共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
针对偏压软弱围岩隧道预留核心土法不同开挖顺序造成围岩不同变形量的问题,结合洞头山工程实例,运用现场监控量测结合MIDAS数值模拟的方法,分析比较偏压软弱围岩隧道在不同开挖顺序下各阶段围岩位移变形量。研究表明:开挖顺序的改变能够有效减小隧道各部围岩变形量,且减小程度从大到小的岩体位置依次为浅埋拱腰处、浅埋拱脚处、深埋拱腰处、深埋拱脚与拱顶;拱浅埋侧最大主应力明显减小。因此对于偏压软弱围岩隧道先开挖深埋侧比先开挖浅埋侧更为安全合理。研究成果为隧道信息化施工提供依据,也为洞头山及具有类似地质地形情况的隧道施工提供借鉴与指导。 相似文献
3.
滑坡地段隧道变形机理的模型试验研究 总被引:9,自引:2,他引:9
通过室内地质力学模型试验,研究了滑坡地段坡体变形与隧道的相互作用机理、围岩和衬砌压力的变化规律以及坡体和隧道的变形特征,着重研究了滑带土浸水软化及发生蠕变时坡体变形与隧道的相互作用关系。本文的成果可为该类病害的预测预报和有效整治提供科学依据。 相似文献
4.
5.
在偏压情况下对不同埋深的4车道和2车道偏压公路隧道建立其力学模型,研究其松动围岩力学特征。在考虑应力剪胀对隧道围岩的影响后,计算出洞周围岩位移、收敛比。研究结果表明:对于相同的条件,4车道偏压公路隧道的围岩剪切破坏带比2车道更容易与地面贯通;随着剪胀角的递增,围岩位移矢量和隧道拱顶下沉量逐渐减小,拱脚水平位移逐渐增大;大跨度隧道围岩位移受剪胀角的影响比小断面隧道显著。 相似文献
6.
运用荷载结构模型及有限元分析手段,以新建200km时速城际铁路隧道衬砌为研究对象,分析了围岩弹性抗力对二衬结构受力的影响。随着围岩弹性抗力的增大,拱顶弯矩及拱肩弯矩绝对值、拱顶竖向位移变小,而拱顶轴力及安全系数变大。说明,围岩越坚硬,衬砌结构受力越有利。随着二衬厚度的增大,拱顶弯矩及拱肩弯矩绝对值变大,而拱顶轴力、拱顶竖向位移及安全系数变小。随着混凝土强度等级的提高,拱顶弯矩、拱肩弯矩及安全系数变大,拱顶轴力和拱顶竖向位移变小,但这些量值的变化幅度较小,说明混凝土弹性模量对二衬受力影响很小。 相似文献
7.
随着我国高速铁路在西部地区的大规模建设,隧道在线路中所占的比例越来越高,洞口隧道在滑坡作用下产生的病害越来越严重。然而,我国目前在隧道-洞口滑坡体系设计中没有可供参考的受力变形模式,因此本文以隧道-洞口滑坡为研究对象,通过对云南功东高速公路中隧道-滑坡工程实例的总结及工程地质模型的建立,对滑坡推力作用下的隧道变形模式进行研究,得到如下结论:(1)将隧道-洞口滑坡分为与滑面相交和下穿滑体两种模式,与滑面相交的隧道直接受到剩余滑坡推力的作用,而下穿滑体的隧道主要承受附加荷载的影响;(2)位于滑体内隧道承受围岩压力、滑坡推力和岩土抗力的作用,可将洞口有刚性支撑的隧道-滑坡结构简化为简支梁,无刚性支撑作用下的隧道-滑坡结构简化为悬臂梁;(3)下穿滑体隧道在附加荷载的影响下,拱部承受多余的压力而受到偏压作用,拱顶形成受拉区域,出现拉张裂缝。 相似文献
8.
9.
