrocarbon geochemistry, formation water compositions, S isotopes (δ34S) and geological data. There are two types of natural gas accumulations in the studied area. Gases from the third member of the Middle Triassic Leikoupo Formation (T2l3) are reservoired in a marine carbonate sequence and are characterized by high gas dryness, high H2S and CO2 contents, slightly heavy C isotopic values of CH4 and widely variable C isotopic values of wet gases. They are highly mature thermogenic gases mainly derived from the Permian type II kerogens mixed with a small proportion of the Triassic coal-type gases. Gases from the second member of the Upper Triassic Xujiahe Formation (T3x2) are reservoired in continental sandstones and characterized by low gas dryness, free of H2S, slightly light C isotopic values of CH4, and heavy and less variable C isotopic values of wet gases. They are coal-type gases derived from coal in the Triassic Xujiahe Formation.The H2S from the Leikoupo Formation is most likely formed by thermochemical SO4 reduction (TSR) even though other possibilities cannot be fully ruled out. The proposed TSR origin of H2S is supported by geochemical compositions and geological interpretations. The reservoir in the Leikoupo Formation is dolomite dominated carbonate that contains gypsum and anhydrite. Petroleum compounds dissolved in water react with aqueous SO4 species, which are derived from the dissolution of anhydrite. Burial history analysis reveals that from the temperature at which TSR occurred it was in the Late Jurassic to Early Cretaceous and TSR ceased due to uplift and cooling thereafter. TSR alteration is incomplete and mainly occurs in wet gas components as indicated by near constant CH4 δ13C values, wide range variations of ethane, propane and butane δ13C values, and moderately high gas dryness. The δ34S values in SO4, elemental S and H2S fall within the fractionation scope of TSR-derived H2S. High organo-S compound concentrations together with the occurrence of 2-thiaadamantanes in the T2l reservoir provide supplementary evidence for TSR related alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号