以兰渝铁路新作坊隧道洞口明挖段不等跨连拱结构为背景,采用室内模型试验的方法,对不等跨连拱铁路隧道围岩压力分布及受力特征进行研究。试验结果表明:隧道水平侧压力均小于竖向围岩压力,拱顶处侧压力小于墙脚处侧压力,小洞侧侧压力系数平均为0.55,大洞侧侧压力系数平均为0.65;中隔墙顶部围岩压力均大于拱顶处围岩压力,且大洞拱顶围岩压力约为小洞的1.2倍;隧道结构总体为小偏心压弯构件,大洞所承受的轴力总体比小洞承受的轴力大20%~30%;隧道先后在大小洞靠近中隔墙的拱腰及仰拱处破坏,最终发生整体失稳;靠近中隔墙的大小洞拱腰及仰拱是设计施工时应重点关注的部位;最终获得不等跨连拱铁路隧道的围岩压力分布模式,研究结果可以直接指导新作坊隧道结构的设计与施工,有利于完善不等跨连拱隧道设计施工理念。 相似文献
10.
隧道围岩强度不均地段塌方成因及其处理方法 总被引:1,自引:0,他引:1
由于地质构造作用以及风化作用,工程场地岩体中多存在围岩强度不均地段.在隧道施工过程中就经常遇到软硬岩石交汇而形成的地质条件复杂地段;给隧道的施工带来了很多不利情况,并且也是导致隧道塌方的原因之一.2006年1月,承德韩郭线二级公路工程,喇嘛梁隧道软硬岩石交汇地段由于地下水作用导致围岩风化程度不均,产生软弱结构面并造成了大面积塌方.基于现场的追踪调查与考察,本文详细描述了利用拱顶架设工字钢梁并配合超前注浆小导管的支护方法来处理这类围岩. 相似文献
11.
随着大量深埋地下工程的建设,尤其是大型矿山,与巷道围岩稳定有关的各种地质灾害问题突出,因此其一直备受关注。某铁矿巷道埋深450~800m,变形剧烈,局部持续大变形,呈条带状臌出。地应力实测结果表明,矿区地应力总体特征为σv≥σH〉σh,现今水平构造作用明显,最大水平主应力为13-21MPa,接近岩体自重。大变形洞段围岩为裂隙化岩体,强度低,蠕变性明显。有限元分析表明,巷道开挖后在边墙与顶拱和底板交界处产生约40MPa的高应力,造成了围岩变形破坏。后期围岩在高应力作用下产生大变形,其宏观变形破坏特征与软岩相似。另围岩加固与支护发现,普通的挂网喷锚支护已很难适应高应力条件下的岩体大变形。论文基于地应力实测结果,通过对巷道围岩大变形成因机制的探讨以及原加固支护效果的总结,为后期巷道围岩变形破坏的防治提供了参考。 相似文献
12.
13.
14.
深埋圆形隧洞围岩的应力应变状态是深地下工程设计的重要参考依据。针对岩体内部的缺陷引起的应力集中和松弛,建立了局部附加应力与缺陷尺度和卸载时间之间的联系,得到圆形隧洞在卸载时围岩破坏前遵循的一系列方程,进而推导出围岩变形的解析积分表达式。将围岩应力应变的时间效应分为卸载阶段和应力松弛阶段,通过逐步逼近法分别求解了围岩的应力和变形的近似解析表达式。该近似解析式考虑了岩体内部缺陷处应力集中的影响和卸载的时间效应,可用来考察不同半径处缺陷应力集中和卸载快慢对应力变形状态的影响。计算表明,围岩内部在卸载过程中和卸载完成后均存在局部附加拉应力集中,围岩变形在卸载完成后仍会进一步增加。 相似文献
15.
巷道开挖围岩能量释放与偏应力应变能生成的分析计算 总被引:1,自引:0,他引:1
巷道开挖,围岩能量释放,同时在围岩中产生偏应力。围岩应力是原岩应力与偏应力的叠加,偏应力或偏应力能控制岩体破坏。在静水压力 和岩体体积应变为0的条件下,利用文[1]在弹性、非线性软化本构模型导得的巷道围岩应力分布表达式,用重积分计算了围岩弹性区和软化区中的偏应力应变能 ,证明了 可以简捷地用地应力 关于巷壁位移 做一次积分再乘巷壁周长的途径来得到,阐述了该计算途径的原理。巷道开挖过程围岩释放的能量等于围岩压力 关于 的积分乘巷壁周长。由此,可通过 ~ 曲线、 ~ 曲线所围面积的几何形式,表示围岩偏应力能、围岩弹性能释放量随 变化的情况。所得研究结果可以深化围岩由于开挖产生的力学响应及挖成后围岩工况规律的认识。 相似文献
16.
通过论证比较,按照隧道围岩主要工程地质特征,围岩岩体结构及结构面特征,水文地质特征,围岩弹性纵波波速,变形系数,泊松比,内摩擦角,软化系数等指标,重新划分和确定了围岩类别,分析了产生围岩类别偏差的原因,以期对同类工程勘察起到借鉴和参考作用。 相似文献
17.
基于可拓理论的围岩稳定分类方法的研究 总被引:11,自引:0,他引:11
在双护盾TBM(tunnel boring machine)的隧洞施工中,将可拓理论与洞室围岩稳定评价相结合。基于碴料和掘进参数的地质编录所提供的地质信息,选取了能够反映围岩稳定综合特性的评价指标,确定围岩稳定类型和预测前方岩体情 况。在物元理论、可拓集合论和关联函数运算的基础上,建立了隧洞围岩稳定分类的可拓评价方法,其中引进了隶属度的概念和一种定量的指标权重的确定方法,并在山西引黄工程的双护盾TBM隧洞施工中用此分类方法对某两段围岩进行了稳定分 类,得到的稳定分类结果与实际情况吻合。 相似文献
18.
西龙池抽水蓄能电站位于山西省五台县境内,总装机容量为1 200 MW,额定发电水头640 m。地下厂房开挖尺寸(长×宽×高)为149.3 m×23.5 m×49.0 m。厂区岩性为泥质鲕状灰岩、薄层条带状灰岩、薄层石英粉砂岩,近水平产状;厂房轴线与主要断层、裂隙成大角度相交。地下厂房围岩位移、锚杆应力呈明显各向异性特点,且边墙围岩位移平均值为 3.0 mm、锚杆应力平均值为45 MPa,均较小,构成了近水平薄层灰岩、粉砂岩互层岩体内地下厂房围岩位移、应力特点。 相似文献
19.
软弱围岩隧道洞口段失稳机制分析与处置技术 总被引:1,自引:0,他引:1
隧道洞口围岩大多为软弱围岩,加之浅埋、偏压等不良地质地形因素的影响,洞口施工过程中易发生边仰坡的滑塌。厦蓉高速公路水都线的瑞坡隧道在进洞后不久就发生围岩失稳,致使仰坡开裂滑塌和洞内支护变形很大。利用FLAC3D软件模拟了隧道施工全过程,从围岩塑性区分布以及位移情况结合现场实际状况分析了隧道仰坡坍塌和支护变形发生的原因,并通过数值模拟优化了CRD法的开挖工序。最后参考数值分析结果结合工程实际提出了有效的治理措施,得到的结论可供今后类似工程参考与借鉴。 相似文献
20.
本文将岩石视为颗粒体材料,采用两种模型对巷道围岩的应力、应变及破坏区的分布规律进行了数值模拟。第一种模型是连续介质模型,其中考虑了颗粒、界面及基体。第二种模型是将第一种模型中的基体去掉。研究结果表明:当基体强度参数降低较少时,巷道围岩中的环向和径向应力在传统结果附近波动;当基体强度参数降低较多时,两种应力的波动幅度提高,而且,基体位置的应力向其周围的颗粒或界面转移。第二种模型结果的波动幅度更大。随着基体强度参数的降低,巷道围岩中的应变集中区向深部转移,形成相互交织的滑移线网,滑移线网的位置主要位于基体和界面中,这与第二种模型的结果有明显的差异(多个环向的应变集中区)。 相似文献